IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v64y2024i3d10.1007_s10614-023-10490-4.html
   My bibliography  Save this article

Approximate Bayesian Estimation of Stochastic Volatility in Mean Models Using Hidden Markov Models: Empirical Evidence from Emerging and Developed Markets

Author

Listed:
  • Carlos A. Abanto-Valle

    (Federal University of Rio de Janeiro,Caixa Postal)

  • Gabriel Rodríguez

    (Pontificia Universidad Católica del Perú)

  • Luis M. Castro Cepero

    (Pontificia Universidad Católica de Chile
    Millennium Nucleus Center for the Discovery of Structures in Complex Data
    Pontificia Universidad Católica de Chile)

  • Hernán B. Garrafa-Aragón

    (Escuela de Ingeniería Estadística de la Universidad Nacional de Ingeniería)

Abstract

The stochastic volatility in mean (SVM) model proposed by Koopman and Uspensky (J Appl Econ 17:667–689, 2002) is revisited. This paper has two goals. The first is to offer a methodology that requires less computational time in simulations and estimates compared with others proposed in the literature as in Abanto-Valle et al. (Q Rev Econ Financ 80:272–286, 2021) and others. To achieve the first goal, we propose to approximate the likelihood function of the model applying Hidden Markov Models machinery to make possible Bayesian inference in real-time. We sample from the posterior distribution of parameters with a multivariate Normal distribution with mean and variance given by the posterior mode and the inverse of the Hessian matrix evaluated at this posterior mode using importance sampling. Further, the frequentist properties of estimators are analyzed conducting a simulation study. The second goal is to provide empirical evidence estimating the SVM model using daily data for five Latin American stock markets, USA, England, Japan and China. The results indicate that volatility negatively impacts returns, suggesting that the volatility feedback effect is stronger than the effect related to the expected volatility. This result is similar to the findings of Koopman and Uspensky (J Appl Econ 17:667–689, 2002), where the respective coefficient is negative but non statistically significant. However, in our case, all countries (except Peru and China) presents negative and statistically significant effects. Our results are similar to those found using Hamiltonian Monte Carlo (HMC) and Riemannian HMC methods based on Abanto-Valle et al. (Q Rev Econ Financ 80:272–286, 2021).

