IDEAS home Printed from https://ideas.repec.org/a/spr/finsto/v19y2015i3p583-615.html
   My bibliography  Save this article

On a Heath–Jarrow–Morton approach for stock options

Author

Listed:
  • Jan Kallsen
  • Paul Krühner

Abstract

This paper aims at transferring the philosophy behind Heath–Jarrow–Morton to the modelling of call options with all strikes and maturities. Contrary to the approach by Carmona and Nadtochiy (Finance Stoch. 13:1–48, 2009 ) and related to the recent contribution (Finance Stoch. 16:63–104, 2012 ) by the same authors, the key parameterisation of our approach involves time-inhomogeneous Lévy processes instead of local volatility models. We provide necessary and sufficient conditions for absence of arbitrage. Moreover, we discuss the construction of arbitrage-free models. Specifically, we prove their existence and uniqueness given basic building blocks. Copyright Springer-Verlag Berlin Heidelberg 2015

Suggested Citation

  • Jan Kallsen & Paul Krühner, 2015. "On a Heath–Jarrow–Morton approach for stock options," Finance and Stochastics, Springer, vol. 19(3), pages 583-615, July.
  • Handle: RePEc:spr:finsto:v:19:y:2015:i:3:p:583-615
    DOI: 10.1007/s00780-015-0263-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00780-015-0263-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00780-015-0263-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yuri Kabanov & Robert Liptser, 2006. "From Stochastic Calculus to Mathematical Finance. The Shiryaev Festschrift," Post-Print hal-00488295, HAL.
    2. Denis Belomestny & Markus Reiß, 2006. "Spectral calibration of exponential Lévy models," Finance and Stochastics, Springer, vol. 10(4), pages 449-474, December.
    3. Rama Cont & Jose da Fonseca & Valdo Durrleman, 2002. "Stochastic Models of Implied Volatility Surfaces," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 31(2), pages 361-377, July.
    4. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    5. Jakob Sidenius & Vladimir Piterbarg & Leif Andersen, 2008. "A New Framework For Dynamic Credit Portfolio Loss Modelling," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 11(02), pages 163-197.
    6. Peter Carr & Hélyette Geman & Dilip B. Madan & Marc Yor, 2003. "Stochastic Volatility for Lévy Processes," Mathematical Finance, Wiley Blackwell, vol. 13(3), pages 345-382, July.
    7. René Carmona & Sergey Nadtochiy, 2012. "Tangent Lévy market models," Finance and Stochastics, Springer, vol. 16(1), pages 63-104, January.
    8. Unknown, 2005. "Forward," 2005 Conference: Slovenia in the EU - Challenges for Agriculture, Food Science and Rural Affairs, November 10-11, 2005, Moravske Toplice, Slovenia 183804, Slovenian Association of Agricultural Economists (DAES).
    9. René Carmona & Sergey Nadtochiy, 2009. "Local volatility dynamic models," Finance and Stochastics, Springer, vol. 13(1), pages 1-48, January.
    10. Martin Schweizer & Johannes Wissel, 2008. "Term Structures Of Implied Volatilities: Absence Of Arbitrage And Existence Results," Mathematical Finance, Wiley Blackwell, vol. 18(1), pages 77-114, January.
    11. René Carmona & Sergey Nadtochiy, 2011. "Tangent Models As A Mathematical Framework For Dynamic Calibration," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 14(01), pages 107-135.
    12. Jean Jacod & Philip Protter, 2010. "Risk-neutral compatibility with option prices," Finance and Stochastics, Springer, vol. 14(2), pages 285-315, April.
    13. Ole E. Barndorff‐Nielsen & Neil Shephard, 2001. "Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.
    14. Martin Schweizer & Johannes Wissel, 2008. "Arbitrage-free market models for option prices: the multi-strike case," Finance and Stochastics, Springer, vol. 12(4), pages 469-505, October.
    15. Mark H. A. Davis & David G. Hobson, 2007. "The Range Of Traded Option Prices," Mathematical Finance, Wiley Blackwell, vol. 17(1), pages 1-14, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beatrice Acciaio & Anastasis Kratsios & Gudmund Pammer, 2022. "Designing Universal Causal Deep Learning Models: The Geometric (Hyper)Transformer," Papers 2201.13094, arXiv.org, revised Mar 2023.
