IDEAS home Printed from https://ideas.repec.org/a/eee/jbfina/v68y2016icp117-130.html
   My bibliography  Save this article

Foster–Hart optimal portfolios

Author

Listed:
  • Anand, Abhinav
  • Li, Tiantian
  • Kurosaki, Tetsuo
  • Kim, Young Shin

Abstract

We reinvestigate the classic portfolio optimization problem where the notion of portfolio risk is captured by the “Foster–Hart risk”—a new, bankruptcy-proof, reserve based measure of risk, extremely sensitive to left tail events (Foster and Hart, 2009). To include financial market frictions induced by market microstructure, we employ a general, ex-ante transaction cost function with fixed, linear and quadratic penalty terms in the objective function. We represent the US equity market by the Dow Jones Industrial Average (DJIA) index and study the performance of the Foster–Hart optimal DJIA portfolio. In order to capture the skewed and leptokurtotic nature of real life stock returns, we model the returns of the DJIA constituents as an ARMA–GARCH process with multivariate “normal tempered stable” innovations. We demonstrate that the Foster–Hart optimal portfolio’s performance is superior to those obtained under several techniques currently in use in academia and industry.

Suggested Citation

  • Anand, Abhinav & Li, Tiantian & Kurosaki, Tetsuo & Kim, Young Shin, 2016. "Foster–Hart optimal portfolios," Journal of Banking & Finance, Elsevier, vol. 68(C), pages 117-130.
  • Handle: RePEc:eee:jbfina:v:68:y:2016:i:c:p:117-130
    DOI: 10.1016/j.jbankfin.2016.03.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378426616300139
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jbankfin.2016.03.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Matthias LEISS & Heinrich H. NAX & Didier SORNETTE, 2014. "Super-Exponential Growth Expectations and the Global Financial Crisis," Swiss Finance Institute Research Paper Series 14-52, Swiss Finance Institute, revised Sep 2015.
    2. Leiss, Matthias & Nax, Heinrich H. & Sornette, Didier, 2015. "Super-exponential growth expectations and the global financial crisis," LSE Research Online Documents on Economics 65434, London School of Economics and Political Science, LSE Library.
    3. Neil Shephard & Ole E. Barndorff-Nielsen & University of Aarhus, 2001. "Normal Modified Stable Processes," Economics Series Working Papers 72, University of Oxford, Department of Economics.
    4. O.E. Barndorff-Nielsen & S.Z. Levendorskii, 2001. "Feller processes of normal inverse Gaussian type," Quantitative Finance, Taylor & Francis Journals, vol. 1(3), pages 318-331, March.
    5. Kim, Young Shin & Rachev, Svetlozar T. & Bianchi, Michele Leonardo & Mitov, Ivan & Fabozzi, Frank J., 2011. "Time series analysis for financial market meltdowns," Journal of Banking & Finance, Elsevier, vol. 35(8), pages 1879-1891, August.
    6. Massimiliano Caporin & Francesco Lisi, 2009. "Comparing and selecting performance measures for ranking assets," "Marco Fanno" Working Papers 0099, Dipartimento di Scienze Economiche "Marco Fanno".
    7. Shin Kim, Young & Rachev, Svetlozar T. & Leonardo Bianchi, Michele & Fabozzi, Frank J., 2010. "Tempered stable and tempered infinitely divisible GARCH models," Journal of Banking & Finance, Elsevier, vol. 34(9), pages 2096-2109, September.
    8. Caporin, Massimiliano & Lisi, Francesco, 2011. "Comparing and selecting performance measures using rank correlations," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 5, pages 1-34.
    9. , & ,, 2015. "The Foster-Hart measure of riskiness for general gambles," Theoretical Economics, Econometric Society, vol. 10(1), January.
    10. Dean P. Foster & Sergiu Hart, 2009. "An Operational Measure of Riskiness," Journal of Political Economy, University of Chicago Press, vol. 117(5), pages 785-814.
