IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2201.09516.html
   My bibliography  Save this paper

From Rough to Multifractal volatility: the log S-fBM model

Author

Listed:
  • Peng Wu
  • Jean-Franc{c}ois Muzy
  • Emmanuel Bacry

Abstract

We introduce a family of random measures $M_{H,T} (d t)$, namely log S-fBM, such that, for $H>0$, $M_{H,T}(d t) = e^{\omega_{H,T}(t)} d t$ where $\omega_{H,T}(t)$ is a Gaussian process that can be considered as a stationary version of an $H$-fractional Brownian motion. Moreover, when $H \to 0$, one has $M_{H,T}(d t) \rightarrow {\widetilde M}_{T}(d t)$ (in the weak sense) where ${\widetilde M}_{T}(d t)$ is the celebrated log-normal multifractal random measure (MRM). Thus, this model allows us to consider, within the same framework, the two popular classes of multifractal ($H = 0$) and rough volatility ($0

Suggested Citation

  • Peng Wu & Jean-Franc{c}ois Muzy & Emmanuel Bacry, 2022. "From Rough to Multifractal volatility: the log S-fBM model," Papers 2201.09516, arXiv.org, revised Jul 2022.
  • Handle: RePEc:arx:papers:2201.09516
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2201.09516
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bacry, E. & Delour, J. & Muzy, J.F., 2001. "Modelling financial time series using multifractal random walks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 84-92.
    2. Christian Bayer & Fabian Andsem Harang & Paolo Pigato, 2020. "Log-modulated rough stochastic volatility models," Papers 2008.03204, arXiv.org, revised May 2021.
    3. Ole E. Barndorff‐Nielsen & Neil Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280, May.
    4. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2016. "Decoupling the short- and long-term behavior of stochastic volatility," Papers 1610.00332, arXiv.org, revised Jan 2021.
    5. Masaaki Fukasawa, 2021. "Volatility has to be rough," Quantitative Finance, Taylor & Francis Journals, vol. 21(1), pages 1-8, January.
    6. Christian Bayer & Peter Friz & Jim Gatheral, 2016. "Pricing under rough volatility," Quantitative Finance, Taylor & Francis Journals, vol. 16(6), pages 887-904, June.
    7. Mikkel Bennedsen, 2020. "Semiparametric estimation and inference on the fractal index of Gaussian and conditionally Gaussian time series data," Econometric Reviews, Taylor & Francis Journals, vol. 39(9), pages 875-903, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ofelia Bonesini & Antoine Jacquier & Alexandre Pannier, 2023. "Rough volatility, path-dependent PDEs and weak rates of convergence," Papers 2304.03042, arXiv.org.
    2. Rudy Morel & St'ephane Mallat & Jean-Philippe Bouchaud, 2023. "Path Shadowing Monte-Carlo," Papers 2308.01486, arXiv.org.
    3. Mathieu Rosenbaum & Jianfei Zhang, 2022. "On the universality of the volatility formation process: when machine learning and rough volatility agree," Papers 2206.14114, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Peng & Muzy, Jean-François & Bacry, Emmanuel, 2022. "From rough to multifractal volatility: The log S-fBM model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    2. Florian Bourgey & Stefano De Marco & Peter K. Friz & Paolo Pigato, 2023. "Local volatility under rough volatility," Mathematical Finance, Wiley Blackwell, vol. 33(4), pages 1119-1145, October.
    3. Peter Christensen, 2024. "Roughness Signature Functions," Papers 2401.02819, arXiv.org.
    4. Eduardo Abi Jaber & Camille Illand & Shaun Xiaoyuan Li, 2022. "Joint SPX-VIX calibration with Gaussian polynomial volatility models: deep pricing with quantization hints," Working Papers hal-03902513, HAL.
    5. Eduardo Abi Jaber & Camille Illand & Shaun & Li, 2022. "Joint SPX-VIX calibration with Gaussian polynomial volatility models: deep pricing with quantization hints," Papers 2212.08297, arXiv.org.
    6. Alessandro Bondi & Sergio Pulido & Simone Scotti, 2022. "The rough Hawkes Heston stochastic volatility model," Working Papers hal-03827332, HAL.
    7. Daniele Angelini & Matthieu Garcin, 2024. "Market information of the fractional stochastic regularity model," Papers 2409.07159, arXiv.org.
    8. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Finance and Stochastics, Springer, vol. 26(4), pages 733-769, October.
    9. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2017. "Decoupling the short- and long-term behavior of stochastic volatility," CREATES Research Papers 2017-26, Department of Economics and Business Economics, Aarhus University.
    10. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2016. "Decoupling the short- and long-term behavior of stochastic volatility," Papers 1610.00332, arXiv.org, revised Jan 2021.
    11. Archil Gulisashvili, 2022. "Multivariate Stochastic Volatility Models and Large Deviation Principles," Papers 2203.09015, arXiv.org, revised Nov 2022.
    12. Etienne Chevalier & Sergio Pulido & Elizabeth Zúñiga, 2022. "American options in the Volterra Heston model," Post-Print hal-03178306, HAL.
    13. Masaaki Fukasawa & Tetsuya Takabatake & Rebecca Westphal, 2019. "Is Volatility Rough ?," Papers 1905.04852, arXiv.org, revised May 2019.
    14. Angelini, Daniele & Bianchi, Sergio, 2023. "Nonlinear biases in the roughness of a Fractional Stochastic Regularity Model," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    15. Eduardo Abi Jaber & Shaun & Li, 2024. "Volatility models in practice: Rough, Path-dependent or Markovian?," Papers 2401.03345, arXiv.org.
    16. Giuseppe Brandi & T. Di Matteo, 2022. "Multiscaling and rough volatility: an empirical investigation," Papers 2201.10466, arXiv.org.
    17. Antoine Jacquier & Mugad Oumgari, 2023. "Interest rate convexity in a Gaussian framework," Papers 2307.14218, arXiv.org, revised Mar 2024.
    18. Mathieu Rosenbaum & Jianfei Zhang, 2021. "Deep calibration of the quadratic rough Heston model," Papers 2107.01611, arXiv.org, revised May 2022.
    19. Giacomo Giorgio & Barbara Pacchiarotti & Paolo Pigato, 2023. "Short-Time Asymptotics for Non-Self-Similar Stochastic Volatility Models," Applied Mathematical Finance, Taylor & Francis Journals, vol. 30(3), pages 123-152, May.
    20. Carsten Chong & Viktor Todorov, 2022. "Short-time expansion of characteristic functions in a rough volatility setting with applications," Papers 2208.00830, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2201.09516. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.