    2. Christa Cuchiero & Francesco Guida & Luca di Persio & Sara Svaluto-Ferro, 2021. "Measure-valued affine and polynomial diffusions," Papers 2112.15129, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2021. "Arbitrage-free neural-SDE market models," Papers 2105.11053, arXiv.org, revised Aug 2021.
    2. Rene Carmona & Yi Ma & Sergey Nadtochiy, 2015. "Simulation of Implied Volatility Surfaces via Tangent Levy Models," Papers 1504.00334, arXiv.org.
    3. S. Kindermann & P. Mayer, 2011. "On the calibration of local jump-diffusion asset price models," Finance and Stochastics, Springer, vol. 15(4), pages 685-724, December.
    4. Sebastian Herrmann & Johannes Muhle-Karbe, 2017. "Model uncertainty, recalibration, and the emergence of delta–vega hedging," Finance and Stochastics, Springer, vol. 21(4), pages 873-930, October.
    5. René Carmona & Sergey Nadtochiy, 2012. "Tangent Lévy market models," Finance and Stochastics, Springer, vol. 16(1), pages 63-104, January.
    6. Sergey Nadtochiy & Jan Obłój, 2017. "Robust Trading Of Implied Skew," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(02), pages 1-41, March.
    7. Sergey Nadtochiy & Jan Obloj, 2016. "Robust Trading of Implied Skew," Papers 1611.05518, arXiv.org.
    8. Jan Kallsen & Paul Kruhner, 2013. "On a Heath-Jarrow-Morton approach for stock options," Papers 1305.5621, arXiv.org, revised Aug 2013.
    9. Anja Richter & Josef Teichmann, 2014. "Discrete Time Term Structure Theory and Consistent Recalibration Models," Papers 1409.1830, arXiv.org.
    10. Xixuan Han & Boyu Wei & Hailiang Yang, 2018. "Index Options And Volatility Derivatives In A Gaussian Random Field Risk-Neutral Density Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(04), pages 1-41, June.
    11. Mehdi El Amrani & Antoine Jacquier & Claude Martini, 2019. "Dynamics of symmetric SSVI smiles and implied volatility bubbles," Papers 1909.10272, arXiv.org, revised Feb 2021.
    12. Jean Jacod & Philip Protter, 2010. "Risk-neutral compatibility with option prices," Finance and Stochastics, Springer, vol. 14(2), pages 285-315, April.
    13. Pietro Siorpaes, 2015. "Optimal investment and price dependence in a semi-static market," Finance and Stochastics, Springer, vol. 19(1), pages 161-187, January.
    14. Rama Cont & Peter Tankov, 2009. "Constant Proportion Portfolio Insurance In The Presence Of Jumps In Asset Prices," Mathematical Finance, Wiley Blackwell, vol. 19(3), pages 379-401, July.
    15. Fred Espen Benth & Nils Detering & Silvia Lavagnini, 2021. "Accuracy of deep learning in calibrating HJM forward curves," Digital Finance, Springer, vol. 3(3), pages 209-248, December.
    16. Colino, Jesús P., 2008. "New stochastic processes to model interest rates : LIBOR additive processes," DES - Working Papers. Statistics and Econometrics. WS ws085316, Universidad Carlos III de Madrid. Departamento de Estadística.
    17. Fred Espen Benth & Jūratė Šaltytė Benth & Steen Koekebakker, 2008. "Stochastic Modeling of Electricity and Related Markets," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 6811, August.
    18. Wieger Hinderks & Andreas Wagner & Ralf Korn, 2018. "A structural Heath-Jarrow-Morton framework for consistent intraday, spot, and futures electricity prices," Papers 1803.08831, arXiv.org, revised Jan 2019.
    19. Sebastian Herrmann & Johannes Muhle-Karbe, 2017. "Model Uncertainty, Recalibration, and the Emergence of Delta-Vega Hedging," Papers 1704.04524, arXiv.org.
    20. Carol Alexander & Leonardo Nogueira, 2004. "Stochastic Local Volatility," ICMA Centre Discussion Papers in Finance icma-dp2008-02, Henley Business School, University of Reading, revised Mar 2008.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:19:y:2015:i:3:p:583-615. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.