IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v22y2017icp233-243.html
   My bibliography  Save this article

A simulation on the presence of competing bidders in mergers and acquisitions

Author

Listed:
  • Aintablian, Sebouh
  • Khoury, Wissam El

Abstract

The current paper applies Monte Carlo simulation on the presence of competing bidders in mergers and acquisitions. We present a new approach for quantifying uncertainty and use a Brownian model where “the presence of a competing bidder” is the random variable. Our model sets its boundaries by employing physical random number generators. The calculation of boundaries enables the simulation of “certainty” about the presence of a competing bidder, and thereafter, the prediction of the geometric Brownian motion path. We use difference in country and industry as proxies for uncertainty and incorporate them into the model. By applying a sample of 3278 acquisitions we find that the slope of the geometric Brownian motion is increasing.

Suggested Citation

  • Aintablian, Sebouh & Khoury, Wissam El, 2017. "A simulation on the presence of competing bidders in mergers and acquisitions," Finance Research Letters, Elsevier, vol. 22(C), pages 233-243.
  • Handle: RePEc:eee:finlet:v:22:y:2017:i:c:p:233-243
    DOI: 10.1016/j.frl.2017.03.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612316304007
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2017.03.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boyle, Phelim & Broadie, Mark & Glasserman, Paul, 1997. "Monte Carlo methods for security pricing," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1267-1321, June.
    2. Jérôme B. Detemple & Ren Garcia & Marcel Rindisbacher, 2003. "A Monte Carlo Method for Optimal Portfolios," Journal of Finance, American Finance Association, vol. 58(1), pages 401-446, February.
    3. repec:dau:papers:123456789/4273 is not listed on IDEAS
    4. Cain, Matthew D. & Denis, David J. & Denis, Diane K., 2011. "Earnouts: A study of financial contracting in acquisition agreements," Journal of Accounting and Economics, Elsevier, vol. 51(1-2), pages 151-170, February.
    5. Corwin Joy & Phelim P. Boyle & Ken Seng Tan, 1996. "Quasi-Monte Carlo Methods in Numerical Finance," Management Science, INFORMS, vol. 42(6), pages 926-938, June.
    6. Povel, Paul & Sertsios, Giorgo, 2014. "Getting to know each other: The role of toeholds in acquisitions," Journal of Corporate Finance, Elsevier, vol. 26(C), pages 201-224.
    7. Eric Fournié & Jean-Michel Lasry & Pierre-Louis Lions & Jérôme Lebuchoux & Nizar Touzi, 1999. "Applications of Malliavin calculus to Monte Carlo methods in finance," Finance and Stochastics, Springer, vol. 3(4), pages 391-412.
    8. Spassimir H. Paskov & Joseph F. Traub, 1995. "Faster Valuation of Financial Derivatives," Working Papers 95-03-034, Santa Fe Institute.
    9. Bris, Arturo, 2002. "Toeholds, takeover premium, and the probability of being acquired," Journal of Corporate Finance, Elsevier, vol. 8(3), pages 227-253, July.
    10. Michael B. Giles, 2008. "Multilevel Monte Carlo Path Simulation," Operations Research, INFORMS, vol. 56(3), pages 607-617, June.
    11. Ibáñez, Alfredo & Zapatero, Fernando, 2004. "Monte Carlo Valuation of American Options through Computation of the Optimal Exercise Frontier," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 39(2), pages 253-275, June.
    12. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2002. "Markov chain Monte Carlo methods for stochastic volatility models," Journal of Econometrics, Elsevier, vol. 108(2), pages 281-316, June.
    13. Cain, Matthew D. & Denis, David J. & Denis, Diane K., 2011. "Earnouts: A study of financial contracting in acquisition agreements," Journal of Accounting and Economics, Elsevier, vol. 51(1), pages 151-170.
    14. N. Meinshausen & B. M. Hambly, 2004. "Monte Carlo Methods For The Valuation Of Multiple‐Exercise Options," Mathematical Finance, Wiley Blackwell, vol. 14(4), pages 557-583, October.
    15. Boyle, Phelim P., 1977. "Options: A Monte Carlo approach," Journal of Financial Economics, Elsevier, vol. 4(3), pages 323-338, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nelson Areal & Artur Rodrigues & Manuel Armada, 2008. "On improving the least squares Monte Carlo option valuation method," Review of Derivatives Research, Springer, vol. 11(1), pages 119-151, March.
