IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v81y2011i7p1272-1289.html
   My bibliography  Save this article

The SIML estimation of realized volatility of the Nikkei-225 Futures and hedging coefficient with micro-market noise

Author

Listed:
  • Kunitomo, Naoto
  • Sato, Seisho

Abstract

For the estimation problem of the realized volatility and hedging coefficient by using high-frequency data with possibly micro-market noise, we use the Separating Information Maximum Likelihood (SIML) method, which was recently developed by Kunitomo and Sato [11–13]. By analyzing the Nikkei-225 Futures data, we found that the estimates of realized volatility and the hedging coefficients have significant bias by using the traditional historical method which should be corrected. The SIML method can handle the bias problem in the estimation by removing the possible micro-market noise in multivariate high-frequency data. We show that the SIML method has the asymptotic robustness under non-Gaussian cases even when the market noises are autocorrelated and endogenous with the efficient market price or the signal term.

Suggested Citation

  • Kunitomo, Naoto & Sato, Seisho, 2011. "The SIML estimation of realized volatility of the Nikkei-225 Futures and hedging coefficient with micro-market noise," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(7), pages 1272-1289.
  • Handle: RePEc:eee:matcom:v:81:y:2011:i:7:p:1272-1289
    DOI: 10.1016/j.matcom.2010.08.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475410002715
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2010.08.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Lan & Mykland, Per A. & Ait-Sahalia, Yacine, 2005. "A Tale of Two Time Scales: Determining Integrated Volatility With Noisy High-Frequency Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1394-1411, December.
    2. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2008. "Designing Realized Kernels to Measure the ex post Variation of Equity Prices in the Presence of Noise," Econometrica, Econometric Society, vol. 76(6), pages 1481-1536, November.
    3. Peter Hansen & Jeremy Large & Asger Lunde, 2008. "Moving Average-Based Estimators of Integrated Variance," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 79-111.
    4. Yacine Aït-Sahalia, 2005. "How Often to Sample a Continuous-Time Process in the Presence of Market Microstructure Noise," The Review of Financial Studies, Society for Financial Studies, vol. 18(2), pages 351-416.
    5. Hansen, Peter R. & Lunde, Asger, 2006. "Realized Variance and Market Microstructure Noise," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 127-161, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kunitomo, Naoto & Sato, Seisho, 2013. "Separating Information Maximum Likelihood estimation of the integrated volatility and covariance with micro-market noise," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 282-309.
    2. Naoto Kunitomo & Hiroumi Misaki & Seisho Sato, 2015. "The SIML Estimation of Integrated Covariance and Hedging Coefficient Under Round-off Errors, Micro-market Price Adjustments and Random Sampling," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 22(3), pages 333-368, September.
    3. Seisho Sato & Naoto Kunitomo, 2015. "A Robust Estimation of Integrated Volatility under Round-off Errors, Micro-market Price Adjustments and Noises," CIRJE F-Series CIRJE-F-964, CIRJE, Faculty of Economics, University of Tokyo.
    4. Naoto Kunitomo & Hiroumi Misaki & Seisho Sato, 2015. "The SIML Estimation of Integrated Covariance and Hedging Coefficient under Round-off Errors, Micro-market Price Adjustments and Random Sampling," CIRJE F-Series CIRJE-F-965, CIRJE, Faculty of Economics, University of Tokyo.
    5. Naoto Kunitomo & Seisho Sato, 2015. "Trend, Seasonality and Economic Time Series:the Nonstationary Errors-in-variables Models," CIRJE F-Series CIRJE-F-977, CIRJE, Faculty of Economics, University of Tokyo.
    6. Naoto Kunitomo & Hiroumi Misaki, 2013. "The SIML Estimation of Integrated Covariance and Hedging Coefficient under Micro-market noise and Random Sampling," CIRJE F-Series CIRJE-F-893, CIRJE, Faculty of Economics, University of Tokyo.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Large, Jeremy, 2011. "Estimating quadratic variation when quoted prices change by a constant increment," Journal of Econometrics, Elsevier, vol. 160(1), pages 2-11, January.