    11. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    12. Leiss, Matthias & Nax, Heinrich H., 2015. "Option-implied objective measures of market risk," LSE Research Online Documents on Economics 65446, London School of Economics and Political Science, LSE Library.
    13. Choi, Jaehyung & Kim, Young Shin & Mitov, Ivan, 2015. "Reward-risk momentum strategies using classical tempered stable distribution," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 194-213.
    14. Young Kim & Rosella Giacometti & Svetlozar Rachev & Frank Fabozzi & Domenico Mignacca, 2012. "Measuring financial risk and portfolio optimization with a non-Gaussian multivariate model," Annals of Operations Research, Springer, vol. 201(1), pages 325-343, December.
    15. Leiss, Matthias & Nax, Heinrich H. & Sornette, Didier, 2015. "Super-exponential growth expectations and the global financial crisis," Journal of Economic Dynamics and Control, Elsevier, vol. 55(C), pages 1-13.
    16. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    17. Farinelli, Simone & Ferreira, Manuel & Rossello, Damiano & Thoeny, Markus & Tibiletti, Luisa, 2008. "Beyond Sharpe ratio: Optimal asset allocation using different performance ratios," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2057-2063, October.
    18. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
    19. Sergiu Hart, 2011. "Comparing Risks by Acceptance and Rejection," Journal of Political Economy, University of Chicago Press, vol. 119(4), pages 617-638.
    20. Eugene F. Fama, 1963. "Mandelbrot and the Stable Paretian Hypothesis," The Journal of Business, University of Chicago Press, vol. 36, pages 420-420.
    21. Bali, Turan G. & Cakici, Nusret & Chabi-Yo, Fousseni, 2012. "Does Aggregate Riskiness Predict Future Economic Downturns?," Working Paper Series 2012-09, Ohio State University, Charles A. Dice Center for Research in Financial Economics.
    22. Eling, Martin & Schuhmacher, Frank, 2007. "Does the choice of performance measure influence the evaluation of hedge funds?," Journal of Banking & Finance, Elsevier, vol. 31(9), pages 2632-2647, September.
    23. Jeremy Berkowitz & James O'Brien, 2002. "How Accurate Are Value‐at‐Risk Models at Commercial Banks?," Journal of Finance, American Finance Association, vol. 57(3), pages 1093-1111, June.
    24. Hellmann, Tobias & Riedel, Frank, 2015. "A dynamic extension of the Foster–Hart measure of riskiness," Journal of Mathematical Economics, Elsevier, vol. 59(C), pages 66-70.
    25. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    26. Benoit Mandelbrot, 1967. "The Variation of Some Other Speculative Prices," The Journal of Business, University of Chicago Press, vol. 40, pages 393-393.
    27. Jaehyung Choi & Young Shin Kim & Ivan Mitov, 2014. "Reward-risk momentum strategies using classical tempered stable distribution," Papers 1403.6093, arXiv.org, revised Jun 2015.
    28. Turan G. Bali & Nusret Cakici & Fousseni Chabi-Yo, 2011. "A Generalized Measure of Riskiness," Management Science, INFORMS, vol. 57(8), pages 1406-1423, August.
    29. Benoit Mandelbrot, 1963. "New Methods in Statistical Economics," Journal of Political Economy, University of Chicago Press, vol. 71(5), pages 421-421.
    30. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    31. Pogue, G A, 1970. "An Extension of the Markowitz Portfolio Selection Model to Include Variable Transactions' Costs, Short Sales, Leverage Policies and Taxes," Journal of Finance, American Finance Association, vol. 25(5), pages 1005-1027, December.
    32. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jaehyung Choi & Hyangju Kim & Young Shin Kim, 2021. "Diversified reward-risk parity in portfolio construction," Papers 2106.09055, arXiv.org, revised Sep 2022.
    2. Antonio Díaz & Carlos Esparcia, 2021. "Dynamic optimal portfolio choice under time-varying risk aversion," International Economics, CEPII research center, issue 166, pages 1-22.
