IDEAS home Printed from https://ideas.repec.org/a/bjc/journl/v11y2024i5p674-695.html
   My bibliography  Save this article

Application of Copula Methods in Financial Risk Management: Case of the Zimbabwe Stock Exchange and the Victoria Falls Stock Exchange

Author

Listed:
  • Brian Basvi

    (University of Zimbabwe)

Abstract

In order to minimize risks and create a safe investing environment, financial risk management is becoming more and more crucial for individuals, financial organizations, and even entire nations. Accurately assessing financial risks and using that information to inform wise investment choices can give an investor a competitive edge as well as significant returns. In actuality, real-world financial variables limit the ability to estimate financial risks. On the other hand, a wealth of data indicates that financial variables typically have asymmetric dependency, skewness, and fat tails. In three ways, the conventional approaches to financial risk management based on normally distributed hypotheses are put to the test by these stylized characteristics of financial variables. First, the univariate normal distribution or other elliptical distributions are unable to adequately fit the distribution of the univariate variable. Second, despite their straightforward tractability, multivariate variables’ extra kurtosis and skewness are not captured by their normal distribution. As a result, the dependence risks associated with multivariate financial variables may be underestimated. Finally, when the joint distribution of various variables is non-elliptical, linear correlation which is typically employed to characterize the dependence of various variables in traditional portfolio risk management is likewise insufficient. This research uses a promising technique based on copulas in conjunction with GARCH and realized volatility models to examine the risks associated with multivariate financial variables in order to address these issues. The multivariate distributions are constructed using copulas in conjunction with GARCH and Realized Volatility models which are then utilized to evaluate portfolio risks in financial market. The findings demonstrate that copula-based models outperform conventional models in fitting financial data. Second, a variety of marginal models have a notable impact on the value at risk of the portfolio, including the GARCH and realized volatility models. Lastly, both the dependence structure and the marginal distribution exhibit notable skewness. Consequently, compared to the normal or Student-t distribution, the skewed Student-t distribution fits some datasets better.

Suggested Citation

  • Brian Basvi, 2024. "Application of Copula Methods in Financial Risk Management: Case of the Zimbabwe Stock Exchange and the Victoria Falls Stock Exchange," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 11(5), pages 674-695, May.
  • Handle: RePEc:bjc:journl:v:11:y:2024:i:5:p:674-695
    as

    Download full text from publisher

    File URL: https://www.rsisinternational.org/journals/ijrsi/digital-library/volume-11-issue-5/674-695.pdf
    Download Restriction: no

