Reconciling reports: modelling employment earnings and measurement errors using linked survey and administrative data
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Jenkins, Stephen P. & Rios-Avila, Fernando, 2021. "Reconciling Reports: Modelling Employment Earnings and Measurement Errors Using Linked Survey and Administrative Data," IZA Discussion Papers 14405, Institute of Labor Economics (IZA).
References listed on IDEAS
- Stephen P. Jenkins & Fernando Rios‐Avila, 2021.
"Measurement error in earnings data: Replication of Meijer, Rohwedder, and Wansbeek's mixture model approach to combining survey and register data,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(4), pages 474-483, June.
- Jenkins, Stephen P. & Rios-Avila, Fernando, 2021. "Measurement Error in Earnings Data: Replication of Meijer, Rohwedder, and Wansbeek's Mixture Model Approach to Combining Survey and Register Data," IZA Discussion Papers 14172, Institute of Labor Economics (IZA).
- Jenkins, Stephen P. & Rios-Avila, Fernando, 2021. "Measurement error in earnings data: replication of Meijer, Rohwedder, and Wansbeek’s mixture model approach to combining survey and register data," LSE Research Online Documents on Economics 108951, London School of Economics and Political Science, LSE Library.
- Jenkins, Stephen P. & Rios-Avila, Fernando, 2021.
"Reconciling Reports: Modelling Employment Earnings and Measurement Errors Using Linked Survey and Administrative Data,"
IZA Discussion Papers
14405, Institute of Labor Economics (IZA).
- Jenkins, Stephen P. & Rios-Avila, Fernando, 2023. "Reconciling reports: modelling employment earnings and measurement errors using linked survey and administrative data," LSE Research Online Documents on Economics 117213, London School of Economics and Political Science, LSE Library.
- Jenkins, Stephen P. & Rios-Avila, Fernando, 2020.
"Modelling errors in survey and administrative data on employment earnings: Sensitivity to the fraction assumed to have error-free earnings,"
Economics Letters, Elsevier, vol. 192(C).
- Jenkins, Stephen P. & Rios-Avila, Fernando, 2020. "Modelling Errors in Survey and Administrative Data on Employment Earnings: Sensitivity to the Fraction Assumed to Have Error-Free Earnings," IZA Discussion Papers 13196, Institute of Labor Economics (IZA).
- Jenkins, Stephen P. & Rios-Avila, Fernando, 2020. "Modelling errors in survey and administrative data on employment earnings: sensitivity to the fraction assumed to have error-free earnings," LSE Research Online Documents on Economics 104560, London School of Economics and Political Science, LSE Library.
- Stephen P. Jenkins & Fernando Rios-Avila, 2023.
"Finite mixture models for linked survey and administrative data: Estimation and postestimation,"
Stata Journal, StataCorp LP, vol. 23(1), pages 53-85, March.
- Jenkins, Stephen P. & Rios-Avila, Fernando, 2021. "Finite Mixture Models for Linked Survey and Administrative Data: Estimation and Post-estimation," IZA Discussion Papers 14404, Institute of Labor Economics (IZA).
- John M. Abowd & Martha H. Stinson, 2013. "Estimating Measurement Error in Annual Job Earnings: A Comparison of Survey and Administrative Data," The Review of Economics and Statistics, MIT Press, vol. 95(5), pages 1451-1467, December.
- Bound, John & Krueger, Alan B, 1991.
"The Extent of Measurement Error in Longitudinal Earnings Data: Do Two Wrongs Make a Right?,"
Journal of Labor Economics, University of Chicago Press, vol. 9(1), pages 1-24, January.
- John Bound & Alan B. Krueger, 1988. "The Extent of Measurement Error in Longitudinal Earnings Data: Do Two Wrongs Make a Right?," Working Papers 620, Princeton University, Department of Economics, Industrial Relations Section..
- John Bound & Alan B. Krueger, 1989. "The Extent of Measurement Error In Longitudinal Earnings Data: Do Two Wrongs Make A Right?," NBER Working Papers 2885, National Bureau of Economic Research, Inc.
- Dean R. Hyslop & Wilbur Townsend, 2020.
"Earnings Dynamics and Measurement Error in Matched Survey and Administrative Data,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 457-469, April.