    2. Martin B. Haugh & Leonid Kogan, 2004. "Pricing American Options: A Duality Approach," Operations Research, INFORMS, vol. 52(2), pages 258-270, April.
    3. Boyle, Phelim & Imai, Junichi & Tan, Ken Seng, 2008. "Computation of optimal portfolios using simulation-based dimension reduction," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 327-338, December.
    4. Broadie, Mark & Glasserman, Paul, 1997. "Pricing American-style securities using simulation," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1323-1352, June.
    5. Okten, Giray & Eastman, Warren, 2004. "Randomized quasi-Monte Carlo methods in pricing securities," Journal of Economic Dynamics and Control, Elsevier, vol. 28(12), pages 2399-2426, December.
    6. Xiaoqun Wang & Ken Seng Tan, 2013. "Pricing and Hedging with Discontinuous Functions: Quasi-Monte Carlo Methods and Dimension Reduction," Management Science, INFORMS, vol. 59(2), pages 376-389, July.
    7. Tak Kuen Siu & Robert J. Elliott, 2019. "Hedging Options In A Doubly Markov-Modulated Financial Market Via Stochastic Flows," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(08), pages 1-41, December.
    8. Valeriy Ryabchenko & Sergey Sarykalin & Stan Uryasev, 2004. "Pricing European Options by Numerical Replication: Quadratic Programming with Constraints," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 11(3), pages 301-333, September.
    9. Tan, Ken Seng & Boyle, Phelim P., 2000. "Applications of randomized low discrepancy sequences to the valuation of complex securities," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1747-1782, October.
    10. Boyle, Phelim & Broadie, Mark & Glasserman, Paul, 1997. "Monte Carlo methods for security pricing," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1267-1321, June.
    11. Xiaoqun Wang & Ian H. Sloan, 2011. "Quasi-Monte Carlo Methods in Financial Engineering: An Equivalence Principle and Dimension Reduction," Operations Research, INFORMS, vol. 59(1), pages 80-95, February.
    12. Jin, Xing & Li, Xun & Tan, Hwee Huat & Wu, Zhenyu, 2013. "A computationally efficient state-space partitioning approach to pricing high-dimensional American options via dimension reduction," European Journal of Operational Research, Elsevier, vol. 231(2), pages 362-370.
    13. John Board & Charles Sutcliffe & William T. Ziemba, 2003. "Applying Operations Research Techniques to Financial Markets," Interfaces, INFORMS, vol. 33(2), pages 12-24, April.
    14. Cvitanic, Jaksa & Goukasian, Levon & Zapatero, Fernando, 2003. "Monte Carlo computation of optimal portfolios in complete markets," Journal of Economic Dynamics and Control, Elsevier, vol. 27(6), pages 971-986, April.
    15. Yu-Ying Tzeng & Paul M. Beaumont & Giray Ökten, 2018. "Time Series Simulation with Randomized Quasi-Monte Carlo Methods: An Application to Value at Risk and Expected Shortfall," Computational Economics, Springer;Society for Computational Economics, vol. 52(1), pages 55-77, June.
    16. Lars Stentoft, 2013. "American option pricing using simulation with an application to the GARCH model," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 5, pages 114-147, Edward Elgar Publishing.
    17. Zbigniew Palmowski & Tomasz Serafin, 2020. "A Note on Simulation Pricing of π -Options," Risks, MDPI, vol. 8(3), pages 1-19, August.
    18. Ömür Ugur, 2008. "An Introduction to Computational Finance," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number p556, February.
    19. Zbigniew Palmowski & Tomasz Serafin, 2020. "Note on simulation pricing of $\pi$-options," Papers 2007.02076, arXiv.org, revised Aug 2020.
    20. Dong An & Noah Linden & Jin-Peng Liu & Ashley Montanaro & Changpeng Shao & Jiasu Wang, 2020. "Quantum-accelerated multilevel Monte Carlo methods for stochastic differential equations in mathematical finance," Papers 2012.06283, arXiv.org, revised Jun 2021.

    More about this item

    Keywords

    Mergers; Acquisitions; Competing bidders; Monte Carlo simulation; Brownian motion; Uncertainty; Random number generators;
    All these keywords.

    JEL classification:

    • G34 - Financial Economics - - Corporate Finance and Governance - - - Mergers; Acquisitions; Restructuring; Corporate Governance

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:22:y:2017:i:c:p:233-243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.