IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v82y2012i12p2164-2169.html
   My bibliography  Save this article

A Generalized Hyperbolic model for a risky asset with dependence

Author

Listed:
  • Finlay, Richard
  • Seneta, Eugene

Abstract

We present a construction of the Generalized Hyperbolic (GH) subordinator model for a risky asset with dependence. The construction of the subordinator (activity time) process is implemented via superpositions of Ornstein–Uhlenbeck type processes driven by Lévy noise. It unifies, on the basis of self-decomposability of the Generalized Inverse Gaussian (GIG) distribution, the construction of the various special cases of the GH subordinator class, such as the Variance Gamma, normal inverse Gaussian, hyperbolic and, especially, t distributions. An option pricing formula for the proposed model is derived.

Suggested Citation

  • Finlay, Richard & Seneta, Eugene, 2012. "A Generalized Hyperbolic model for a risky asset with dependence," Statistics & Probability Letters, Elsevier, vol. 82(12), pages 2164-2169.
  • Handle: RePEc:eee:stapro:v:82:y:2012:i:12:p:2164-2169
    DOI: 10.1016/j.spl.2012.07.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715212002787
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2012.07.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ernst Eberlein & Sebastian Raible, 1999. "Term Structure Models Driven by General Lévy Processes," Mathematical Finance, Wiley Blackwell, vol. 9(1), pages 31-53, January.
    2. Fung, Thomas & Seneta, Eugene, 2010. "Extending the multivariate generalised t and generalised VG distributions," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 154-164, January.
    3. Elisa Nicolato & Emmanouil Venardos, 2003. "Option Pricing in Stochastic Volatility Models of the Ornstein‐Uhlenbeck type," Mathematical Finance, Wiley Blackwell, vol. 13(4), pages 445-466, October.
    4. Richard Finlay & Eugene Seneta, 2008. "Stationary‐Increment Variance‐Gamma and t Models: Simulation and Parameter Estimation," International Statistical Review, International Statistical Institute, vol. 76(2), pages 167-186, August.
    5. repec:dau:papers:123456789/1380 is not listed on IDEAS
    6. Granger, Clive W.J., 2005. "The past and future of empirical finance: some personal comments," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 35-40.
    7. Leonenko, N.N. & Petherick, S. & Sikorskii, A., 2012. "A normal inverse Gaussian model for a risky asset with dependence," Statistics & Probability Letters, Elsevier, vol. 82(1), pages 109-115.
    8. Tina Hviid Rydberg, 1999. "Generalized Hyperbolic Diffusion Processes with Applications in Finance," Mathematical Finance, Wiley Blackwell, vol. 9(2), pages 183-201, April.
    9. Ole E. Barndorff‐Nielsen & Neil Shephard, 2001. "Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.
    10. Helyette Geman & C. Peter M. Dilip Y. Marc, 2007. "Self decomposability and option pricing," Post-Print halshs-00144193, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Claudia Yeap & Simon S Kwok & S T Boris Choy, 2018. "A Flexible Generalized Hyperbolic Option Pricing Model and Its Special Cases," Journal of Financial Econometrics, Oxford University Press, vol. 16(3), pages 425-460.
    2. Yeap, Claudia & Kwok, Simon S. & Choy, S. T. Boris, 2016. "A Flexible Generalised Hyperbolic Option Pricing Model and its Special Cases," Working Papers 2016-14, University of Sydney, School of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leonenko, N.N. & Petherick, S. & Sikorskii, A., 2012. "A normal inverse Gaussian model for a risky asset with dependence," Statistics & Probability Letters, Elsevier, vol. 82(1), pages 109-115.
    2. Friedrich Hubalek & Petra Posedel, 2011. "Joint analysis and estimation of stock prices and trading volume in Barndorff-Nielsen and Shephard stochastic volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 11(6), pages 917-932.