    2. Xiu, Dacheng, 2010. "Quasi-maximum likelihood estimation of volatility with high frequency data," Journal of Econometrics, Elsevier, vol. 159(1), pages 235-250, November.
    3. Christensen, Kim & Oomen, Roel & Podolskij, Mark, 2010. "Realised quantile-based estimation of the integrated variance," Journal of Econometrics, Elsevier, vol. 159(1), pages 74-98, November.
    4. Naoto Kunitomo & Seisho Sato, 2010. "On Properties of Separating Information Maximum Likelihood Estimation of Realized Volatility and Covariance with Micro-Market Noise," CARF F-Series CARF-F-228, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    5. Kunitomo, Naoto & Sato, Seisho, 2013. "Separating Information Maximum Likelihood estimation of the integrated volatility and covariance with micro-market noise," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 282-309.
    6. Neil Shephard & Dacheng Xiu, 2012. "Econometric analysis of multivariate realised QML: efficient positive semi-definite estimators of the covariation of equity prices," Economics Series Working Papers 604, University of Oxford, Department of Economics.
    7. Jim Griffin & Jia Liu & John M. Maheu, 2021. "Bayesian Nonparametric Estimation of Ex Post Variance [Out of Sample Forecasts of Quadratic Variation]," Journal of Financial Econometrics, Oxford University Press, vol. 19(5), pages 823-859.
    8. Christensen, Kim & Kinnebrock, Silja & Podolskij, Mark, 2010. "Pre-averaging estimators of the ex-post covariance matrix in noisy diffusion models with non-synchronous data," Journal of Econometrics, Elsevier, vol. 159(1), pages 116-133, November.
    9. Nikolaus Hautsch & Mark Podolskij, 2013. "Preaveraging-Based Estimation of Quadratic Variation in the Presence of Noise and Jumps: Theory, Implementation, and Empirical Evidence," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 165-183, April.
    10. Zhang, Lan & Mykland, Per A. & Aït-Sahalia, Yacine, 2011. "Edgeworth expansions for realized volatility and related estimators," Journal of Econometrics, Elsevier, vol. 160(1), pages 190-203, January.
    11. Kalnina, Ilze & Linton, Oliver, 2006. "Estimating quadratic variation consistently in the presence of correlated measurement error," LSE Research Online Documents on Economics 4413, London School of Economics and Political Science, LSE Library.
    12. Naoto Kunitomo & Seisho Sato, 2010. "On Properties of Separating Information Maximum Likelihood Estimation of Realized Volatility and Covariance with Micro-Market Noise," CIRJE F-Series CIRJE-F-758, CIRJE, Faculty of Economics, University of Tokyo.
    13. Aït-Sahalia, Yacine & Mykland, Per A. & Zhang, Lan, 2011. "Ultra high frequency volatility estimation with dependent microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 160-175, January.
    14. Almut E. D. Veraart, 2008. "Impact of time–inhomogeneous jumps and leverage type effects on returns and realised variances," CREATES Research Papers 2008-57, Department of Economics and Business Economics, Aarhus University.
    15. Corradi, Valentina & Distaso, Walter & Swanson, Norman R., 2009. "Predictive density estimators for daily volatility based on the use of realized measures," Journal of Econometrics, Elsevier, vol. 150(2), pages 119-138, June.
    16. Wu, Liuren, 2011. "Variance dynamics: Joint evidence from options and high-frequency returns," Journal of Econometrics, Elsevier, vol. 160(1), pages 280-287, January.
    17. Li, Z. Merrick & Laeven, Roger J.A. & Vellekoop, Michel H., 2020. "Dependent microstructure noise and integrated volatility estimation from high-frequency data," Journal of Econometrics, Elsevier, vol. 215(2), pages 536-558.
    18. Nielsen, Morten Ørregaard & Frederiksen, Per, 2008. "Finite sample accuracy and choice of sampling frequency in integrated volatility estimation," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 265-286, March.
    19. Barndorff-Nielsen, Ole E. & Hansen, Peter Reinhard & Lunde, Asger & Shephard, Neil, 2011. "Multivariate realised kernels: Consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading," Journal of Econometrics, Elsevier, vol. 162(2), pages 149-169, June.
    20. Marine Carrasco & Rachidi Kotchoni, 2015. "Adaptive Realized Kernels," Journal of Financial Econometrics, Oxford University Press, vol. 13(4), pages 757-797.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:81:y:2011:i:7:p:1272-1289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.