- Dean Hyslop & Wilbur Townsend, 2016. "Earnings Dynamics and Measurement Error in Matched Survey and Administrative Data," Working Papers 16_18, Motu Economic and Public Policy Research.
- repec:taf:jnlbes:v:30:y:2012:i:2:p:191-201 is not listed on IDEAS
- Paul Bingley & Alessandro Martinello, 2017. "Measurement Error in Income and Schooling and the Bias of Linear Estimators," Journal of Labor Economics, University of Chicago Press, vol. 35(4), pages 1117-1148.
- Peter Gottschalk & Timothy M. Smeeding, 1997. "Cross-National Comparisons of Earnings and Income Inequality," Journal of Economic Literature, American Economic Association, vol. 35(2), pages 633-687, June.
- Peter Valet & Jule Adriaans & Stefan Liebig, 2019. "Comparing survey data and administrative records on gross earnings: nonreporting, misreporting, interviewer presence and earnings inequality," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(1), pages 471-491, January.
- Jack Britton & Neil Shephard & Anna Vignoles, 2019. "A comparison of sample survey measures of earnings of English graduates with administrative data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(3), pages 719-754, June.
- Bollinger, Christopher R, 1998. "Measurement Error in the Current Population Survey: A Nonparametric Look," Journal of Labor Economics, University of Chicago Press, vol. 16(3), pages 576-594, July.
- David H. Autor & Lawrence F. Katz & Melissa S. Kearney, 2008. "Trends in U.S. Wage Inequality: Revising the Revisionists," The Review of Economics and Statistics, MIT Press, vol. 90(2), pages 300-323, May.
- Duncan, Greg J & Hill, Daniel H, 1985. "An Investigation of the Extent and Consequences of Measurement Error in Labor-Economic Survey Data," Journal of Labor Economics, University of Chicago Press, vol. 3(4), pages 508-532, October.
- Levy, Frank & Murnane, Richard J, 1992. "U.S. Earnings Levels and Earnings Inequality: A Review of Recent Trends and Proposed Explanations," Journal of Economic Literature, American Economic Association, vol. 30(3), pages 1333-1381, September.
- Barry T. Hirsch & Edward J. Schumacher, 2004.
"Match Bias in Wage Gap Estimates Due to Earnings Imputation,"
Journal of Labor Economics, University of Chicago Press, vol. 22(3), pages 689-722, July.
- Hirsch, Barry & Schumacher, Edward J., 2003. "Match Bias in Wage Gap Estimates Due to Earnings Imputation," IZA Discussion Papers 783, Institute of Labor Economics (IZA).
- Blundell, Richard & Joyce, Robert & Norris Keiller, Agnes & Ziliak, James P., 2018.
"Income inequality and the labour market in Britain and the US,"
Journal of Public Economics, Elsevier, vol. 162(C), pages 48-62.
- Richard Blundell & Robert Joyce & Agnes Norris Keiller & James P. Ziliak, 2017. "Income inequality and the labour market in Britain and the US," IFS Working Papers W17/25, Institute for Fiscal Studies.
- Arie Kapteyn & Jelmer Y. Ypma, 2007. "Measurement Error and Misclassification: A Comparison of Survey and Administrative Data," Journal of Labor Economics, University of Chicago Press, vol. 25(3), pages 513-551.
- Stefan Angel & Franziska Disslbacher & Stefan Humer & Matthias Schnetzer, 2019. "What did you really earn last year?: explaining measurement error in survey income data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(4), pages 1411-1437, October.
- Christopher R. Bollinger & Barry T. Hirsch & Charles M. Hokayem & James P. Ziliak, 2019. "Trouble in the Tails? What We Know about Earnings Nonresponse 30 Years after Lillard, Smith, and Welch," Journal of Political Economy, University of Chicago Press, vol. 127(5), pages 2143-2185.
- Wojciech Kopczuk & Emmanuel Saez & Jae Song, 2010. "Earnings Inequality and Mobility in the United States: Evidence from Social Security Data Since 1937," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 125(1), pages 91-128.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Stephen P. Jenkins & Fernando Rios-Avila, 2023.
"Finite mixture models for linked survey and administrative data: Estimation and postestimation,"
Stata Journal, StataCorp LP, vol. 23(1), pages 53-85, March.
