IDEAS home Printed from https://ideas.repec.org/p/bfr/banfra/318.html
   My bibliography  Save this paper

Modelling Stochastic Volatility with Leverage and Jumps: A Simulated Maximum Likelihood Approach via Particle Filtering

Author

Listed:
  • Malik, S.
  • Pitt, M. K.

Abstract

In this paper we provide a unified methodology for conducting likelihood-based inference on the unknown parameters of a general class of discrete-time stochastic volatility (SV) models, characterized by both a leverage effect and jumps in returns. Given the nonlinear/non-Gaussian state-space form, approximating the likelihood for the parameters is conducted with output generated by the particle filter. Methods are employed to ensure that the approximating likelihood is continuous as a function of the unknown parameters thus enabling the use of standard Newton-Raphson type maximization algorithms. Our approach is robust and efficient relative to alternative Markov Chain Monte Carlo schemes employed in such contexts. In addition it provides a feasible basis for undertaking the nontrivial task of model comparison. Furthermore, we introduce new volatility model, namely SV-GARCH which attempts to bridge the gap between GARCH and stochastic volatility specifications. In nesting the standard GARCH model as a special case, it has the attractive feature of inheriting the same unconditional properties of the standard GARCH model but being conditionally heavier-tailed; thus more robust to outliers. It is demonstrated how this model can be estimated using the described methodology. The technique is applied to daily returns data for S&P 500 stock price index for various spans. In assessing the relative performance of SV with leverage and jumps and nested specifications, we find strong evidence in favour of a including leverage effect and jumps when modelling stochastic volatility. Additionally, we find very encouraging results for SV-GARCH in terms of predictive ability which is comparable to the other models considered.

Suggested Citation

  • Malik, S. & Pitt, M. K., 2011. "Modelling Stochastic Volatility with Leverage and Jumps: A Simulated Maximum Likelihood Approach via Particle Filtering," Working papers 318, Banque de France.
  • Handle: RePEc:bfr:banfra:318
    as

