IDEAS home Printed from https://ideas.repec.org/a/kap/annfin/v16y2020i1d10.1007_s10436-019-00352-1.html
   My bibliography  Save this article

Asian options pricing in Hawkes-type jump-diffusion models

Author

Listed:
  • Riccardo Brignone

    (Università di Milano Bicocca)

  • Carlo Sgarra

    (Politecnico di Milano)

Abstract

In this paper we propose a method for pricing Asian options in market models with the risky asset dynamics driven by a Hawkes process with exponential kernel. For these processes the couple $$ (\lambda (t), X(t) ) $$(λ(t),X(t)) is affine, this property allows to extend the general methodology introduced by Hubalek et al. (Quant Finance 17:873–888, 2017) for Geometric Asian option pricing to jump-diffusion models with stochastic jump intensity. Although the system of ordinary differential equations providing the characteristic function of the related affine process cannot be solved in closed form, a COS-type algorithm allows to obtain the relevant quantities needed for options valuation. We describe, by means of graphical illustrations, the dependence of Asian options prices by the main parameters of the driving Hawkes process. Finally, by using Geometric Asian options values as control variates, we show that Arithmetic Asian options prices can be computed in a fast and efficient way by a standard Monte Carlo method.

Suggested Citation

  • Riccardo Brignone & Carlo Sgarra, 2020. "Asian options pricing in Hawkes-type jump-diffusion models," Annals of Finance, Springer, vol. 16(1), pages 101-119, March.
  • Handle: RePEc:kap:annfin:v:16:y:2020:i:1:d:10.1007_s10436-019-00352-1
    DOI: 10.1007/s10436-019-00352-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10436-019-00352-1
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10436-019-00352-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ole Barndorff-Nielsen & Elisa Nicolato & Neil Shephard, 2002. "Some recent developments in stochastic volatility modelling," Quantitative Finance, Taylor & Francis Journals, vol. 2(1), pages 11-23.
    2. Dassios, Angelos & Zhao, Hongbiao, 2013. "Exact simulation of Hawkes process with exponentially decaying intensity," LSE Research Online Documents on Economics 51370, London School of Economics and Political Science, LSE Library.
    3. Hainaut, D. & Moraux, F., 2017. "Hedging of options in presence of jump clustering," LIDAM Discussion Papers ISBA 2017012, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Carr, Peter & Wu, Liuren, 2004. "Time-changed Levy processes and option pricing," Journal of Financial Economics, Elsevier, vol. 71(1), pages 113-141, January.
    5. E. Bacry & S. Delattre & M. Hoffmann & J. F. Muzy, 2013. "Modelling microstructure noise with mutually exciting point processes," Quantitative Finance, Taylor & Francis Journals, vol. 13(1), pages 65-77, January.
    6. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    7. Friedrich Hubalek & Martin Keller-Ressel & Carlo Sgarra, 2017. "Geometric Asian option pricing in general affine stochastic volatility models with jumps," Quantitative Finance, Taylor & Francis Journals, vol. 17(6), pages 873-888, June.
    8. Kiesel, Rüdiger & Paraschiv, Florentina, 2017. "Econometric analysis of 15-minute intraday electricity prices," Energy Economics, Elsevier, vol. 64(C), pages 77-90.
    9. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," The Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
    10. Ying Jiao & Chunhua Ma & Simone Scotti, 2017. "Alpha-CIR model with branching processes in sovereign interest rate modeling," Finance and Stochastics, Springer, vol. 21(3), pages 789-813, July.
    11. Andras Fulop & Junye Li & Jun Yu, 2015. "Self-Exciting Jumps, Learning, and Asset Pricing Implications," The Review of Financial Studies, Society for Financial Studies, vol. 28(3), pages 876-912.
    12. Gianluca Fusai & Ioannis Kyriakou, 2016. "General Optimized Lower and Upper Bounds for Discrete and Continuous Arithmetic Asian Options," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 531-559, May.
    13. Donatien Hainaut & Franck Moraux, 2019. "A switching self-exciting jump diffusion process for stock prices," Annals of Finance, Springer, vol. 15(2), pages 267-306, June.
    14. Peter Carr & Hélyette Geman & Dilip B. Madan & Marc Yor, 2003. "Stochastic Volatility for Lévy Processes," Mathematical Finance, Wiley Blackwell, vol. 13(3), pages 345-382, July.
    15. Ying Jiao & Chunhua Ma & Simone Scotti, 2017. "Alpha-CIR Model with Branching Processes in Sovereign Interest Rate Modelling," Post-Print hal-01275397, HAL.
    16. Hélyette Geman & Marc Yor, 1993. "Bessel Processes, Asian Options, And Perpetuities," Mathematical Finance, Wiley Blackwell, vol. 3(4), pages 349-375, October.
    17. Kemna, A. G. Z. & Vorst, A. C. F., 1990. "A pricing method for options based on average asset values," Journal of Banking & Finance, Elsevier, vol. 14(1), pages 113-129, March.
    18. Wilmott,Paul & Howison,Sam & Dewynne,Jeff, 1995. "The Mathematics of Financial Derivatives," Cambridge Books, Cambridge University Press, number 9780521497893, October.
    19. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    20. Emmanuel Bacry & Sylvain Delattre & Marc Hoffmann & Jean-François Muzy, 2013. "Modelling microstructure noise with mutually exciting point processes," Post-Print hal-01313995, HAL.
    21. Aït-Sahalia, Yacine & Cacho-Diaz, Julio & Laeven, Roger J.A., 2015. "Modeling financial contagion using mutually exciting jump processes," Journal of Financial Economics, Elsevier, vol. 117(3), pages 585-606.