Suggested Citation

  • Carlos A. Abanto-Valle & Gabriel Rodríguez & Luis M. Castro Cepero & Hernán B. Garrafa-Aragón, 2024. "Approximate Bayesian Estimation of Stochastic Volatility in Mean Models Using Hidden Markov Models: Empirical Evidence from Emerging and Developed Markets," Computational Economics, Springer;Society for Computational Economics, vol. 64(3), pages 1775-1801, September.
  • Handle: RePEc:kap:compec:v:64:y:2024:i:3:d:10.1007_s10614-023-10490-4
    DOI: 10.1007/s10614-023-10490-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-023-10490-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-023-10490-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jacquier, Eric & Polson, Nicholas G. & Rossi, P.E.Peter E., 2004. "Bayesian analysis of stochastic volatility models with fat-tails and correlated errors," Journal of Econometrics, Elsevier, vol. 122(1), pages 185-212, September.
    2. Siem Jan Koopman & Eugenie Hol Uspensky, 2002. "The stochastic volatility in mean model: empirical evidence from international stock markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(6), pages 667-689, December.
    3. M. Angeles Carnero, 2004. "Persistence and Kurtosis in GARCH and Stochastic Volatility Models," Journal of Financial Econometrics, Oxford University Press, vol. 2(2), pages 319-342.
    4. Geweke, John, 1989. "Bayesian Inference in Econometric Models Using Monte Carlo Integration," Econometrica, Econometric Society, vol. 57(6), pages 1317-1339, November.
    5. Diebold, Francis X. & Inoue, Atsushi, 2001. "Long memory and regime switching," Journal of Econometrics, Elsevier, vol. 105(1), pages 131-159, November.
    6. Campbell, John Y. & Hentschel, Ludger, 1992. "No news is good news *1: An asymmetric model of changing volatility in stock returns," Journal of Financial Economics, Elsevier, vol. 31(3), pages 281-318, June.
    7. Abanto-Valle, Carlos A. & Rodríguez, Gabriel & Garrafa-Aragón, Hernán B., 2021. "Stochastic Volatility in Mean: Empirical evidence from Latin-American stock markets using Hamiltonian Monte Carlo and Riemann Manifold HMC methods," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 272-286.
    8. Perron, Pierre & Qu, Zhongjun, 2010. "Long-Memory and Level Shifts in the Volatility of Stock Market Return Indices," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(2), pages 275-290.
    9. Gabriel Rodriguez, 2017. "Selecting between Autoregressive Conditional Heteroskedasticity Models: An Empirical Application to the Volatility of Stock Returns in Peru," Revista de Analisis Economico – Economic Analysis Review, Universidad Alberto Hurtado/School of Economics and Business, vol. 32(1), pages 69-94, April.
    10. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    11. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    12. Bekaert, Geert & Wu, Guojun, 2000. "Asymmetric Volatility and Risk in Equity Markets," The Review of Financial Studies, Society for Financial Studies, vol. 13(1), pages 1-42.
    13. Willy Alanya & Gabriel Rodríguez, 2019. "Asymmetries in Volatility: An Empirical Study for the Peruvian Stock and Forex Markets," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 22(01), pages 1-18, March.
    14. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    15. Lengua Lafosse, Patricia & Rodríguez, Gabriel, 2018. "An empirical application of a stochastic volatility model with GH skew Student's t-distribution to the volatility of Latin-American stock returns," The Quarterly Review of Economics and Finance, Elsevier, vol. 69(C), pages 155-173.
    16. Abanto-Valle, C.A. & Bandyopadhyay, D. & Lachos, V.H. & Enriquez, I., 2010. "Robust Bayesian analysis of heavy-tailed stochastic volatility models using scale mixtures of normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 2883-2898, December.
    17. Stephen J. Taylor, 1994. "Modeling Stochastic Volatility: A Review And Comparative Study," Mathematical Finance, Wiley Blackwell, vol. 4(2), pages 183-204, April.
    18. Rodríguez, Gabriel, 2017. "Modeling Latin-American stock and Forex markets volatility: Empirical application of a model with random level shifts and genuine long memory," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 393-420.
    19. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    20. repec:bla:jfinan:v:44:y:1989:i:5:p:1115-53 is not listed on IDEAS
    21. Melino, Angelo & Turnbull, Stuart M., 1990. "Pricing foreign currency options with stochastic volatility," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 239-265.
    22. Joshua C. C. Chan, 2017. "The Stochastic Volatility in Mean Model With Time-Varying Parameters: An Application to Inflation Modeling," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 17-28, January.
    23. Roman Liesenfeld & Robert C. Jung, 2000. "Stochastic volatility models: conditional normality versus heavy-tailed distributions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(2), pages 137-160.