    3. Tetsuo Kurosaki & Young Shin Kim, 2020. "Cryptocurrency portfolio optimization with multivariate normal tempered stable processes and Foster-Hart risk," Papers 2010.08900, arXiv.org.
    4. Young Shin Kim & Frank J. Fabozzi, 2024. "Portfolio optimization with relative tail risk," Annals of Operations Research, Springer, vol. 341(2), pages 1023-1055, October.
    5. Yuhao Liu & Petar M. Djurić & Young Shin Kim & Svetlozar T. Rachev & James Glimm, 2021. "Systemic Risk Modeling with Lévy Copulas," JRFM, MDPI, vol. 14(6), pages 1-20, June.
    6. Young Shin Kim & Kum-Hwan Roh & Raphael Douady, 2022. "Tempered stable processes with time-varying exponential tails," Quantitative Finance, Taylor & Francis Journals, vol. 22(3), pages 541-561, March.
    7. Kim, Sung Ik, 2023. "A comparative study of firm value models: Default risk of corporate bonds," Finance Research Letters, Elsevier, vol. 56(C).
    8. Tiantian Li & Young Shin Kim & Qi Fan & Fumin Zhu, 2021. "Aumann–Serrano index of risk in portfolio optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 94(2), pages 197-217, October.
    9. Abhinav Anand & Tiantian Li & Tetsuo Kurosaki & Young Shin Kim, 2017. "The equity risk posed by the too-big-to-fail banks: a Foster–Hart estimation," Annals of Operations Research, Springer, vol. 253(1), pages 21-41, June.
    10. Cheng Peng & Young Shin Kim & Stefan Mittnik, 2022. "Portfolio Optimization on Multivariate Regime-Switching GARCH Model with Normal Tempered Stable Innovation," JRFM, MDPI, vol. 15(5), pages 1-23, May.
    11. Jiro Hodoshima & Toshiyuki Yamawake, 2021. "Sensitivity of Performance Indexes to Disaster Risk," Risks, MDPI, vol. 9(2), pages 1-22, February.
    12. Heller, Yuval & Schreiber, Amnon, 2020. "Short-term investments and indices of risk," Theoretical Economics, Econometric Society, vol. 15(3), July.
    13. Yao, Haixiang & Huang, Jinbo & Li, Yong & Humphrey, Jacquelyn E., 2021. "A general approach to smooth and convex portfolio optimization using lower partial moments," Journal of Banking & Finance, Elsevier, vol. 129(C).
    14. Leiss, Matthias & Nax, Heinrich H., 2018. "Option-implied objective measures of market risk," Journal of Banking & Finance, Elsevier, vol. 88(C), pages 241-249.
    15. Young Shin Kim, 2022. "Portfolio optimization and marginal contribution to risk on multivariate normal tempered stable model," Annals of Operations Research, Springer, vol. 312(2), pages 853-881, May.
    16. Gong, Xiao-Li & Xiong, Xiong, 2021. "Multi-objective portfolio optimization under tempered stable Lévy distribution with Copula dependence," Finance Research Letters, Elsevier, vol. 38(C).
    17. Young Shin Kim & Hyangju Kim & Jaehyung Choi, 2023. "Deep Calibration With Artificial Neural Network: A Performance Comparison on Option Pricing Models," Papers 2303.08760, arXiv.org.
    18. Sung Ik Kim & Young Shin Kim, 2018. "Tempered stable structural model in pricing credit spread and credit default swap," Review of Derivatives Research, Springer, vol. 21(1), pages 119-148, April.
    19. Kurosaki, Tetsuo & Kim, Young Shin, 2022. "Cryptocurrency portfolio optimization with multivariate normal tempered stable processes and Foster-Hart risk," Finance Research Letters, Elsevier, vol. 45(C).
    20. Young Shin Kim & Hyun-Gyoon Kim, 2024. "Quanto Option Pricing on a Multivariate Levy Process Model with a Generative Artificial Intelligence," Papers 2402.17919, arXiv.org, revised Mar 2024.
    21. Yuval Heller & Amnon Schreiber, 2020. "Short-Term Investments and Indices of Risk," Papers 2005.06576, arXiv.org.
    22. Young Shin Kim, 2020. "Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk," Papers 2007.13972, arXiv.org, revised Sep 2020.
    23. Richard Lu & Adrian (Wai Kong) Cheung & Vu T. Hoang & Sardar M. N. Islam, 2021. "Which measure of systematic risk should we use? An empirical study on systematical risk and Treynor measure using the economic index of riskiness and operational measure of riskiness," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 1739-1744, April.
