IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v13y2011i3d10.1007_s11009-010-9179-6.html
   My bibliography  Save this article

Transition Law-based Simulation of Generalized Inverse Gaussian Ornstein–Uhlenbeck Processes

Author

Listed:
  • Shibin Zhang

    (Shanghai Maritime University)

Abstract

In this paper, a stochastic integral of Ornstein–Uhlenbeck type is represented to be the sum of three independent random variables—one follows a distribution whose density is a deconvolution of the densities of two generalized inverse Gaussian distributions, and the two others all have compound Poisson distributions. Based on the representation of the stochastic integral, a simulation procedure for obtaining discretely observed values of Ornstein–Uhlenbeck processes with given generalized inverse Gaussian distribution is provided. For some subclasses of the generalized inverse Gaussian Ornstein–Uhlenbeck process, the innovations can be sampled exactly. The performance of the simulation method is evidenced by some empirical results.

Suggested Citation

  • Shibin Zhang, 2011. "Transition Law-based Simulation of Generalized Inverse Gaussian Ornstein–Uhlenbeck Processes," Methodology and Computing in Applied Probability, Springer, vol. 13(3), pages 619-656, September.
  • Handle: RePEc:spr:metcap:v:13:y:2011:i:3:d:10.1007_s11009-010-9179-6
    DOI: 10.1007/s11009-010-9179-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-010-9179-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-010-9179-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shibin Zhang & Xinsheng Zhang, 2008. "Exact Simulation of IG-OU Processes," Methodology and Computing in Applied Probability, Springer, vol. 10(3), pages 337-355, September.
    2. Mathieu Kessler, 2000. "Simple and Explicit Estimating Functions for a Discretely Observed Diffusion Process," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(1), pages 65-82, March.
    3. Rubenthaler, Sylvain, 2003. "Numerical simulation of the solution of a stochastic differential equation driven by a Lévy process," Stochastic Processes and their Applications, Elsevier, vol. 103(2), pages 311-349, February.
    4. Taufer, Emanuele & Leonenko, Nikolai, 2009. "Simulation of Lvy-driven Ornstein-Uhlenbeck processes with given marginal distribution," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2427-2437, April.
    5. Aleksander Janicki & Aleksander Weron, 1994. "Can One See Alpha-stable Variables and Processes?," HSC Research Reports HSC/94/01, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    6. Ole E. Barndorff‐Nielsen & Neil Shephard, 2003. "Integrated OU Processes and Non‐Gaussian OU‐based Stochastic Volatility Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(2), pages 277-295, June.
    7. Fotopoulos, Stergios B. & Jandhyala, Venkata K., 2004. "Bessel inequalities with applications to conditional log returns under GIG scale mixtures of normal vectors," Statistics & Probability Letters, Elsevier, vol. 66(2), pages 117-125, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kevin W. Lu, 2022. "Calibration for multivariate Lévy-driven Ornstein-Uhlenbeck processes with applications to weak subordination," Statistical Inference for Stochastic Processes, Springer, vol. 25(2), pages 365-396, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taufer, Emanuele & Leonenko, Nikolai, 2009. "Simulation of Lvy-driven Ornstein-Uhlenbeck processes with given marginal distribution," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2427-2437, April.
    2. Shu, Yin & Feng, Qianmei & Liu, Hao, 2019. "Using degradation-with-jump measures to estimate life characteristics of lithium-ion battery," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    3. Piergiacomo Sabino & Nicola Cufaro Petroni, 2022. "Fast simulation of tempered stable Ornstein–Uhlenbeck processes," Computational Statistics, Springer, vol. 37(5), pages 2517-2551, November.
    4. Emanuele Taufer, 2008. "Characteristic function estimation of non-Gaussian Ornstein-Uhlenbeck processes," DISA Working Papers 0805, Department of Computer and Management Sciences, University of Trento, Italy, revised 07 Jul 2008.
    5. Nicola Cufaro Petroni & Piergiacomo Sabino, 2020. "Tempered stable distributions and finite variation Ornstein-Uhlenbeck processes," Papers 2011.09147, arXiv.org.
    6. Raknerud, Arvid & Skare, Øivind, 2012. "Indirect inference methods for stochastic volatility models based on non-Gaussian Ornstein–Uhlenbeck processes," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3260-3275.
    7. Piergiacomo Sabino, 2020. "Exact Simulation of Variance Gamma related OU processes: Application to the Pricing of Energy Derivatives," Papers 2004.06786, arXiv.org.
    8. Taufer, Emanuele & Leonenko, Nikolai & Bee, Marco, 2011. "Characteristic function estimation of Ornstein-Uhlenbeck-based stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 55(8), pages 2525-2539, August.
    9. Matteo Gardini & Piergiacomo Sabino & Emanuela Sasso, 2020. "A bivariate Normal Inverse Gaussian process with stochastic delay: efficient simulations and applications to energy markets," Papers 2011.04256, arXiv.org.
    10. Jean Jacod & Michael Sørensen, 2018. "A review of asymptotic theory of estimating functions," Statistical Inference for Stochastic Processes, Springer, vol. 21(2), pages 415-434, July.
    11. Dassios, Angelos & Qu, Yan & Zhao, Hongbiao, 2018. "Exact simulation for a class of tempered stable," LSE Research Online Documents on Economics 86981, London School of Economics and Political Science, LSE Library.
    12. Piotr Szczepocki, 2020. "Application of iterated filtering to stochastic volatility models based on non-Gaussian Ornstein-Uhlenbeck process," Statistics in Transition New Series, Polish Statistical Association, vol. 21(2), pages 173-187, June.
    13. A. M. Kulik & N. N. Leonenko & I. Papić & N. Šuvak, 2020. "Parameter Estimation for Non-Stationary Fisher-Snedecor Diffusion," Methodology and Computing in Applied Probability, Springer, vol. 22(3), pages 1023-1061, September.
    14. N. Hilber & N. Reich & C. Schwab & C. Winter, 2009. "Numerical methods for Lévy processes," Finance and Stochastics, Springer, vol. 13(4), pages 471-500, September.
    15. Weron, Rafał, 2004. "Computationally intensive Value at Risk calculations," Papers 2004,32, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    16. Stan Hurn & J.Jeisman & K.A. Lindsay, 2006. "Seeing the Wood for the Trees: A Critical Evaluation of Methods to Estimate the Parameters of Stochastic Differential Equations. Working paper #2," NCER Working Paper Series 2, National Centre for Econometric Research.
    17. Kawai Reiichiro & Masuda Hiroki, 2011. "Exact discrete sampling of finite variation tempered stable Ornstein–Uhlenbeck processes," Monte Carlo Methods and Applications, De Gruyter, vol. 17(3), pages 279-300, January.
    18. Masuda, H. & Yoshida, N., 2005. "Asymptotic expansion for Barndorff-Nielsen and Shephard's stochastic volatility model," Stochastic Processes and their Applications, Elsevier, vol. 115(7), pages 1167-1186, July.
    19. Akira Yamazaki, 2016. "Generalized Barndorff-Nielsen And Shephard Model And Discretely Monitored Option Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(04), pages 1-34, June.
    20. Lancelot F. James, 2005. "Analysis of a Class of Likelihood Based Continuous Time Stochastic Volatility Models including Ornstein-Uhlenbeck Models in Financial Economics," Papers math/0503055, arXiv.org, revised Aug 2005.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:13:y:2011:i:3:d:10.1007_s11009-010-9179-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.