IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb649/sfb649dp2013-029.html
   My bibliography  Save this paper

Estimating the quadratic covariation of an asynchronously observed semimartingale with jumps

Author

Listed:
  • Bibinger, Markus
  • Vetter, Mathias

Abstract

We consider estimation of the quadratic (co)variation of a semimartingale from discrete observations which are irregularly spaced under high-frequency asymptotics. In the univariate setting, results from Jacod (2008) are generalized to the case of irregular observations. In the two-dimensional setup under non-synchronous observations, we derive a stable central limit theorem for the estimator by Hayashi and Yoshida (2005) in the presence of jumps. We reveal how idiosyncratic and simultaneous jumps affect the asymptotic distribution. Observation times generated by Poisson processes are explicitly discussed.

Suggested Citation

  • Bibinger, Markus & Vetter, Mathias, 2013. "Estimating the quadratic covariation of an asynchronously observed semimartingale with jumps," SFB 649 Discussion Papers 2013-029, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  • Handle: RePEc:zbw:sfb649:sfb649dp2013-029
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/79623/1/747207917.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. repec:hal:journl:peer-00815564 is not listed on IDEAS
    2. Hayashi, Takaki & Yoshida, Nakahiro, 2011. "Nonsynchronous covariation process and limit theorems," Stochastic Processes and their Applications, Elsevier, vol. 121(10), pages 2416-2454, October.
    3. Takaki Hayashi & Nakahiro Yoshida, 2008. "Asymptotic normality of a covariance estimator for nonsynchronously observed diffusion processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(2), pages 367-406, June.
    4. Barndorff-Nielsen, Ole E. & Hansen, Peter Reinhard & Lunde, Asger & Shephard, Neil, 2011. "Multivariate realised kernels: Consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading," Journal of Econometrics, Elsevier, vol. 162(2), pages 149-169, June.
    5. Zhang, Lan & Mykland, Per A. & Ait-Sahalia, Yacine, 2005. "A Tale of Two Time Scales: Determining Integrated Volatility With Noisy High-Frequency Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1394-1411, December.
    6. Veraart, Almut E.D., 2010. "Inference For The Jump Part Of Quadratic Variation Of Itô Semimartingales," Econometric Theory, Cambridge University Press, vol. 26(2), pages 331-368, April.
    7. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2008. "Designing Realized Kernels to Measure the ex post Variation of Equity Prices in the Presence of Noise," Econometrica, Econometric Society, vol. 76(6), pages 1481-1536, November.
    8. Mark Podolskij & Mathias Vetter, 2010. "Understanding limit theorems for semimartingales: a short survey," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 64(3), pages 329-351, August.
    9. Per A. Mykland & Lan Zhang, 2009. "Inference for Continuous Semimartingales Observed at High Frequency," Econometrica, Econometric Society, vol. 77(5), pages 1403-1445, September.
    10. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    11. Mark Podolskij & Mathias Vetter, 2010. "Understanding limit theorems for semimartingales: a short survey," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 64(s1), pages 329-351.
    12. Ole E. Barndorff‐Nielsen & Neil Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280, May.
    13. Fukasawa, Masaaki & Rosenbaum, Mathieu, 2012. "Central limit theorems for realized volatility under hitting times of an irregular grid," Stochastic Processes and their Applications, Elsevier, vol. 122(12), pages 3901-3920.
    14. Jacod, Jean, 2008. "Asymptotic properties of realized power variations and related functionals of semimartingales," Stochastic Processes and their Applications, Elsevier, vol. 118(4), pages 517-559, April.
    15. Cecilia Mancini, 2009. "Non‐parametric Threshold Estimation for Models with Stochastic Diffusion Coefficient and Jumps," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(2), pages 270-296, June.
    16. Bibinger, Markus, 2011. "Asymptotics of asynchronicity," SFB 649 Discussion Papers 2011-033, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Markus Bibinger & Mathias Vetter, 2015. "Estimating the quadratic covariation of an asynchronously observed semimartingale with jumps," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(4), pages 707-743, August.
    2. repec:hum:wpaper:sfb649dp2013-029 is not listed on IDEAS