    22. Ole E. Barndorff‐Nielsen & Neil Shephard, 2001. "Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.
    23. Filimonov, Vladimir & Bicchetti, David & Maystre, Nicolas & Sornette, Didier, 2014. "Quantification of the high level of endogeneity and of structural regime shifts in commodity markets," Journal of International Money and Finance, Elsevier, vol. 42(C), pages 174-192.
    24. Bates, David S., 2000. "Post-'87 crash fears in the S&P 500 futures option market," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 181-238.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Shiyu, 2024. "The valuation of arithmetic Asian options with mean reversion and jump clustering," The North American Journal of Economics and Finance, Elsevier, vol. 70(C).
    2. Brignone, Riccardo & Gonzato, Luca & Lütkebohmert, Eva, 2023. "Efficient Quasi-Bayesian Estimation of Affine Option Pricing Models Using Risk-Neutral Cumulants," Journal of Banking & Finance, Elsevier, vol. 148(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Friedrich Hubalek & Martin Keller-Ressel & Carlo Sgarra, 2014. "Geometric Asian Option Pricing in General Affine Stochastic Volatility Models with Jumps," Papers 1407.2514, arXiv.org.
    2. Corsaro, Stefania & Kyriakou, Ioannis & Marazzina, Daniele & Marino, Zelda, 2019. "A general framework for pricing Asian options under stochastic volatility on parallel architectures," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1082-1095.
    3. Brignone, Riccardo & Gonzato, Luca & Lütkebohmert, Eva, 2023. "Efficient Quasi-Bayesian Estimation of Affine Option Pricing Models Using Risk-Neutral Cumulants," Journal of Banking & Finance, Elsevier, vol. 148(C).
    4. Gianluca Fusai & Ioannis Kyriakou, 2016. "General Optimized Lower and Upper Bounds for Discrete and Continuous Arithmetic Asian Options," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 531-559, May.
    5. Andras Fulop & Junye Li & Jun Yu, 2012. "Investigating Impacts of Self-Exciting Jumps in Returns and Volatility: A Bayesian Learning Approach," Global COE Hi-Stat Discussion Paper Series gd12-264, Institute of Economic Research, Hitotsubashi University.
    6. Ioannis Kyriakou & Panos K. Pouliasis & Nikos C. Papapostolou, 2016. "Jumps and stochastic volatility in crude oil prices and advances in average option pricing," Quantitative Finance, Taylor & Francis Journals, vol. 16(12), pages 1859-1873, December.
    7. Qu, Yan & Dassios, Angelos & Zhao, Hongbiao, 2023. "Shot-noise cojumps: exact simulation and option pricing," LSE Research Online Documents on Economics 111537, London School of Economics and Political Science, LSE Library.
    8. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    9. Anatoliy Swishchuk, 2013. "Modeling and Pricing of Swaps for Financial and Energy Markets with Stochastic Volatilities," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8660, September.
    10. J. Lars Kirkby & Duy Nguyen, 2020. "Efficient Asian option pricing under regime switching jump diffusions and stochastic volatility models," Annals of Finance, Springer, vol. 16(3), pages 307-351, September.
    11. Carr, Peter & Wu, Liuren, 2004. "Time-changed Levy processes and option pricing," Journal of Financial Economics, Elsevier, vol. 71(1), pages 113-141, January.
    12. Gonçalo Faria & João Correia-da-Silva, 2014. "A closed-form solution for options with ambiguity about stochastic volatility," Review of Derivatives Research, Springer, vol. 17(2), pages 125-159, July.
    13. M.E. Mancino & S. Scotti & G. Toscano, 2020. "Is the Variance Swap Rate Affine in the Spot Variance? Evidence from S&P500 Data," Applied Mathematical Finance, Taylor & Francis Journals, vol. 27(4), pages 288-316, July.
    14. Jingzhi Huang & Liuren Wu, 2004. "Specification Analysis of Option Pricing Models Based on Time- Changed Levy Processes," Finance 0401002, University Library of Munich, Germany.
    15. Peter Christoffersen & Kris Jacobs & Chayawat Ornthanalai, 2009. "Exploring Time-Varying Jump Intensities: Evidence from S&P500 Returns and Options," CIRANO Working Papers 2009s-34, CIRANO.
    16. Yan Qu & Angelos Dassios & Hongbiao Zhao, 2023. "Shot-noise cojumps: Exact simulation and option pricing," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 74(3), pages 647-665, March.
    17. Cui, Zhenyu & Lars Kirkby, J. & Nguyen, Duy, 2019. "A general framework for time-changed Markov processes and applications," European Journal of Operational Research, Elsevier, vol. 273(2), pages 785-800.
    18. Winston Buckley & Sandun Perera, 2019. "Optimal demand in a mispriced asymmetric Carr–Geman–Madan–Yor (CGMY) economy," Annals of Finance, Springer, vol. 15(3), pages 337-368, September.
    19. Claudia Yeap & Simon S Kwok & S T Boris Choy, 2018. "A Flexible Generalized Hyperbolic Option Pricing Model and Its Special Cases," Journal of Financial Econometrics, Oxford University Press, vol. 16(3), pages 425-460.
    20. René Garcia & Eric Ghysels & Eric Renault, 2004. "The Econometrics of Option Pricing," CIRANO Working Papers 2004s-04, CIRANO.

    More about this item

    Keywords

    Asian options; Option pricing; Jumps clustering; Hawkes processes; Affine processes; COS method;
    All these keywords.

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:annfin:v:16:y:2020:i:1:d:10.1007_s10436-019-00352-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.