IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v81y2019i1p5-43.html
   My bibliography  Save this article

Moment conditions and Bayesian non‐parametrics

Author

Listed:
  • Luke Bornn
  • Neil Shephard
  • Reza Solgi

Abstract

Models phrased through moment conditions are central to much of modern inference. Here these moment conditions are embedded within a non‐parametric Bayesian set‐up. Handling such a model is not probabilistically straightforward as the posterior has support on a manifold. We solve the relevant issues, building new probability and computational tools by using Hausdorff measures to analyse them on real and simulated data. These new methods, which involve simulating on a manifold, can be applied widely, including providing Bayesian analysis of quasi‐likelihoods, linear and non‐linear regression, missing data and hierarchical models.

Suggested Citation

  • Luke Bornn & Neil Shephard & Reza Solgi, 2019. "Moment conditions and Bayesian non‐parametrics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(1), pages 5-43, February.
  • Handle: RePEc:bla:jorssb:v:81:y:2019:i:1:p:5-43
    DOI: 10.1111/rssb.12294
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssb.12294
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssb.12294?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yusuke Narita & Kohei Yata, 2021. "Algorithm is Experiment: Machine Learning, Market Design, and Policy Eligibility Rules," Working Papers 2021-022, Human Capital and Economic Opportunity Working Group.
    2. Gael M. Martin & David T. Frazier & Christian P. Robert, 2022. "Computing Bayes: From Then `Til Now," Monash Econometrics and Business Statistics Working Papers 14/22, Monash University, Department of Econometrics and Business Statistics.
    3. Luo, Yu & Graham, Daniel J. & McCoy, Emma J., 2023. "Semiparametric Bayesian doubly robust causal estimation," LSE Research Online Documents on Economics 117944, London School of Economics and Political Science, LSE Library.
    4. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
    5. Isaiah Andrews & Anna Mikusheva, 2022. "Optimal Decision Rules for Weak GMM," Econometrica, Econometric Society, vol. 90(2), pages 715-748, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:81:y:2019:i:1:p:5-43. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.