- Jenkins, Stephen P. & Rios-Avila, Fernando, 2021. "Finite Mixture Models for Linked Survey and Administrative Data: Estimation and Post-estimation," IZA Discussion Papers 14404, Institute of Labor Economics (IZA).
- Ha Trong Nguyen & Huong Thu Le & Luke Connelly & Francis Mitrou, 2023.
"Accuracy of self‐reported private health insurance coverage,"
Health Economics, John Wiley & Sons, Ltd., vol. 32(12), pages 2709-2729, December.
- Nguyen, Ha Trong & Le, Huong Thu & Connelly, Luke & Mitrou, Francis, 2022. "Accuracy of self-reported private health insurance coverage," GLO Discussion Paper Series 1215, Global Labor Organization (GLO).
- Nguyen, Ha Trong & Le, Huong Thu & Connelly, Luke B. & Mitrou, Francis, 2022. "Accuracy of self-reported private health insurance coverage," MPRA Paper 115727, University Library of Munich, Germany.
- Stephen P. Jenkins, 2022.
"Top-income adjustments and official statistics on income distribution: the case of the UK,"
The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 20(1), pages 151-168, March.
- Jenkins, Stephen P., 2021. "Top-Income Adjustments and Official Statistics on Income Distribution: The Case of the UK," IZA Discussion Papers 14951, Institute of Labor Economics (IZA).
- Jenkins, Stephen P., 2022. "Top-income adjustments and official statistics on income distribution: the case of the UK," LSE Research Online Documents on Economics 113790, London School of Economics and Political Science, LSE Library.
- R. Bollinger, Christopher & Valentinova Tasseva, Iva, 2022.
"Income source confusion using the SILC,"
ISER Working Paper Series
2022-04, Institute for Social and Economic Research.
- Bollinger, Christopher R. & Tasseva, Iva, 2023. "Income source confusion using the SILC," LSE Research Online Documents on Economics 119351, London School of Economics and Political Science, LSE Library.
- Apostolos Davillas & Victor Hugo Oliveira & Andrew M. Jones, 2024.
"A model of errors in BMI based on self-reported and measured anthropometrics with evidence from Brazilian data,"
Empirical Economics, Springer, vol. 67(5), pages 2371-2410, November.
- Davillas, Apostolos & de Oliveira, Victor Hugo & Jones, Andrew M., 2022. "Model of Errors in BMI Based on Self‐reported and Measured Anthropometrics with Evidence from Brazilian Data," CINCH Working Paper Series (since 2020) 76143, Duisburg-Essen University Library, DuEPublico.
- Davillas, Apostolos & de Oliveira, Victor Hugo & Jones, Andrew M., 2022. "A Model of Errors in BMI Based on Self-Reported and Measured Anthropometrics with Evidence from Brazilian Data," IZA Discussion Papers 15380, Institute of Labor Economics (IZA).
- Evan S. Totty & Thor Watson, 2024.
"Privacy Protection and Accuracy: What Do We Know? Do We Know Things?? Let's Find Out!,"
NBER Chapters, in: Data Privacy Protection and the Conduct of Applied Research: Methods, Approaches and their Consequences,
National Bureau of Economic Research, Inc.
- Evan S. Totty & Thor Watson, 2024. "Privacy Protection and Accuracy: What Do We Know? Do We Know Things?? Let's Find Out!," NBER Working Papers 32989, National Bureau of Economic Research, Inc.
- Alessio Fusco & Philippe Van Kerm, 2023.
"Measuring poverty persistence,"
Chapters, in: Jacques Silber (ed.), Research Handbook on Measuring Poverty and Deprivation, chapter 18, pages 192-200,
Edward Elgar Publishing.
- Alessio Fusco & Philippe Van Kerm, 2022. "Measuring Poverty Persistence," LISER Working Paper Series 022-02, Luxembourg Institute of Socio-Economic Research (LISER).
- Jenkins, Stephen P. & Rios-Avila, Fernando, 2021.
"Reconciling Reports: Modelling Employment Earnings and Measurement Errors Using Linked Survey and Administrative Data,"
IZA Discussion Papers
14405, Institute of Labor Economics (IZA).
