IDEAS home Printed from https://ideas.repec.org/a/eee/finana/v93y2024ics1057521924001078.html
   My bibliography  Save this article

Real-time forecast of DSGE models with time-varying volatility in GARCH form

Author

Listed:
  • Çekin, Semih Emre
  • Ivashchenko, Sergey
  • Gupta, Rangan
  • Lee, Chien-Chiang

Abstract

Recent research shows that time-varying volatility plays a crucial role in non-linear modeling. Contributing to this literature, we suggest an approach that allows for straightforward computation of DSGE models with time-varying volatility, where the volatility component is formulated as a GARCH process. As an application of our approach, we examine the forecasting performance of this DSGE-GARCH model using euro area real-time data. Our findings suggest that the DSGE-GARCH approach is superior in out-of-sample forecasting performance in comparison to various other benchmarks for the forecast of inflation rates, output growth and interest rates, especially in the short term. Comparing our approach to the widely used stochastic volatility specification using in-sample forecasts, we also show that the DSGE-GARCH is superior in in-sample forecast quality and computational efficiency. In addition to these results, our approach reveals interesting properties and dynamics of time-varying correlations (conditional correlations).

Suggested Citation

  • Çekin, Semih Emre & Ivashchenko, Sergey & Gupta, Rangan & Lee, Chien-Chiang, 2024. "Real-time forecast of DSGE models with time-varying volatility in GARCH form," International Review of Financial Analysis, Elsevier, vol. 93(C).
  • Handle: RePEc:eee:finana:v:93:y:2024:i:c:s1057521924001078
    DOI: 10.1016/j.irfa.2024.103175
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1057521924001078
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.irfa.2024.103175?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Alexander Falter & Dennis Wesselbaum, 2018. "Correlated shocks in estimated DSGE models," Economics Bulletin, AccessEcon, vol. 38(4), pages 2026-2036.
    2. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    3. Georgiadis, Georgios & Jančoková, Martina, 2020. "Financial globalisation, monetary policy spillovers and macro-modelling: Tales from 1001 shocks," Journal of Economic Dynamics and Control, Elsevier, vol. 121(C).
    4. Diebold, Francis X. & Schorfheide, Frank & Shin, Minchul, 2017. "Real-time forecast evaluation of DSGE models with stochastic volatility," Journal of Econometrics, Elsevier, vol. 201(2), pages 322-332.
    5. Alejandro Justiniano & Giorgio E. Primiceri, 2008. "The Time-Varying Volatility of Macroeconomic Fluctuations," American Economic Review, American Economic Association, vol. 98(3), pages 604-641, June.
    6. Frank Smets & Rafael Wouters, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," American Economic Review, American Economic Association, vol. 97(3), pages 586-606, June.
    7. Negro, Marco Del & Schorfheide, Frank, 2013. "DSGE Model-Based Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 57-140, Elsevier.
    8. Schmitt-Grohe, Stephanie & Uribe, Martin, 2004. "Solving dynamic general equilibrium models using a second-order approximation to the policy function," Journal of Economic Dynamics and Control, Elsevier, vol. 28(4), pages 755-775, January.
    9. Malin Adolfson & Stefan Las√Âen & Jesper Lind√ & Lars E.O. Svensson, 2011. "Optimal Monetary Policy in an Operational Medium-Sized DSGE Model," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 43(7), pages 1287-1331, October.
    10. Todd E. Clark, 2011. "Real-Time Density Forecasts From Bayesian Vector Autoregressions With Stochastic Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 327-341, July.
    11. Ricardo Reis & Vasco Curdia, 2009. "Correlated Disturbances and U.S. Business Cycles," 2009 Meeting Papers 129, Society for Economic Dynamics.
    12. Nicholas Bloom, 2009. "The Impact of Uncertainty Shocks," Econometrica, Econometric Society, vol. 77(3), pages 623-685, May.
