IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v138y2021icp234-254.html
   My bibliography  Save this article

On estimation of quadratic variation for multivariate pure jump semimartingales

Author

Listed:
  • Heiny, Johannes
  • Podolskij, Mark

Abstract

In this paper we present the asymptotic analysis of the realised quadratic variation for multivariate symmetric β-stable Lévy processes, β∈(0,2), and certain pure jump semimartingales. The main focus is on derivation of functional limit theorems for the realised quadratic variation and its spectrum. We will show that the limiting process is a matrix-valued β-stable Lévy process when the original process is symmetric β-stable, while the limit is conditionally β-stable in case of integrals with respect to locally β-stable motions. These asymptotic results are mostly related to the work (Diop et al., 2013), which investigates the univariate version of the problem. Furthermore, we will show the implications for estimation of eigenvalues and eigenvectors of the quadratic variation matrix, which is a useful result for the principle component analysis. Finally, we propose a consistent subsampling procedure in the Lévy setting to obtain confidence regions.

Suggested Citation

  • Heiny, Johannes & Podolskij, Mark, 2021. "On estimation of quadratic variation for multivariate pure jump semimartingales," Stochastic Processes and their Applications, Elsevier, vol. 138(C), pages 234-254.
  • Handle: RePEc:eee:spapps:v:138:y:2021:i:c:p:234-254
    DOI: 10.1016/j.spa.2021.04.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414921000715
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2021.04.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jacod, Jean, 2008. "Asymptotic properties of realized power variations and related functionals of semimartingales," Stochastic Processes and their Applications, Elsevier, vol. 118(4), pages 517-559, April.
    2. Yuri Kabanov & Robert Liptser, 2006. "From Stochastic Calculus to Mathematical Finance. The Shiryaev Festschrift," Post-Print hal-00488295, HAL.
    3. Ole E. Barndorff-Nielsen, 2004. "Power and Bipower Variation with Stochastic Volatility and Jumps," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 1-37.
    4. Todorov, Viktor, 2019. "Nonparametric inference for the spectral measure of a bivariate pure-jump semimartingale," Stochastic Processes and their Applications, Elsevier, vol. 129(2), pages 419-451.
    5. Diop, Assane & Jacod, Jean & Todorov, Viktor, 2013. "Central Limit Theorems for approximate quadratic variations of pure jump Itô semimartingales," Stochastic Processes and their Applications, Elsevier, vol. 123(3), pages 839-886.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yi & Zhou, Long & Chen, Yajiao & Liu, Fang, 2022. "The contagion effect of jump risk across Asian stock markets during the Covid-19 pandemic," The North American Journal of Economics and Finance, Elsevier, vol. 61(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikolaus Hautsch & Mark Podolskij, 2013. "Preaveraging-Based Estimation of Quadratic Variation in the Presence of Noise and Jumps: Theory, Implementation, and Empirical Evidence," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 165-183, April.
    2. Barndorff-Nielsen, Ole E. & Corcuera, José Manuel & Podolskij, Mark, 2009. "Power variation for Gaussian processes with stationary increments," Stochastic Processes and their Applications, Elsevier, vol. 119(6), pages 1845-1865, June.
    3. Jean Jacod & Mark Podolskij & Mathias Vetter, 2008. "Intertemporal Asset Allocation with Habit Formation in Preferences: An Approximate Analytical Solution," CREATES Research Papers 2008-61, Department of Economics and Business Economics, Aarhus University.
    4. Ole E. Barndorff-Nielsen & José Manuel Corcuera & Mark Podolskij, 2009. "Limit theorems for functionals of higher order differences of Brownian semi-stationary processes," CREATES Research Papers 2009-60, Department of Economics and Business Economics, Aarhus University.
    5. Podolskij, Mark & Vetter, Mathias, 2009. "Bipower-type estimation in a noisy diffusion setting," Stochastic Processes and their Applications, Elsevier, vol. 119(9), pages 2803-2831, September.
    6. Kerstin Gärtner & Mark Podolskij, 2014. "On non-standard limits of Brownian semi-stationary," CREATES Research Papers 2014-50, Department of Economics and Business Economics, Aarhus University.
    7. Wen Cheong Chin & Min Cherng Lee, 2018. "S&P500 volatility analysis using high-frequency multipower variation volatility proxies," Empirical Economics, Springer, vol. 54(3), pages 1297-1318, May.
    8. Leonidas S. Rompolis & Elias Tzavalis, 2017. "Pricing and hedging contingent claims using variance and higher order moment swaps," Quantitative Finance, Taylor & Francis Journals, vol. 17(4), pages 531-550, April.
    9. Vetter, Mathias, 2010. "Limit theorems for bipower variation of semimartingales," Stochastic Processes and their Applications, Elsevier, vol. 120(1), pages 22-38, January.
    10. Yuta Koike, 2014. "An estimator for the cumulative co-volatility of asynchronously observed semimartingales with jumps," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 460-481, June.
    11. Patrick Chang, 2020. "Fourier instantaneous estimators and the Epps effect," Papers 2007.03453, arXiv.org, revised Sep 2020.
    12. Bo Yu & Bruce Mizrach & Norman R. Swanson, 2020. "New Evidence of the Marginal Predictive Content of Small and Large Jumps in the Cross-Section," Econometrics, MDPI, vol. 8(2), pages 1-52, May.
    13. Kim, Jihyun & Meddahi, Nour, 2020. "Volatility regressions with fat tails," Journal of Econometrics, Elsevier, vol. 218(2), pages 690-713.
    14. Jacod, Jean & Li, Yingying & Mykland, Per A. & Podolskij, Mark & Vetter, Mathias, 2009. "Microstructure noise in the continuous case: The pre-averaging approach," Stochastic Processes and their Applications, Elsevier, vol. 119(7), pages 2249-2276, July.
    15. Kim Christensen & Ulrich Hounyo & Mark Podolskij, 2017. "Is the diurnal pattern sufficient to explain the intraday variation in volatility? A nonparametric assessment," CREATES Research Papers 2017-30, Department of Economics and Business Economics, Aarhus University.
    16. Hounyo, Ulrich & Varneskov, Rasmus T., 2017. "A local stable bootstrap for power variations of pure-jump semimartingales and activity index estimation," Journal of Econometrics, Elsevier, vol. 198(1), pages 10-28.
    17. Li, Gang & Zhang, Chu, 2016. "On the relationship between conditional jump intensity and diffusive volatility," Journal of Empirical Finance, Elsevier, vol. 37(C), pages 196-213.
    18. repec:hum:wpaper:sfb649dp2010-038 is not listed on IDEAS
    19. Corsi, Fulvio & Pirino, Davide & Renò, Roberto, 2010. "Threshold bipower variation and the impact of jumps on volatility forecasting," Journal of Econometrics, Elsevier, vol. 159(2), pages 276-288, December.
    20. Mark Podolskij & Nakahiro Yoshida, 2013. "Edgeworth expansion for functionals of continuous diffusion processes," CREATES Research Papers 2013-33, Department of Economics and Business Economics, Aarhus University.
    21. Mark Podolskij, 2014. "Ambit fields: survey and new challenges," CREATES Research Papers 2014-51, Department of Economics and Business Economics, Aarhus University.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:138:y:2021:i:c:p:234-254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.