    3. Shantanu Awasthi & Indranil SenGupta, 2020. "First exit-time analysis for an approximate Barndorff-Nielsen and Shephard model with stationary self-decomposable variance process," Papers 2006.07167, arXiv.org, revised Jan 2021.
    4. Claudia Yeap & Simon S Kwok & S T Boris Choy, 2018. "A Flexible Generalized Hyperbolic Option Pricing Model and Its Special Cases," Journal of Financial Econometrics, Oxford University Press, vol. 16(3), pages 425-460.
    5. Hainaut, Donatien & Devolder, Pierre, 2008. "Mortality modelling with Lévy processes," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 409-418, February.
    6. Fred Espen Benth & Martin Groth & Rodwell Kufakunesu, 2007. "Valuing Volatility and Variance Swaps for a Non-Gaussian Ornstein-Uhlenbeck Stochastic Volatility Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(4), pages 347-363.
    7. Michael Schröder, 2015. "Discrete-Time Approximation of Functionals in Models of Ornstein–Uhlenbeck Type, with Applications to Finance," Methodology and Computing in Applied Probability, Springer, vol. 17(2), pages 285-313, June.
    8. Karl Friedrich Hofmann & Thorsten Schulz, 2016. "A General Ornstein–Uhlenbeck Stochastic Volatility Model With Lévy Jumps," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(08), pages 1-23, December.
    9. Buchmann, Boris & Kaehler, Benjamin & Maller, Ross & Szimayer, Alexander, 2017. "Multivariate subordination using generalised Gamma convolutions with applications to Variance Gamma processes and option pricing," Stochastic Processes and their Applications, Elsevier, vol. 127(7), pages 2208-2242.
    10. Piotr Szczepocki, 2020. "Application of iterated filtering to stochastic volatility models based on non-Gaussian Ornstein-Uhlenbeck process," Statistics in Transition New Series, Polish Statistical Association, vol. 21(2), pages 173-187, June.
    11. Creal, Drew D., 2008. "Analysis of filtering and smoothing algorithms for Lévy-driven stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2863-2876, February.
    12. Hubalek, Friedrich & Sgarra, Carlo, 2009. "On the Esscher transforms and other equivalent martingale measures for Barndorff-Nielsen and Shephard stochastic volatility models with jumps," Stochastic Processes and their Applications, Elsevier, vol. 119(7), pages 2137-2157, July.
    13. Carl Lindberg, 2008. "The estimation of the Barndorff‐Nielsen and Shephard model from daily data based on measures of trading intensity," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(4), pages 277-289, July.
    14. Indranil Sengupta, 2016. "Generalized Bn–S Stochastic Volatility Model For Option Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(02), pages 1-23, March.
    15. Luo, Jiaowan & Liu, Kai, 2008. "Stability of infinite dimensional stochastic evolution equations with memory and Markovian jumps," Stochastic Processes and their Applications, Elsevier, vol. 118(5), pages 864-895, May.
    16. Viktor Bezborodov & Luca Persio & Yuliya Mishura, 2019. "Option Pricing with Fractional Stochastic Volatility and Discontinuous Payoff Function of Polynomial Growth," Methodology and Computing in Applied Probability, Springer, vol. 21(1), pages 331-366, March.
    17. Takuji Arai, 2019. "Pricing and hedging of VIX options for Barndorff-Nielsen and Shephard models," Papers 1904.12260, arXiv.org.
    18. Fred Benth & Nils Detering, 2015. "Pricing and hedging Asian-style options on energy," Finance and Stochastics, Springer, vol. 19(4), pages 849-889, October.
    19. Laurent, Sébastien & Shi, Shuping, 2020. "Volatility estimation and jump detection for drift–diffusion processes," Journal of Econometrics, Elsevier, vol. 217(2), pages 259-290.
    20. Takuji Arai & Yuto Imai, 2024. "Option pricing for Barndorff-Nielsen and Shephard model by supervised deep learning," Papers 2402.00445, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:82:y:2012:i:12:p:2164-2169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.