    13. Clarke, Kevin A., 2007. "A Simple Distribution-Free Test for Nonnested Model Selection," Political Analysis, Cambridge University Press, vol. 15(3), pages 347-363, July.
    14. Sergey Ivashchenko & Semih Emre Çekin & Kevin Kotzé & Rangan Gupta, 2020. "Forecasting with Second-Order Approximations and Markov-Switching DSGE Models," Computational Economics, Springer;Society for Computational Economics, vol. 56(4), pages 747-771, December.
    15. Pichler Paul, 2008. "Forecasting with DSGE Models: The Role of Nonlinearities," The B.E. Journal of Macroeconomics, De Gruyter, vol. 8(1), pages 1-35, July.
    16. Christopher A. Sims & Tao Zha, 2006. "Were There Regime Switches in U.S. Monetary Policy?," American Economic Review, American Economic Association, vol. 96(1), pages 54-81, March.
    17. Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 821-852.
    18. Marco Del Negro & Giorgio E. Primiceri, 2015. "Time Varying Structural Vector Autoregressions and Monetary Policy: A Corrigendum," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 82(4), pages 1342-1345.
    19. Lucas, Robert Jr, 1976. "Econometric policy evaluation: A critique," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 1(1), pages 19-46, January.
    20. Pitt, Michael K. & Silva, Ralph dos Santos & Giordani, Paolo & Kohn, Robert, 2012. "On some properties of Markov chain Monte Carlo simulation methods based on the particle filter," Journal of Econometrics, Elsevier, vol. 171(2), pages 134-151.
    21. Blanchard, Olivier Jean & Kahn, Charles M, 1980. "The Solution of Linear Difference Models under Rational Expectations," Econometrica, Econometric Society, vol. 48(5), pages 1305-1311, July.
    22. Martin Andreasen, 2012. "On the Effects of Rare Disasters and Uncertainty Shocks for Risk Premia in Non-Linear DSGE Models," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 15(3), pages 295-316, July.
    23. Collard, Fabrice & Juillard, Michel, 2001. "Accuracy of stochastic perturbation methods: The case of asset pricing models," Journal of Economic Dynamics and Control, Elsevier, vol. 25(6-7), pages 979-999, June.
    24. Rubaszek, Michal & Skrzypczynski, Pawel, 2008. "On the forecasting performance of a small-scale DSGE model," International Journal of Forecasting, Elsevier, vol. 24(3), pages 498-512.
    25. Sims, Christopher A, 2002. "Solving Linear Rational Expectations Models," Computational Economics, Springer;Society for Computational Economics, vol. 20(1-2), pages 1-20, October.
    26. Frank Smets & Raf Wouters, 2003. "An Estimated Dynamic Stochastic General Equilibrium Model of the Euro Area," Journal of the European Economic Association, MIT Press, vol. 1(5), pages 1123-1175, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Qingyuan & Xu, Chengzhen & Lee, Chien-Chiang, 2024. "Trade-induced carbon-economic inequality within China: Measurement, sources, and determinants," Energy Economics, Elsevier, vol. 136(C).
    2. Luo, Kang & Lee, Chien-Chiang & Zeng, Mingli & Hu, Weihui, 2024. "How does the development of digital economy in central cities promote the coordinated development of regions? Evidence from 19 urban agglomerations in China," Technology in Society, Elsevier, vol. 78(C).
    3. Lee, Chien-Chiang & Yahya, Farzan, 2024. "Mitigating energy instability: The influence of trilemma choices, financial development, and technology advancements," Energy Economics, Elsevier, vol. 133(C).
    4. Pan, Changchun & Huang, Yuzhe & Lee, Chien-Chiang, 2024. "The dynamic effects of oil supply shock on China: Evidence from the TVP-Proxy-VAR approach," Socio-Economic Planning Sciences, Elsevier, vol. 95(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Diebold, Francis X. & Schorfheide, Frank & Shin, Minchul, 2017. "Real-time forecast evaluation of DSGE models with stochastic volatility," Journal of Econometrics, Elsevier, vol. 201(2), pages 322-332.
    2. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.