    24. Young Shin Kim, 2023. "Portfolio Optimization with Relative Tail Risk," Papers 2303.12209, arXiv.org, revised Mar 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abhinav Anand & Tiantian Li & Tetsuo Kurosaki & Young Shin Kim, 2017. "The equity risk posed by the too-big-to-fail banks: a Foster–Hart estimation," Annals of Operations Research, Springer, vol. 253(1), pages 21-41, June.
    2. Tiantian Li & Young Shin Kim & Qi Fan & Fumin Zhu, 2021. "Aumann–Serrano index of risk in portfolio optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 94(2), pages 197-217, October.
    3. Leiss, Matthias & Nax, Heinrich H., 2018. "Option-implied objective measures of market risk," Journal of Banking & Finance, Elsevier, vol. 88(C), pages 241-249.
    4. Young Shin Kim, 2022. "Portfolio optimization and marginal contribution to risk on multivariate normal tempered stable model," Annals of Operations Research, Springer, vol. 312(2), pages 853-881, May.
    5. Ortobelli, Sergio & Rachev, Svetlozar T. & Fabozzi, Frank J., 2010. "Risk management and dynamic portfolio selection with stable Paretian distributions," Journal of Empirical Finance, Elsevier, vol. 17(2), pages 195-211, March.
    6. Young Shin Kim, 2020. "Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk," Papers 2007.13972, arXiv.org, revised Sep 2020.
    7. Young Shin Kim, 2023. "Portfolio Optimization with Relative Tail Risk," Papers 2303.12209, arXiv.org, revised Mar 2023.
    8. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    9. Jaehyung Choi & Hyangju Kim & Young Shin Kim, 2021. "Diversified reward-risk parity in portfolio construction," Papers 2106.09055, arXiv.org, revised Sep 2022.
    10. Daniel Velásquez-Gaviria & Andrés Mora-Valencia & Javier Perote, 2020. "A Comparison of the Risk Quantification in Traditional and Renewable Energy Markets," Energies, MDPI, vol. 13(11), pages 1-42, June.
    11. Benjamin R. Auer & Benjamin Mögel, 2016. "How Accurate are Modern Value-at-Risk Estimators Derived from Extreme Value Theory?," CESifo Working Paper Series 6288, CESifo.
    12. Young Shin Kim & Hyangju Kim & Jaehyung Choi, 2023. "Deep Calibration With Artificial Neural Network: A Performance Comparison on Option Pricing Models," Papers 2303.08760, arXiv.org.
    13. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    14. Jiro Hodoshima & Toshiyuki Yamawake, 2021. "Sensitivity of Performance Indexes to Disaster Risk," Risks, MDPI, vol. 9(2), pages 1-22, February.
    15. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    16. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654.
    17. Benjamin Mögel & Benjamin R. Auer, 2018. "How accurate are modern Value-at-Risk estimators derived from extreme value theory?," Review of Quantitative Finance and Accounting, Springer, vol. 50(4), pages 979-1030, May.
    18. Hodoshima, Jiro & Yamawake, Toshiyuki, 2022. "Temporal aggregation of the Aumann–Serrano and Foster–Hart performance indexes," International Review of Financial Analysis, Elsevier, vol. 83(C).
    19. Young Shin Kim & Frank J. Fabozzi, 2024. "Portfolio optimization with relative tail risk," Annals of Operations Research, Springer, vol. 341(2), pages 1023-1055, October.
    20. Mouck, T., 1998. "Capital markets research and real world complexity: The emerging challenge of chaos theory," Accounting, Organizations and Society, Elsevier, vol. 23(2), pages 189-203, February.

    More about this item

    Keywords

    ARMA–GARCH model; Normal tempered stable distribution; Foster–Hart risk; Value-at-Risk (VaR); Average Value-at-Risk (AVaR); Reward risk ratio;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:68:y:2016:i:c:p:117-130. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.