IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-01393994.html
   My bibliography  Save this paper

A model for interest rates with clustering effects

Author

Listed:
  • Donatien Hainaut

    (ESC [Rennes] - ESC Rennes School of Business)

Abstract

We propose a model for short-term rates driven by a self-exciting jump process to reproduce the clustering of shocks on the Euro overnight index average (EONIA). The key element of the model is the feedback eect between the absolute value of jumps and the intensity of their arrival process. In this setting, we obtain a closed-form solution for the characteristic function for interest rates and their integral. We introduce a class of equivalent measures under which the features of the process are preserved. We infer the prices of bonds and their dynamics under a risk-neutral measure. The question of derivatives pricing is developed under a forward measure, and a numerical algorithm is proposed to evaluate caplets and oorlets. The model is tted to EONIA rates from 2004 to 2014 using a peaks-over-threshold procedure. From observation of swap curves over the same period, we lter the evolution of risk premiums for Brownian and jump components. Finally, we analyze the sensitivity of implied caplet volatility to parameters dening the level of self-excitation.

Suggested Citation

  • Donatien Hainaut, 2016. "A model for interest rates with clustering effects," Post-Print hal-01393994, HAL.
  • Handle: RePEc:hal:journl:hal-01393994
    DOI: 10.1080/14697688.2015.1135251
    Note: View the original document on HAL open archive server: https://rennes-sb.hal.science/hal-01393994
    as

    Download full text from publisher

    File URL: https://rennes-sb.hal.science/hal-01393994/document
    Download Restriction: no