    Download full text from publisher

    File URL: https://publications.banque-france.fr/sites/default/files/medias/documents/working-paper_318_2011.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ole E. Barndorff‐Nielsen & Neil Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nonejad Nima, 2015. "Particle Gibbs with ancestor sampling for stochastic volatility models with: heavy tails, in mean effects, leverage, serial dependence and structural breaks," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(5), pages 561-584, December.
    2. Michele Leonardo Bianchi, 2012. "An empirical comparison of alternative credit default swap pricing models," Temi di discussione (Economic working papers) 882, Bank of Italy, Economic Research and International Relations Area.
    3. Nonejad, Nima, 2017. "Parameter instability, stochastic volatility and estimation based on simulated likelihood: Evidence from the crude oil market," Economic Modelling, Elsevier, vol. 61(C), pages 388-408.
    4. Kleppe, Tore Selland & Liesenfeld, Roman, 2011. "Efficient high-dimensional importance sampling in mixture frameworks," Economics Working Papers 2011-11, Christian-Albrechts-University of Kiel, Department of Economics.
    5. Michele Bianchi & Frank Fabozzi, 2015. "Investigating the Performance of Non-Gaussian Stochastic Intensity Models in the Calibration of Credit Default Swap Spreads," Computational Economics, Springer;Society for Computational Economics, vol. 46(2), pages 243-273, August.
    6. Calvet, Laurent E. & Fearnley, Marcus & Fisher, Adlai J. & Leippold, Markus, 2015. "What is beneath the surface? Option pricing with multifrequency latent states," Journal of Econometrics, Elsevier, vol. 187(2), pages 498-511.
    7. Michele Leonardo Bianchi & Svetlozar T. Rachev & Frank J. Fabozzi, 2018. "Calibrating the Italian Smile with Time-Varying Volatility and Heavy-Tailed Models," Computational Economics, Springer;Society for Computational Economics, vol. 51(3), pages 339-378, March.
    8. Davide Raggi & Silvano Bordignon, 2011. "Volatility, Jumps, and Predictability of Returns: A Sequential Analysis," Econometric Reviews, Taylor & Francis Journals, vol. 30(6), pages 669-695.
    9. Jiawen Xu & Pierre Perron, 2015. "Forecasting in the presence of in and out of sample breaks," Boston University - Department of Economics - Working Papers Series wp2015-012, Boston University - Department of Economics.
    10. Saranya, K. & Prasanna, P. Krishna, 2018. "Estimating stochastic volatility with jumps and asymmetry in Asian markets," Finance Research Letters, Elsevier, vol. 25(C), pages 145-153.
    11. Robert Stok & Paul Bilokon, 2023. "From Deep Filtering to Deep Econometrics," Papers 2311.06256, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hillebrand, Eric & Schnabl, Gunther & Ulu, Yasemin, 2009. "Japanese foreign exchange intervention and the yen-to-dollar exchange rate: A simultaneous equations approach using realized volatility," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 19(3), pages 490-505, July.
    2. Toru Yano, 2024. "State Space Model of Realized Volatility under the Existence of Dependent Market Microstructure Noise," Papers 2408.17187, arXiv.org.
    3. Brian Sing Fan Chan & Andy Cheuk Hin Cheng & Alfred Ka Chun Ma, 2018. "Stock Market Volatility and Trading Volume: A Special Case in Hong Kong With Stock Connect Turnover," JRFM, MDPI, vol. 11(4), pages 1-17, October.
    4. Cavit Pakel & Neil Shephard & Kevin Sheppard, 2009. "Nuisance parameters, composite likelihoods and a panel of GARCH models," Economics Papers 2009-W12, Economics Group, Nuffield College, University of Oxford.
    5. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
    6. Tihana Škrinjarić, 2019. "Time Varying Spillovers between the Online Search Volume and Stock Returns: Case of CESEE Markets," IJFS, MDPI, vol. 7(4), pages 1-30, October.
    7. Raggi, Davide & Bordignon, Silvano, 2012. "Long memory and nonlinearities in realized volatility: A Markov switching approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3730-3742.
    8. Hooper, Vincent J. & Ng, Kevin & Reeves, Jonathan J., 2008. "Quarterly beta forecasting: An evaluation," International Journal of Forecasting, Elsevier, vol. 24(3), pages 480-489.
    9. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2020. "The contribution of intraday jumps to forecasting the density of returns," Post-Print halshs-02505861, HAL.
    10. Christos Floros & Konstantinos Gkillas & Christoforos Konstantatos & Athanasios Tsagkanos, 2020. "Realized Measures to Explain Volatility Changes over Time," JRFM, MDPI, vol. 13(6), pages 1-19, June.
    11. Lin, Yuehao & Lehnert, Thorsten & Wolff, Christian, 2019. "Skewness risk premium: Theory and empirical evidence," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 174-185.
    12. Asai, Manabu & McAleer, Michael, 2015. "Leverage and feedback effects on multifactor Wishart stochastic volatility for option pricing," Journal of Econometrics, Elsevier, vol. 187(2), pages 436-446.
    13. Sankar, Ganesh & Ramachandran, Shankar & Lukose P J, Jijo, 2020. "Dynamics of variance risk premium: Evidence from India," International Review of Economics & Finance, Elsevier, vol. 70(C), pages 321-334.
    14. Katerina Papagiannouli, 2022. "A Lepskiĭ-type stopping rule for the covariance estimation of multi-dimensional Lévy processes," Statistical Inference for Stochastic Processes, Springer, vol. 25(3), pages 505-535, October.
    15. Vít Bubák, 2010. "Forecasting the Quantiles of Daily Equity Returns Using Realized Volatility: Evidence from the Czech Stock Market," Czech Economic Review, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, vol. 4(3), pages 295-314, November.
    16. Rossi, Alessandro & Gallo, Giampiero M., 2006. "Volatility estimation via hidden Markov models," Journal of Empirical Finance, Elsevier, vol. 13(2), pages 203-230, March.
    17. repec:kap:iaecre:v:14:y:2008:i:1:p:112-124 is not listed on IDEAS
    18. Florian Ielpo & Benoît Sévi, 2014. "Forecasting the density of oil futures," Working Papers 2014-601, Department of Research, Ipag Business School.
    19. Apergis, Nicholas & Christou, Christina & Miller, Stephen M., 2014. "Country and industry convergence of equity markets: International evidence from club convergence and clustering," The North American Journal of Economics and Finance, Elsevier, vol. 29(C), pages 36-58.
    20. Kruse, Robinson & Leschinski, Christian & Will, Michael, 2016. "Comparing Predictive Accuracy under Long Memory - With an Application to Volatility Forecasting," Hannover Economic Papers (HEP) dp-571, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    21. Busch, Thomas & Christensen, Bent Jesper & Nielsen, Morten Ørregaard, 2011. "The role of implied volatility in forecasting future realized volatility and jumps in foreign exchange, stock, and bond markets," Journal of Econometrics, Elsevier, vol. 160(1), pages 48-57, January.

    More about this item

    Keywords

    Stochastic volatility ; Particle filter ; Simulation ; State space ; Leverage effect ; Jumps.;
    All these keywords.

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bfr:banfra:318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michael brassart (email available below). General contact details of provider: https://edirc.repec.org/data/bdfgvfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.