IDEAS home Printed from https://ideas.repec.org/p/siu/wpaper/20-2010.html
   My bibliography  Save this paper

Asymptotic Distributions of the Least Squares Estimator for Diffusion Processes

Author

Listed:
  • Qiankun Zhou

    (School of Economics, Singapore Management University)

  • Jun Yu

    (School of Economics, Singapore Management University)

Abstract

The asymptotic distributions of the least squares estimator of the mean reversion parameter (κ) are developed in a general class of diffusion models under three sampling schemes, namely, longspan, in-fill and the combination of long-span and in-fill. The models have an affine structure in the drift function, but allow for nonlinearity in the diffusion function. The limiting distributions are quite different under the alternative sampling schemes. In particular, the in-fill limiting distribution is non-standard and depends on the initial condition and the time span whereas the other two are Gaussian. Moreover, while the other two distributions are discontinuous at κ = 0, the in-fill distribution is continuous in κ. This property provides an answer to the Bayesian criticism to the unit root asymptotics. Monte Carlo simulations suggest that the in-fill asymptotic distribution provides a more accurate approximation to the finite sample distribution than the other two distributions in empirically realistic settings. The empirical application using the U.S. Federal fund rates highlights the difference in statistical inference based on the alternative asymptotic distributions and suggests strong evidence of a unit root in the data.

Suggested Citation

  • Qiankun Zhou & Jun Yu, 2010. "Asymptotic Distributions of the Least Squares Estimator for Diffusion Processes," Working Papers 20-2010, Singapore Management University, School of Economics.
  • Handle: RePEc:siu:wpaper:20-2010
    as