    File URL: https://libkey.io/10.1080/14697688.2015.1135251?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pierre Giot, 2005. "Market risk models for intraday data," The European Journal of Finance, Taylor & Francis Journals, vol. 11(4), pages 309-324.
    2. Ole E. Barndorff-Nielsen & Neil Shephard, 2006. "Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation," Journal of Financial Econometrics, Oxford University Press, vol. 4(1), pages 1-30.
    3. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    4. E. Bacry & S. Delattre & M. Hoffmann & J. F. Muzy, 2013. "Modelling microstructure noise with mutually exciting point processes," Quantitative Finance, Taylor & Francis Journals, vol. 13(1), pages 65-77, January.
    5. Chavez-Demoulin, V. & McGill, J.A., 2012. "High-frequency financial data modeling using Hawkes processes," Journal of Banking & Finance, Elsevier, vol. 36(12), pages 3415-3426.
    6. Aït-Sahalia, Yacine & Laeven, Roger J.A. & Pelizzon, Loriana, 2014. "Mutual excitation in Eurozone sovereign CDS," Journal of Econometrics, Elsevier, vol. 183(2), pages 151-167.
    7. Luc, BAUWENS & Nikolaus, HAUTSCH, 2006. "Modelling Financial High Frequency Data Using Point Processes," Discussion Papers (ECON - Département des Sciences Economiques) 2006039, Université catholique de Louvain, Département des Sciences Economiques.
    8. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    9. Cecilia Mancini, 2009. "Non‐parametric Threshold Estimation for Models with Stochastic Diffusion Coefficient and Jumps," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(2), pages 270-296, June.
    10. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-592.
    11. Emmanuel Bacry & Sylvain Delattre & Marc Hoffmann & Jean-François Muzy, 2013. "Modelling microstructure noise with mutually exciting point processes," Post-Print hal-01313995, HAL.
    12. Darrell Duffie & Rui Kan, 1996. "A Yield‐Factor Model Of Interest Rates," Mathematical Finance, Wiley Blackwell, vol. 6(4), pages 379-406, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hainaut, Donatien, 2021. "Lévy interest rate models with a long memory," LIDAM Discussion Papers ISBA 2021020, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Donatien Hainaut & Franck Moraux, 2019. "A switching self-exciting jump diffusion process for stock prices," Annals of Finance, Springer, vol. 15(2), pages 267-306, June.
    3. Njike Leunga, Charles Guy & Hainaut, Donatien, 2019. "Interbank Credit Risk Modelling with Self-Exciting Jump Processes," LIDAM Discussion Papers ISBA 2019017, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Hainaut, Donatien & Goutte, Stephane, 2018. "A switching microstructure model for stock prices," LIDAM Discussion Papers ISBA 2018014, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Zeitsch, Peter J., 2019. "A jump model for credit default swaps with hierarchical clustering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 737-775.
    6. Xinglin Yang & Ji Chen, 2021. "VIX term structure: The role of jump propagation risks," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(6), pages 785-810, June.
    7. Olivier Le Courtois & François Quittard-Pinon & Xiaoshan Su, 2020. "Pricing and hedging defaultable participating contracts with regime switching and jump risk," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(1), pages 303-339, June.
    8. Ketelbuters, John-John & Hainaut, Donatien, 2022. "CDS pricing with fractional Hawkes processes," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1139-1150.
    9. Hainaut, Donatien, 2020. "Credit risk modelling with fractional self-excited processes," LIDAM Discussion Papers ISBA 2020002, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    10. Hainaut, Donatien, 2016. "A bivariate Hawkes process for interest rate modeling," Economic Modelling, Elsevier, vol. 57(C), pages 180-196.
    11. Hainaut, Donatien, 2019. "Credit risk modelling with fractional self-excited processes," LIDAM Discussion Papers ISBA 2019027, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    12. Hainaut, Donatien, 2017. "Contagion modeling between the financial and insurance markets with time changed processes," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 63-77.
    13. Chen, Li & Ma, Yong & Xiao, Weilin, 2022. "Pricing defaultable bonds under Hawkes jump-diffusion processes," Finance Research Letters, Elsevier, vol. 47(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hainaut, Donatien, 2016. "A bivariate Hawkes process for interest rate modeling," Economic Modelling, Elsevier, vol. 57(C), pages 180-196.
    2. Donatien Hainaut, 2016. "A bivariate Hawkes process based model, for interest rates," Post-Print hal-01458162, HAL.
    3. Donatien Hainaut, 2016. "A model for interest rates with clustering effects," Quantitative Finance, Taylor & Francis Journals, vol. 16(8), pages 1203-1218, August.
    4. Hainaut, Donatien, 2016. "Impact of volatility clustering on equity indexed annuities," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 367-381.
    5. Giuseppe Arbia & Michele Di Marcantonio, 2015. "Forecasting Interest Rates Using Geostatistical Techniques," Econometrics, MDPI, vol. 3(4), pages 1-28, November.
    6. Dassios, Angelos & Jang, Jiwook & Zhao, Hongbiao, 2019. "A generalised CIR process with externally-exciting and self-exciting jumps and its applications in insurance and finance," LSE Research Online Documents on Economics 102043, London School of Economics and Political Science, LSE Library.
    7. Buccioli, Alice & Kokholm, Thomas & Nicolosi, Marco, 2019. "Expected shortfall and portfolio management in contagious markets," Journal of Banking & Finance, Elsevier, vol. 102(C), pages 100-115.
    8. Emmanuel Bacry & Iacopo Mastromatteo & Jean-Franc{c}ois Muzy, 2015. "Hawkes processes in finance," Papers 1502.04592, arXiv.org, revised May 2015.
    9. Camilla LandÊn, 2000. "Bond pricing in a hidden Markov model of the short rate," Finance and Stochastics, Springer, vol. 4(4), pages 371-389.
    10. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    11. Frank De Jong & Joost Driessen & Antoon Pelsser, 2001. "Libor Market Models versus Swap Market Models for Pricing Interest Rate Derivatives: An Empirical Analysis," Review of Finance, European Finance Association, vol. 5(3), pages 201-237.
    12. João Nunes, 2011. "American options and callable bonds under stochastic interest rates and endogenous bankruptcy," Review of Derivatives Research, Springer, vol. 14(3), pages 283-332, October.
    13. Hautsch, Nikolaus & Yang, Fuyu, 2012. "Bayesian inference in a Stochastic Volatility Nelson–Siegel model," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3774-3792.
    14. Chen, Bin & Song, Zhaogang, 2013. "Testing whether the underlying continuous-time process follows a diffusion: An infinitesimal operator-based approach," Journal of Econometrics, Elsevier, vol. 173(1), pages 83-107.
    15. Kyungsub Lee, 2022. "Application of Hawkes volatility in the observation of filtered high-frequency price process in tick structures," Papers 2207.05939, arXiv.org, revised Sep 2024.
    16. R.C. Stapleton & Marti G. Subrahmanyam, 1999. "The Term Structure of Interest Rate-Futures Prices," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-045, New York University, Leonard N. Stern School of Business-.
    17. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    18. Fan, Longzhen & Johansson, Anders C., 2010. "China's official rates and bond yields," Journal of Banking & Finance, Elsevier, vol. 34(5), pages 996-1007, May.
    19. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2011, January-A.
    20. Moreno, Manuel & Platania, Federico, 2015. "A cyclical square-root model for the term structure of interest rates," European Journal of Operational Research, Elsevier, vol. 241(1), pages 109-121.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-01393994. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.