    File URL: https://rsisinternational.org/journals/ijrsi/articles/application-of-copula-methods-in-financial-risk-management-case-of-the-zimbabwe-stock-exchange-and-the-victoria-falls-stock-exchange/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ole E. Barndorff-Nielsen & Neil Shephard, 2002. "Estimating quadratic variation using realized variance," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 457-477.
    2. Ole E. Barndorff-Nielsen & Neil Shephard, 2006. "Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation," Journal of Financial Econometrics, Oxford University Press, vol. 4(1), pages 1-30.
    3. Ole E. Barndorff‐Nielsen & Neil Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280, May.
    4. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    5. Yacine AÏT‐SAHALI & Michael W. Brandt, 2001. "Variable Selection for Portfolio Choice," Journal of Finance, American Finance Association, vol. 56(4), pages 1297-1351, August.
    6. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    7. Andrea Bastianin, 2009. "Modelling Asymmetric Dependence Using Copula Functions: An application to Value-at-Risk in the Energy Sector," Working Papers 2009.24, Fondazione Eni Enrico Mattei.
    8. Ole E. Barndorff-Nielsen & Neil Shephard, 2002. "Estimating quadratic variation using realized variance," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 457-477.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baruník, Jozef & Hlínková, Michaela, 2016. "Revisiting the long memory dynamics of the implied–realized volatility relationship: New evidence from the wavelet regression," Economic Modelling, Elsevier, vol. 54(C), pages 503-514.
    2. Barunik, Jozef & Krehlik, Tomas & Vacha, Lukas, 2016. "Modeling and forecasting exchange rate volatility in time-frequency domain," European Journal of Operational Research, Elsevier, vol. 251(1), pages 329-340.
    3. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    4. Douglas G. Santos & Flavio A. Ziegelmann, 2014. "Volatility Forecasting via MIDAS, HAR and their Combination: An Empirical Comparative Study for IBOVESPA," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(4), pages 284-299, July.
    5. Yusui Tang & Feng Ma & Yaojie Zhang & Yu Wei, 2022. "Forecasting the oil price realized volatility: A multivariate heterogeneous autoregressive model," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4770-4783, October.
    6. Lux, Thomas & Morales-Arias, Leonardo & Sattarhoff, Cristina, 2011. "A Markov-switching multifractal approach to forecasting realized volatility," Kiel Working Papers 1737, Kiel Institute for the World Economy (IfW Kiel).
    7. repec:uts:finphd:39 is not listed on IDEAS
    8. François-Éric Racicot & Raymond Théoret & Alain Coën, 2008. "Forecasting Irregularly Spaced UHF Financial Data: Realized Volatility vs UHF-GARCH Models," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 14(1), pages 112-124, February.
    9. Majewski, Adam A. & Bormetti, Giacomo & Corsi, Fulvio, 2015. "Smile from the past: A general option pricing framework with multiple volatility and leverage components," Journal of Econometrics, Elsevier, vol. 187(2), pages 521-531.
    10. Bu, Ruijun & Hizmeri, Rodrigo & Izzeldin, Marwan & Murphy, Anthony & Tsionas, Mike, 2023. "The contribution of jump signs and activity to forecasting stock price volatility," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 144-164.
    11. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    12. Veiga, Helena, 2007. "The effect of realised volatility on stock returns risk estimates," DES - Working Papers. Statistics and Econometrics. WS ws076316, Universidad Carlos III de Madrid. Departamento de Estadística.
    13. Tauchen, George & Zhou, Hao, 2011. "Realized jumps on financial markets and predicting credit spreads," Journal of Econometrics, Elsevier, vol. 160(1), pages 102-118, January.
    14. Jui‐Cheng Hung & Hung‐Chun Liu & J. Jimmy Yang, 2023. "Does the tail risk index matter in forecasting downside risk?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(3), pages 3451-3466, July.
    15. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2006. "Predicting volatility: getting the most out of return data sampled at different frequencies," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 59-95.
    16. Fei Su, 2018. "Essays on Price Discovery and Volatility Dynamics in the Foreign Exchange Market," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2018, January-A.
    17. Subbotin, Alexandre, 2009. "Volatility Models: from Conditional Heteroscedasticity to Cascades at Multiple Horizons," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 15(3), pages 94-138.
    18. repec:uts:finphd:38 is not listed on IDEAS
    19. Hooper, Vincent J. & Ng, Kevin & Reeves, Jonathan J., 2008. "Quarterly beta forecasting: An evaluation," International Journal of Forecasting, Elsevier, vol. 24(3), pages 480-489.
    20. Busch, Thomas & Christensen, Bent Jesper & Nielsen, Morten Ørregaard, 2011. "The role of implied volatility in forecasting future realized volatility and jumps in foreign exchange, stock, and bond markets," Journal of Econometrics, Elsevier, vol. 160(1), pages 48-57, January.
    21. Lee, Hwang Hee & Hyun, Jung-Soon, 2019. "The asymmetric effect of equity volatility on credit default swap spreads," Journal of Banking & Finance, Elsevier, vol. 98(C), pages 125-136.
    22. Peter Reinhard Hansen & Asger Lunde, 2005. "A Realized Variance for the Whole Day Based on Intermittent High-Frequency Data," Journal of Financial Econometrics, Oxford University Press, vol. 3(4), pages 525-554.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bjc:journl:v:11:y:2024:i:5:p:674-695. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dr. Renu Malsaria (email available below). General contact details of provider: https://rsisinternational.org/journals/ijrsi/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.