    3. Özer Karagedikli & Troy Matheson & Christie Smith & Shaun P. Vahey, 2010. "RBCs AND DSGEs: THE COMPUTATIONAL APPROACH TO BUSINESS CYCLE THEORY AND EVIDENCE," Journal of Economic Surveys, Wiley Blackwell, vol. 24(1), pages 113-136, February.
    4. Galvão, Ana Beatriz & Giraitis, Liudas & Kapetanios, George & Petrova, Katerina, 2016. "A time varying DSGE model with financial frictions," Journal of Empirical Finance, Elsevier, vol. 38(PB), pages 690-716.
    5. Negro, Marco Del & Schorfheide, Frank, 2013. "DSGE Model-Based Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 57-140, Elsevier.
    6. Chauvet, Marcelle & Potter, Simon, 2013. "Forecasting Output," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 141-194, Elsevier.
    7. Lindé, Jesper & Smets, Frank & Wouters, Rafael, 2016. "Challenges for Central Banks´ Macro Models," Working Paper Series 323, Sveriges Riksbank (Central Bank of Sweden).
    8. Paccagnini, Alessia, 2017. "Dealing with Misspecification in DSGE Models: A Survey," MPRA Paper 82914, University Library of Munich, Germany.
    9. Ana Beatriz Galvão & Liudas Giraitis & George Kapetanios & Katerina Petrova, 2015. "A Bayesian Local Likelihood Method for Modelling Parameter Time Variation in DSGE Models," Working Papers 770, Queen Mary University of London, School of Economics and Finance.
    10. Ramis Khabibullin & Sergei Seleznev, 2022. "Fast Estimation of Bayesian State Space Models Using Amortized Simulation-Based Inference," Papers 2210.07154, arXiv.org.
    11. Belomestny, Denis & Krymova, Ekaterina & Polbin, Andrey, 2021. "Bayesian TVP-VARX models with time invariant long-run multipliers," Economic Modelling, Elsevier, vol. 101(C).
    12. Gianni Amisano & Oreste Tristani, 2019. "Uncertainty Shocks, Monetary Policy and Long-Term Interest Rates," Finance and Economics Discussion Series 2019-024, Board of Governors of the Federal Reserve System (U.S.).
    13. Schmidt, Sebastian & Wieland, Volker, 2013. "The New Keynesian Approach to Dynamic General Equilibrium Modeling: Models, Methods and Macroeconomic Policy Evaluation," Handbook of Computable General Equilibrium Modeling, in: Peter B. Dixon & Dale Jorgenson (ed.), Handbook of Computable General Equilibrium Modeling, edition 1, volume 1, chapter 0, pages 1439-1512, Elsevier.
    14. Benchimol, Jonathan & Ivashchenko, Sergey, 2021. "Switching volatility in a nonlinear open economy," Journal of International Money and Finance, Elsevier, vol. 110(C).
    15. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    16. Francesco Bianchi & Leonardo Melosi, 2016. "Modeling The Evolution Of Expectations And Uncertainty In General Equilibrium," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 57(2), pages 717-756, May.
    17. Marcelo Ferman, 2011. "Switching Monetary Policy Regimes and the Nominal Term Structure," FMG Discussion Papers dp678, Financial Markets Group.
    18. Nalan Baştürk & Cem Çakmakli & S. Pinar Ceyhan & Herman K. Van Dijk, 2014. "Posterior‐Predictive Evidence On Us Inflation Using Extended New Keynesian Phillips Curve Models With Non‐Filtered Data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(7), pages 1164-1182, November.
    19. Stelios D. Bekiros & Alessia Paccagnini, 2016. "Policy‐Oriented Macroeconomic Forecasting with Hybrid DGSE and Time‐Varying Parameter VAR Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(7), pages 613-632, November.
    20. Lindé, J. & Smets, F. & Wouters, R., 2016. "Challenges for Central Banks’ Macro Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 2185-2262, Elsevier.

    More about this item

    Keywords

    DSGE; Forecasting; GARCH; Stochastic volatility; Conditional correlations;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • E30 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - General (includes Measurement and Data)
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finana:v:93:y:2024:i:c:s1057521924001078. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620166 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.