    Download full text from publisher

    File URL: https://mercury.smu.edu.sg/rsrchpubupload/17838/OU07.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Tang, Cheng Yong & Chen, Song Xi, 2009. "Parameter estimation and bias correction for diffusion processes," Journal of Econometrics, Elsevier, vol. 149(1), pages 65-81, April.
    2. Sims, Christopher A., 1988. "Bayesian skepticism on unit root econometrics," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 463-474.
    3. Sundaresan, S.M., 2000. "Continuous-Time Methods in Finance: A Review and an Assessment," Papers 00-03, Columbia - Graduate School of Business.
    4. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    5. David A. Chapman & Neil D. Pearson, 2000. "Is the Short Rate Drift Actually Nonlinear?," Journal of Finance, American Finance Association, vol. 55(1), pages 355-388, February.
    6. David A. Chapman & Neil D. Pearson, 1998. "Is the Short Rate Drift Actually Nonlinear?," Finance 9808005, University Library of Munich, Germany.
    7. Perron, Pierre, 1991. "A Continuous Time Approximation to the Unstable First-Order Autoregressive Process: The Case without an Intercept," Econometrica, Econometric Society, vol. 59(1), pages 211-236, January.
    8. Sims, Christopher A & Uhlig, Harald, 1991. "Understanding Unit Rooters: A Helicopter Tour," Econometrica, Econometric Society, vol. 59(6), pages 1591-1599, November.
    9. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    10. Bandi, Federico M. & Phillips, Peter C.B., 2007. "A simple approach to the parametric estimation of potentially nonstationary diffusions," Journal of Econometrics, Elsevier, vol. 137(2), pages 354-395, April.
    11. Ole E. Barndorff‐Nielsen & Neil Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280, May.
    12. Peter C. B. Phillips, 2005. "Jackknifing Bond Option Prices," The Review of Financial Studies, Society for Financial Studies, vol. 18(2), pages 707-742.
    13. Chan, K C, et al, 1992. "An Empirical Comparison of Alternative Models of the Short-Term Interest Rate," Journal of Finance, American Finance Association, vol. 47(3), pages 1209-1227, July.
    14. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    15. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 627-627, November.
    16. Haldrup, Niels & Hylleberg, Svend, 1995. "A note on the distribution of the least squares estimator of a random walk with drift: Some analytical evidence," Economics Letters, Elsevier, vol. 48(3-4), pages 221-228, June.
    17. Phillips, Peter C.B. & Magdalinos, Tassos, 2007. "Limit theory for moderate deviations from a unit root," Journal of Econometrics, Elsevier, vol. 136(1), pages 115-130, January.
    18. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    19. Phillips, Peter C.B. & Han, Chirok, 2008. "Gaussian Inference In Ar(1) Time Series With Or Without A Unit Root," Econometric Theory, Cambridge University Press, vol. 24(3), pages 631-650, June.
    20. Ulrich K. M¸ller & Graham Elliott, 2003. "Tests for Unit Roots and the Initial Condition," Econometrica, Econometric Society, vol. 71(4), pages 1269-1286, July.
    21. Harvey, David I. & Leybourne, Stephen J. & Taylor, A.M. Robert, 2009. "Unit Root Testing In Practice: Dealing With Uncertainty Over The Trend And Initial Condition," Econometric Theory, Cambridge University Press, vol. 25(3), pages 587-636, June.
    22. Pritsker, Matt, 1998. "Nonparametric Density Estimation and Tests of Continuous Time Interest Rate Models," The Review of Financial Studies, Society for Financial Studies, vol. 11(3), pages 449-487.
    23. Yacine Ait-Sahalia, 2002. "Maximum Likelihood Estimation of Discretely Sampled Diffusions: A Closed-form Approximation Approach," Econometrica, Econometric Society, vol. 70(1), pages 223-262, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ye Chen & Jun Yu, 2011. "Optimal Jackknife for Discrete Time and Continuous Time Unit Root Models," Working Papers 12-2011, Singapore Management University, School of Economics.
    2. Zhou, Qiankun & Yu, Jun, 2015. "Asymptotic theory for linear diffusions under alternative sampling schemes," Economics Letters, Elsevier, vol. 128(C), pages 1-5.
    3. Yiu Lim Lui & Weilin Xiao & Jun Yu, 2022. "The Grid Bootstrap for Continuous Time Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(3), pages 1390-1402, June.
    4. Wang, Xiaohu & Yu, Jun, 2016. "Double asymptotics for explosive continuous time models," Journal of Econometrics, Elsevier, vol. 193(1), pages 35-53.
    5. Aman Ullah & Yong Bao & Yun Wang, 2014. "Exact Distribution of the Mean Reversion Estimator in the Ornstein-Uhlenbeck Process," Working Papers 201413, University of California at Riverside, Department of Economics.
    6. Neil Kellard & Denise Osborn & Jerry Coakley & Marcus J. Chambers, 2015. "Testing for a Unit Root in a Near-Integrated Model with Skip-Sampled Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(5), pages 630-649, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Qiankun & Yu, Jun, 2015. "Asymptotic theory for linear diffusions under alternative sampling schemes," Economics Letters, Elsevier, vol. 128(C), pages 1-5.
    2. Dennis Kristensen, 2004. "A Semiparametric Single-Factor Model of the Term Structure," FMG Discussion Papers dp501, Financial Markets Group.
    3. Bandi, Federico M., 2002. "Short-term interest rate dynamics: a spatial approach," Journal of Financial Economics, Elsevier, vol. 65(1), pages 73-110, July.
    4. Song, Zhaogang, 2011. "A martingale approach for testing diffusion models based on infinitesimal operator," Journal of Econometrics, Elsevier, vol. 162(2), pages 189-212, June.
    5. Yu, Jun, 2012. "Bias in the estimation of the mean reversion parameter in continuous time models," Journal of Econometrics, Elsevier, vol. 169(1), pages 114-122.
    6. Faff, Robert & Gray, Philip, 2006. "On the estimation and comparison of short-rate models using the generalised method of moments," Journal of Banking & Finance, Elsevier, vol. 30(11), pages 3131-3146, November.
    7. Czellar, Veronika & Karolyi, G. Andrew & Ronchetti, Elvezio, 2007. "Indirect robust estimation of the short-term interest rate process," Journal of Empirical Finance, Elsevier, vol. 14(4), pages 546-563, September.
    8. Gil-Bazo Javier & Rubio Gonzalo, 2004. "A Nonparametric Dimension Test of the Term Structure," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(3), pages 1-28, September.
    9. Paulo M. M. Rodrigues & Antonio Rubia, 2004. "On the Small Sample Properties of Dickey Fuller and Maximum Likelihood Unit Root Tests on Discrete-Sampled Short-Term Interest Rates," Econometrics 0405004, University Library of Munich, Germany.
    10. Peter C.B.Phillips & Jun Yu, "undated". "Maximum Likelihood and Gaussian Estimation of Continuous Time Models in Finance," Working Papers CoFie-08-2009, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
    11. Radu Tunaru, 2015. "Model Risk in Financial Markets:From Financial Engineering to Risk Management," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 9524, December.
    12. Phillips, Peter C.B. & Yu, Jun, 2009. "A two-stage realized volatility approach to estimation of diffusion processes with discrete data," Journal of Econometrics, Elsevier, vol. 150(2), pages 139-150, June.
    13. Wang, Xiaohu & Phillips, Peter C.B. & Yu, Jun, 2011. "Bias in estimating multivariate and univariate diffusions," Journal of Econometrics, Elsevier, vol. 161(2), pages 228-245, April.
    14. Stan Hurn & J.Jeisman & K.A. Lindsay, 2006. "Seeing the Wood for the Trees: A Critical Evaluation of Methods to Estimate the Parameters of Stochastic Differential Equations. Working paper #2," NCER Working Paper Series 2, National Centre for Econometric Research.
    15. Koo, Bonsoo & Linton, Oliver, 2012. "Estimation of semiparametric locally stationary diffusion models," Journal of Econometrics, Elsevier, vol. 170(1), pages 210-233.
    16. Tao Zou & Song Xi Chen, 2017. "Enhancing Estimation for Interest Rate Diffusion Models With Bond Prices," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(3), pages 486-498, July.
    17. Peter Feldhütter & Christian Heyerdahl-Larsen & Philipp Illeditsch, 2018. "Risk Premia and Volatilities in a Nonlinear Term Structure Model [Quadratic term structure models: theory and evidence]," Review of Finance, European Finance Association, vol. 22(1), pages 337-380.
    18. Haitham A. Al-Zoubi, 2024. "An affine model for short rates when monetary policy is path dependent," Review of Derivatives Research, Springer, vol. 27(2), pages 151-201, July.
    19. A. S. Hurn & J. I. Jeisman & K. A. Lindsay, 0. "Seeing the Wood for the Trees: A Critical Evaluation of Methods to Estimate the Parameters of Stochastic Differential Equations," Journal of Financial Econometrics, Oxford University Press, vol. 5(3), pages 390-455.
    20. Aman Ullah & Yong Bao & Yun Wang, 2014. "Exact Distribution of the Mean Reversion Estimator in the Ornstein-Uhlenbeck Process," Working Papers 201413, University of California at Riverside, Department of Economics.

    More about this item

    Keywords

    Vasicek Model; One-factor Model; Mean Reversion; In-fill Asymptotics; Long-span Asymptotics; Unit Root Test;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:siu:wpaper:20-2010. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: QL THor (email available below). General contact details of provider: https://edirc.repec.org/data/sesmusg.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.