IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2009.09770.html
   My bibliography  Save this paper

Implied Basket Correlation Dynamics

Author

Listed:
  • Wolfgang Karl Hardle
  • Elena Silyakova

Abstract

Equity basket correlation can be estimated both using the physical measure from stock prices, and also using the risk neutral measure from option prices. The difference between the two estimates motivates a so-called "dispersion strategy''. We study the performance of this strategy on the German market and propose several profitability improvement schemes based on implied correlation (IC) forecasts. Modelling IC conceals several challenges. Firstly the number of correlation coefficients would grow with the size of the basket. Secondly, IC is not constant over maturities and strikes. Finally, IC changes over time. We reduce the dimensionality of the problem by assuming equicorrelation. The IC surface (ICS) is then approximated from the implied volatilities of stocks and the implied volatility of the basket. To analyze the dynamics of the ICS we employ a dynamic semiparametric factor model.

Suggested Citation

  • Wolfgang Karl Hardle & Elena Silyakova, 2020. "Implied Basket Correlation Dynamics," Papers 2009.09770, arXiv.org.
  • Handle: RePEc:arx:papers:2009.09770
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2009.09770
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mark Britten‐Jones & Anthony Neuberger, 2000. "Option Prices, Implied Price Processes, and Stochastic Volatility," Journal of Finance, American Finance Association, vol. 55(2), pages 839-866, April.
    2. Bollerslev, Tim & Engle, Robert F & Wooldridge, Jeffrey M, 1988. "A Capital Asset Pricing Model with Time-Varying Covariances," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 116-131, February.
    3. Jose A. Lopez & Christian Walter, 1997. "Is implied correlation worth calculating? Evidence from foreign exchange options and historical data," Research Paper 9730, Federal Reserve Bank of New York.
    4. Rama Cont & Jose da Fonseca, 2002. "Dynamics of implied volatility surfaces," Quantitative Finance, Taylor & Francis Journals, vol. 2(1), pages 45-60.
    5. Breeden, Douglas T & Litzenberger, Robert H, 1978. "Prices of State-contingent Claims Implicit in Option Prices," The Journal of Business, University of Chicago Press, vol. 51(4), pages 621-651, October.
    6. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 2000. "Do Call Prices and the Underlying Stock Always Move in the Same Direction?," The Review of Financial Studies, Society for Financial Studies, vol. 13(3), pages 549-584.
    7. Matthias R. Fengler & Wolfgang K. Härdle & Enno Mammen, 0. "A semiparametric factor model for implied volatility surface dynamics," Journal of Financial Econometrics, Oxford University Press, vol. 5(2), pages 189-218.
    8. Ledoit, Olivier & Wolf, Michael, 2003. "Improved estimation of the covariance matrix of stock returns with an application to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 603-621, December.
    9. Gurdip Bakshi & Nikunj Kapadia & Dilip Madan, 2003. "Stock Return Characteristics, Skew Laws, and the Differential Pricing of Individual Equity Options," The Review of Financial Studies, Society for Financial Studies, vol. 16(1), pages 101-143.
    10. Vasiliki D. Skintzi & Apostolos‐Paul N. Refenes, 2005. "Implied correlation index: A new measure of diversification," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 25(2), pages 171-197, February.
    11. Stefan Sperlich & Oliver Linton & Wolfgang Härdle, 1999. "Integration and backfitting methods in additive models-finite sample properties and comparison," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 8(2), pages 419-458, December.
    12. Enzo Giacomini & Wolfgang Härdle & Volker Krätschmer, 2009. "Dynamic semiparametric factor models in risk neutral density estimation," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 93(4), pages 387-402, December.
    13. Peter Carr & Liuren Wu, 2009. "Variance Risk Premiums," The Review of Financial Studies, Society for Financial Studies, vol. 22(3), pages 1311-1341, March.
    14. Blair, Bevan J. & Poon, Ser-Huang & Taylor, Stephen J., 2001. "Forecasting S&P 100 volatility: the incremental information content of implied volatilities and high-frequency index returns," Journal of Econometrics, Elsevier, vol. 105(1), pages 5-26, November.
    15. Campa, Jose Manuel & Chang, P. H. Kevin, 1998. "The forecasting ability of correlations implied in foreign exchange options," Journal of International Money and Finance, Elsevier, vol. 17(6), pages 855-880, December.