- Jenkins, Stephen P. & Rios-Avila, Fernando, 2023. "Reconciling reports: modelling employment earnings and measurement errors using linked survey and administrative data," LSE Research Online Documents on Economics 117213, London School of Economics and Political Science, LSE Library.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Adam Bee & Joshua Mitchell & Nikolas Mittag & Jonathan Rothbaum & Carl Sanders & Lawrence Schmidt & Matthew Unrath, 2023. "National Experimental Wellbeing Statistics - Version 1," Working Papers 23-04, Center for Economic Studies, U.S. Census Bureau.
- Stephen P. Jenkins & Fernando Rios-Avila, 2023.
"Finite mixture models for linked survey and administrative data: Estimation and postestimation,"
Stata Journal, StataCorp LP, vol. 23(1), pages 53-85, March.
- Jenkins, Stephen P. & Rios-Avila, Fernando, 2021. "Finite Mixture Models for Linked Survey and Administrative Data: Estimation and Post-estimation," IZA Discussion Papers 14404, Institute of Labor Economics (IZA).
- Michele Lalla & Maddalena Cavicchioli, 2020. "Nonresponse and measurement errors in income: matching individual survey data with administrative tax data," Department of Economics 0170, University of Modena and Reggio E., Faculty of Economics "Marco Biagi".
- Marco Caliendo & Katrin Huber & Ingo E. Isphording & Jakob Wegmann, 2024. "On the Extent, Correlates, and Consequences of Reporting Bias in Survey Wages," Papers 2411.04751, arXiv.org.
- Michele Lalla & Patrizio Frederic & Daniela Mantovani, 2022. "The inextricable association of measurement errors and tax evasion as examined through a microanalysis of survey data matched with fiscal data: a case study," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(5), pages 1375-1401, December.
- Paulus, Alari, 2015. "Tax evasion and measurement error: An econometric analysis of survey data linked with tax records," ISER Working Paper Series 2015-10, Institute for Social and Economic Research.
- R. Bollinger, Christopher & Valentinova Tasseva, Iva, 2022.
"Income source confusion using the SILC,"
ISER Working Paper Series
2022-04, Institute for Social and Economic Research.
- Bollinger, Christopher R. & Tasseva, Iva, 2023. "Income source confusion using the SILC," LSE Research Online Documents on Economics 119351, London School of Economics and Political Science, LSE Library.
- Apostolos Davillas & Victor Hugo Oliveira & Andrew M. Jones, 2024.
"A model of errors in BMI based on self-reported and measured anthropometrics with evidence from Brazilian data,"
Empirical Economics, Springer, vol. 67(5), pages 2371-2410, November.
- Davillas, Apostolos & de Oliveira, Victor Hugo & Jones, Andrew M., 2022. "Model of Errors in BMI Based on Self‐reported and Measured Anthropometrics with Evidence from Brazilian Data," CINCH Working Paper Series (since 2020) 76143, Duisburg-Essen University Library, DuEPublico.
- Davillas, Apostolos & de Oliveira, Victor Hugo & Jones, Andrew M., 2022. "A Model of Errors in BMI Based on Self-Reported and Measured Anthropometrics with Evidence from Brazilian Data," IZA Discussion Papers 15380, Institute of Labor Economics (IZA).
- Bollinger, Christopher R. & Hirsch, Barry & Hokayem, Charles M. & Ziliak, James P., 2018. "Trouble in the Tails? What We Know about Earnings Nonresponse Thirty Years after Lillard, Smith, and Welch," IZA Discussion Papers 11710, Institute of Labor Economics (IZA).
- James P. Ziliak & Charles Hokayem & Christopher R. Bollinger, 2022.
"Trends in Earnings Volatility Using Linked Administrative and Survey Data,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(1), pages 12-19, December.
- James P. Ziliak & Charles Hokayem & Christopher R. Bollinger, 2020. "Trends in Earnings Volatility using Linked Administrative and Survey Data," Working Papers 20-24, Center for Economic Studies, U.S. Census Bureau.
- Emmanuel Flachaire & Nora Lustig & Andrea Vigorito, 2023.
"Underreporting of Top Incomes and Inequality: A Comparison of Correction Methods using Simulations and Linked Survey and Tax Data,"
Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 69(4), pages 1033-1059, December.
- Emmanuel Flachaire & Nora Lustig & Andrea Vigorito, 2022. "Underreporting of Top Incomes and Inequality: A Comparison of Correction Methods using Simulations and Linked Survey and Tax Data," Post-Print hal-03879312, HAL.