    3. Bibinger, Markus, 2011. "An estimator for the quadratic covariation of asynchronously observed Itô processes with noise: Asymptotic distribution theory," SFB 649 Discussion Papers 2011-034, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    4. Bibinger, Markus, 2012. "An estimator for the quadratic covariation of asynchronously observed Itô processes with noise: Asymptotic distribution theory," Stochastic Processes and their Applications, Elsevier, vol. 122(6), pages 2411-2453.
    5. Bibinger, Markus & Mykland, Per A., 2013. "Inference for multi-dimensional high-frequency data: Equivalence of methods, central limit theorems, and an application to conditional independence testing," SFB 649 Discussion Papers 2013-006, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    6. Neil Shephard & Kevin Sheppard, 2012. "Efficient and feasible inference for the components of financial variation using blocked multipower variation," Economics Series Working Papers 593, University of Oxford, Department of Economics.
    7. Almut Veraart & Luitgard Veraart, 2012. "Stochastic volatility and stochastic leverage," Annals of Finance, Springer, vol. 8(2), pages 205-233, May.
    8. repec:hum:wpaper:sfb649dp2013-006 is not listed on IDEAS
    9. Simon Clinet & Yoann Potiron, 2021. "Estimation for high-frequency data under parametric market microstructure noise," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(4), pages 649-669, August.
    10. Almut Veraart, 2011. "How precise is the finite sample approximation of the asymptotic distribution of realised variation measures in the presence of jumps?," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(3), pages 253-291, September.
    11. Hounyo, Ulrich, 2017. "Bootstrapping integrated covariance matrix estimators in noisy jump–diffusion models with non-synchronous trading," Journal of Econometrics, Elsevier, vol. 197(1), pages 130-152.
    12. Dovonon, Prosper & Gonçalves, Sílvia & Meddahi, Nour, 2013. "Bootstrapping realized multivariate volatility measures," Journal of Econometrics, Elsevier, vol. 172(1), pages 49-65.
    13. Ulrich Hounyo, 2014. "Bootstrapping integrated covariance matrix estimators in noisy jump-diffusion models with non-synchronous trading," CREATES Research Papers 2014-35, Department of Economics and Business Economics, Aarhus University.
    14. Zu, Yang & Peter Boswijk, H., 2014. "Estimating spot volatility with high-frequency financial data," Journal of Econometrics, Elsevier, vol. 181(2), pages 117-135.
    15. Altmeyer, Randolf & Bibinger, Markus, 2015. "Functional stable limit theorems for quasi-efficient spectral covolatility estimators," Stochastic Processes and their Applications, Elsevier, vol. 125(12), pages 4556-4600.
    16. Christensen, Kim & Kinnebrock, Silja & Podolskij, Mark, 2010. "Pre-averaging estimators of the ex-post covariance matrix in noisy diffusion models with non-synchronous data," Journal of Econometrics, Elsevier, vol. 159(1), pages 116-133, November.
    17. Kim, Jihyun & Meddahi, Nour, 2020. "Volatility regressions with fat tails," Journal of Econometrics, Elsevier, vol. 218(2), pages 690-713.
    18. Kalnina, Ilze, 2011. "Subsampling high frequency data," Journal of Econometrics, Elsevier, vol. 161(2), pages 262-283, April.
    19. Potiron, Yoann & Mykland, Per A., 2017. "Estimation of integrated quadratic covariation with endogenous sampling times," Journal of Econometrics, Elsevier, vol. 197(1), pages 20-41.
    20. Ilze Kalnina, 2023. "Inference for Nonparametric High-Frequency Estimators with an Application to Time Variation in Betas," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(2), pages 538-549, April.
    21. Almut E. D. Veraart, 2008. "Impact of time–inhomogeneous jumps and leverage type effects on returns and realised variances," CREATES Research Papers 2008-57, Department of Economics and Business Economics, Aarhus University.
    22. repec:hum:wpaper:sfb649dp2014-037 is not listed on IDEAS
    23. Christensen, K. & Podolskij, M. & Thamrongrat, N. & Veliyev, B., 2017. "Inference from high-frequency data: A subsampling approach," Journal of Econometrics, Elsevier, vol. 197(2), pages 245-272.

    More about this item

    Keywords

    asynchronous observations; co-jumps; statistics of semimartingales; quadratic covariation;
    All these keywords.

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb649:sfb649dp2013-029. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sohubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.