    16. Joost Driessen & Pascal J. Maenhout & Grigory Vilkov, 2009. "The Price of Correlation Risk: Evidence from Equity Options," Journal of Finance, American Finance Association, vol. 64(3), pages 1377-1406, June.
    17. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    18. Christensen, B. J. & Prabhala, N. R., 1998. "The relation between implied and realized volatility," Journal of Financial Economics, Elsevier, vol. 50(2), pages 125-150, November.
    19. Cavit Pakel & Neil Shephard & Kevin Sheppard & Robert F. Engle, 2021. "Fitting Vast Dimensional Time-Varying Covariance Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(3), pages 652-668, July.
    20. Fan, Jianqing & Fan, Yingying & Lv, Jinchi, 2008. "High dimensional covariance matrix estimation using a factor model," Journal of Econometrics, Elsevier, vol. 147(1), pages 186-197, November.
    21. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Härdle Wolfgang Karl & Silyakova Elena, 2016. "Implied basket correlation dynamics," Statistics & Risk Modeling, De Gruyter, vol. 33(1-2), pages 1-20, September.
    2. Härdle, Wolfgang Karl & Silyakova, Elena, 2012. "Implied basket correlation dynamics," SFB 649 Discussion Papers 2012-066, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    3. repec:hum:wpaper:sfb649dp2012-066 is not listed on IDEAS
    4. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    5. Chen, Ren-Raw & Hsieh, Pei-lin & Huang, Jeffrey, 2018. "Crash risk and risk neutral densities," Journal of Empirical Finance, Elsevier, vol. 47(C), pages 162-189.
    6. DeMiguel, Victor & Plyakha, Yuliya & Uppal, Raman & Vilkov, Grigory, 2013. "Improving Portfolio Selection Using Option-Implied Volatility and Skewness," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 48(6), pages 1813-1845, December.
    7. Turan G. Bali & Hao Zhou, 2011. "Risk, uncertainty, and expected returns," Finance and Economics Discussion Series 2011-45, Board of Governors of the Federal Reserve System (U.S.).
    8. Nikolaus Hautsch & Lada M. Kyj & Peter Malec, 2015. "Do High‐Frequency Data Improve High‐Dimensional Portfolio Allocations?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(2), pages 263-290, March.
    9. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    10. Bernales, Alejandro & Guidolin, Massimo, 2014. "Can we forecast the implied volatility surface dynamics of equity options? Predictability and economic value tests," Journal of Banking & Finance, Elsevier, vol. 46(C), pages 326-342.
    11. Erik Vogt, 2014. "Option-implied term structures," Staff Reports 706, Federal Reserve Bank of New York.
    12. Beber, Alessandro & Breedon, Francis & Buraschi, Andrea, 2010. "Differences in beliefs and currency risk premiums," Journal of Financial Economics, Elsevier, vol. 98(3), pages 415-438, December.
    13. Peter Christoffersen & Kris Jacobs & Gregory Vainberg, 2007. "Forward-Looking Betas," CREATES Research Papers 2007-39, Department of Economics and Business Economics, Aarhus University.
    14. Markopoulou, Chryssa & Skintzi, Vasiliki & Refenes, Apostolos, 2016. "On the predictability of model-free implied correlation," International Journal of Forecasting, Elsevier, vol. 32(2), pages 527-547.
    15. Bo-Young Chang & Peter Christoffersen & Kris Jacobs & Gregory Vainberg, 2011. "Option-Implied Measures of Equity Risk," Review of Finance, European Finance Association, vol. 16(2), pages 385-428.
    16. repec:hum:wpaper:sfb649dp2013-014 is not listed on IDEAS
    17. Leonidas S. Rompolis & Elias Tzavalis, 2017. "Retrieving risk neutral moments and expected quadratic variation from option prices," Review of Quantitative Finance and Accounting, Springer, vol. 48(4), pages 955-1002, May.
    18. Jeffrey L. Callen & Matthew R. Lyle, 2020. "The term structure of implied costs of equity capital," Review of Accounting Studies, Springer, vol. 25(1), pages 342-404, March.
    19. Fabian Hollstein & Marcel Prokopczuk & Chardin Wese Simen, 2019. "The term structure of systematic and idiosyncratic risk," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(4), pages 435-460, April.
    20. Alexander Kempf & Olaf Korn & Sven Saßning, 2015. "Portfolio Optimization Using Forward-Looking Information," Review of Finance, European Finance Association, vol. 19(1), pages 467-490.
    21. Liu, Zhangxin (Frank) & Faff, Robert, 2017. "Hitting SKEW for SIX," Economic Modelling, Elsevier, vol. 64(C), pages 449-464.
    22. Kempf, Alexander & Korn, Olaf & Saßning, Sven, 2011. "Portfolio optimization using forward-looking information," CFR Working Papers 11-10, University of Cologne, Centre for Financial Research (CFR).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2009.09770. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.