- Mittag, Nikolas, 2016. "Correcting for Misreporting of Government Benefits," IZA Discussion Papers 10266, Institute of Labor Economics (IZA).
- Meyer, Bruce D. & Mittag, Nikolas, 2019. "Combining Administrative and Survey Data to Improve Income Measurement," IZA Discussion Papers 12266, Institute of Labor Economics (IZA).
- Stüber, Heiko & Grabka, Markus M. & Schnitzlein, Daniel D., 2023.
"A tale of two data sets: comparing German administrative and survey data using wage inequality as an example,"
Journal for Labour Market Research, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany], vol. 57, pages 1-8.
- Heiko Stüber & Markus M. Grabka & Daniel D. Schnitzlein, 2023. "A tale of two data sets: comparing German administrative and survey data using wage inequality as an example," Journal for Labour Market Research, Springer;Institute for Employment Research/ Institut für Arbeitsmarkt- und Berufsforschung (IAB), vol. 57(1), pages 1-18, December.
- García-Suaza, A & Lobo, J & Montoya, S & Ordóñez, J & Oviedo, J. D, 2022. "Impact of the collection mode on labor income data. A study in the times of COVID19," Documentos de Trabajo 20396, Universidad del Rosario.
- Bruce D. Meyer & Nikolas Mittag, 2015.
"Using Linked Survey and Administrative Data to Better Measure Income: Implications for Poverty, Program Effectiveness and Holes in the Safety Net,"
NBER Working Papers
21676, National Bureau of Economic Research, Inc.
- Bruce D. Meyer & Nikolas Mittag, 2015. "Using Linked Survey and Administrative Data to Better Measure Income: Implications for Poverty, Program Effectiveness and Holes in the Safety Net," Upjohn Working Papers 15-242, W.E. Upjohn Institute for Employment Research.
- Bruce D. Meyer & Nikolas Mittag, 2015. "Using Linked Survey and Administrative Data to Better Measure Income: Implications for Poverty, Program Effectiveness and Holes in the Safety Net," Working Papers 15-35, Center for Economic Studies, U.S. Census Bureau.
- Bruce D. Meyer & Nikolas Mittag, 2015. "Using linked survey and administrative data to better measure income: Implications for poverty, program effectiveness and holes in the safety net," AEI Economics Working Papers 862403, American Enterprise Institute.
- Hyslop, Dean R. & Townsend, Wilbur, 2017.
"Employment misclassification in survey and administrative reports,"
Economics Letters, Elsevier, vol. 155(C), pages 19-23.
- Dean Hyslop & Wilbur Townsend, 2016. "Employment misclassification in survey and administrative reports," Working Papers 16_19, Motu Economic and Public Policy Research.
- Meyer, Bruce D. & Mittag, Nikolas, 2017. "Using Linked Survey and Administrative Data to Better Measure Income: Implications for Poverty, Program Effectiveness and Holes in the Safety Net," IZA Discussion Papers 10943, Institute of Labor Economics (IZA).
- Ha Trong Nguyen & Huong Thu Le & Luke Connelly & Francis Mitrou, 2023.
"Accuracy of self‐reported private health insurance coverage,"
Health Economics, John Wiley & Sons, Ltd., vol. 32(12), pages 2709-2729, December.
- Nguyen, Ha Trong & Le, Huong Thu & Connelly, Luke & Mitrou, Francis, 2022. "Accuracy of self-reported private health insurance coverage," GLO Discussion Paper Series 1215, Global Labor Organization (GLO).
- Nguyen, Ha Trong & Le, Huong Thu & Connelly, Luke B. & Mitrou, Francis, 2022. "Accuracy of self-reported private health insurance coverage," MPRA Paper 115727, University Library of Munich, Germany.
- Bruce D. Meyer & Nikolas Mittag, 2019. "Combining Administrative and Survey Data to Improve Income Measurement," NBER Working Papers 25738, National Bureau of Economic Research, Inc.
More about this item
Keywords
measurement error; linkage error; earnings; linked data and administrative data; finite mixture models; Family Resources Survey; P14 data; PAYE data;All these keywords.
JEL classification:
- C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
NEP fields
This paper has been announced in the following NEP Reports:- NEP-LTV-2023-04-10 (Unemployment, Inequality and Poverty)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:117213. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.