    24. Roland Langrock, 2011. "Some applications of nonlinear and non-Gaussian state--space modelling by means of hidden Markov models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(12), pages 2955-2970, March.
    25. Langrock, Roland & MacDonald, Iain L. & Zucchini, Walter, 2012. "Some nonstandard stochastic volatility models and their estimation using structured hidden Markov models," Journal of Empirical Finance, Elsevier, vol. 19(1), pages 147-161.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carlos A. Abanto-Valle & Gabriel Rodríguez & Hernán B. Garrafa-Aragón, 2020. "Stochastic Volatility in Mean: Empirical Evidence from Stock Latin American Markets," Documentos de Trabajo / Working Papers 2020-481, Departamento de Economía - Pontificia Universidad Católica del Perú.
    2. Abanto-Valle, Carlos A. & Rodríguez, Gabriel & Garrafa-Aragón, Hernán B., 2021. "Stochastic Volatility in Mean: Empirical evidence from Latin-American stock markets using Hamiltonian Monte Carlo and Riemann Manifold HMC methods," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 272-286.
    3. Carlos A. Abanto‐Valle & Roland Langrock & Ming‐Hui Chen & Michel V. Cardoso, 2017. "Maximum likelihood estimation for stochastic volatility in mean models with heavy‐tailed distributions," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 33(4), pages 394-408, August.
    4. Assaf, Ata, 2006. "The stochastic volatility in mean model and automation: Evidence from TSE," The Quarterly Review of Economics and Finance, Elsevier, vol. 46(2), pages 241-253, May.
    5. Yueh-Neng Lin & Ken Hung, 2008. "Is Volatility Priced?," Annals of Economics and Finance, Society for AEF, vol. 9(1), pages 39-75, May.
    6. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    7. Abanto-Valle, C.A. & Bandyopadhyay, D. & Lachos, V.H. & Enriquez, I., 2010. "Robust Bayesian analysis of heavy-tailed stochastic volatility models using scale mixtures of normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 2883-2898, December.
    8. Siem Jan Koopman & Eugenie Hol Uspensky, 2002. "The stochastic volatility in mean model: empirical evidence from international stock markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(6), pages 667-689.
    9. Antonis Demos, 2023. "Statistical Properties of Two Asymmetric Stochastic Volatility in Mean Models," DEOS Working Papers 2303, Athens University of Economics and Business.
    10. Antonis Demos, 2023. "Estimation of Asymmetric Stochastic Volatility in Mean Models," DEOS Working Papers 2309, Athens University of Economics and Business.
    11. Carmen Broto & Esther Ruiz, 2004. "Estimation methods for stochastic volatility models: a survey," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 613-649, December.
    12. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    13. repec:cte:wsrepe:ws131110 is not listed on IDEAS
    14. C. A. Abanto-Valle & V. H. Lachos & Dipak K. Dey, 2015. "Bayesian Estimation of a Skew-Student-t Stochastic Volatility Model," Methodology and Computing in Applied Probability, Springer, vol. 17(3), pages 721-738, September.
    15. Alexander Tsyplakov, 2010. "Revealing the arcane: an introduction to the art of stochastic volatility models (in Russian)," Quantile, Quantile, issue 8, pages 69-122, July.
    16. Carlos A. Abanto-Valle & Hernán B. Garrafa-Aragón, 2019. "Threshold Stochastic Volatility Models with Heavy Tails:A Bayesian Approach," Revista Economía, Fondo Editorial - Pontificia Universidad Católica del Perú, vol. 42(83), pages 32-53.
    17. Tsyplakov, Alexander, 2010. "Revealing the arcane: an introduction to the art of stochastic volatility models," MPRA Paper 25511, University Library of Munich, Germany.
    18. Vo, Minh & Cohen, Michael & Boulter, Terry, 2015. "Asymmetric risk and return: Evidence from the Australian Stock Exchange," Pacific-Basin Finance Journal, Elsevier, vol. 35(PB), pages 558-573.
    19. Joshua C.C. Chan & Angelia L. Grant, 2014. "Issues in Comparing Stochastic Volatility Models Using the Deviance Information Criterion," CAMA Working Papers 2014-51, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    20. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    21. Philipp Otto & Osman Dou{g}an & Suleyman Tac{s}p{i}nar & Wolfgang Schmid & Anil K. Bera, 2023. "Spatial and Spatiotemporal Volatility Models: A Review," Papers 2308.13061, arXiv.org.

    More about this item

    Keywords

    Stock Latin American markets; Stochastic volatility in mean; Feed-back effect; Hamiltonian Monte Carlo; Hidden Markov Models; Riemannian Manifold Hamiltonian Monte Carlo; Non linear state space models;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:64:y:2024:i:3:d:10.1007_s10614-023-10490-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.