IDEAS home Printed from https://ideas.repec.org/p/cir/cirwor/2001s-06.html
   My bibliography  Save this paper

Risque de modèle de volatilité

Author

Listed:
  • Ali Alami
  • Eric Renault

Abstract

The risk-return trade-off being the very substance of finance, volatility has always been an essential parameter for portfolio management. Moreover, the generalization of the use of derivatives has placed in the forefront the concept of volatility risk: i.e. the model risk generated by treating the volatility as a constant parameter, when it is in fact volatile. Hence the econometrician is asked for accurate measures and reliable forecasts of volatility, not only for pricing and hedging derivatives, but also more generally for portfolio management. The central thesis of this paper is that operational model-free methods of volatility forecasting do not exist any more than do arbitrage opportunities (free lunches) in financial markets. It is for this reason that there exists volatility model risk against which it is illusory to try to immunize. Several specific components of this model risk are analyzed. One will imply that the choice of a volatility model for a given financial application always confronts one with a risk-return trade-off on the model itself. L'arbitrage rendement - risque étant la substance de la finance, la volatilité a toujours été un paramètre essentiel pour la gestion de portefeuille. La généralisation de l'utilisation de produits dérivés a en outre mis sur le devant de la scène le concept de risque de volatilité, c'est-à-dire en quelque sorte le risque de modèle généré par la vision de la volatilité comme un paramètre constant, alors que celle-ci est elle-même volatile. Ainsi, des mesures précises et des prévisions fiables de la volatilité sont demandées à l'économètre, non seulement pour l'évaluation et la couverture des actifs dérivés0501s aussi plus généralement pour la gestion de portefeuille. La thèse centrale de cet article est que des stratégies opérationnelles de prévision statistique de la volatilité qui seraient model-free n'existent pas davantage que les opportunités d'arbitrage (free lunch) sur les marchés financiers. D'où le risque de modèle de volatilité contre lequel il est illusoire de vouloir s'immuniser. Plusieurs composantes spécifiques de ce risque de modèle sont analysées. On en déduira que le choix d'un modèle de volatilité pour une application financière donnée confronte toujours à un trade-off rendement/risque sur le modèle lui-même.

Suggested Citation

  • Ali Alami & Eric Renault, 2001. "Risque de modèle de volatilité," CIRANO Working Papers 2001s-06, CIRANO.
  • Handle: RePEc:cir:cirwor:2001s-06
    as

    Download full text from publisher

    File URL: https://cirano.qc.ca/files/publications/2001s-06.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nour Meddahi & Eric Renault, 1998. "Quadratic M-Estimators for ARCH-Type Processes," CIRANO Working Papers 98s-29, CIRANO.
    2. Hansen, Lars Peter & Richard, Scott F, 1987. "The Role of Conditioning Information in Deducing Testable," Econometrica, Econometric Society, vol. 55(3), pages 587-613, May.
    3. Drost, Feike C & Nijman, Theo E, 1993. "Temporal Aggregation of GARCH Processes," Econometrica, Econometric Society, vol. 61(4), pages 909-927, July.
    4. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    5. Jacob A. Mincer & Victor Zarnowitz, 1969. "The Evaluation of Economic Forecasts," NBER Chapters, in: Economic Forecasts and Expectations: Analysis of Forecasting Behavior and Performance, pages 3-46, National Bureau of Economic Research, Inc.
    6. Meddahi, Nour & Renault, Eric, 2004. "Temporal aggregation of volatility models," Journal of Econometrics, Elsevier, vol. 119(2), pages 355-379, April.
    7. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    8. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    9. Laurence Broze & Christian Francq & Jean‐Michel Zakoïan, 2002. "Efficient use of higher‐lag autocorrelations for estimating autoregressive processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 23(3), pages 287-312, May.
    10. Nijman, Theo & Sentana, Enrique, 1996. "Marginalization and contemporaneous aggregation in multivariate GARCH processes," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 71-87.
    11. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    12. Engle, Robert F. (ed.), 1995. "ARCH: Selected Readings," OUP Catalogue, Oxford University Press, number 9780198774327.
    13. Milton Friedman, 1957. "A Theory of the Consumption Function," NBER Books, National Bureau of Economic Research, Inc, number frie57-1.
    14. Laurence Broze & Christian Francq & Jean-Michel Zakoïan, 1999. "Efficient Use of High Order Autocorrelations for Estimating Autoregressive Processes," Working Papers 99-56, Center for Research in Economics and Statistics.
    15. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    16. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-155, January.
    17. Engle, Robert F & Ng, Victor K, 1993. "Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    18. Drost, Feike C. & Werker, Bas J. M., 1996. "Closing the GARCH gap: Continuous time GARCH modeling," Journal of Econometrics, Elsevier, vol. 74(1), pages 31-57, September.
    19. Ole Barndorff-Nielsen & Neil Shephard, 2000. "Non-Gaussian OU based models and some of their uses in financial economics," OFRC Working Papers Series 2000mf01, Oxford Financial Research Centre.
    20. Lamoureux, Christopher G & Lastrapes, William D, 1990. "Persistence in Variance, Structural Change, and the GARCH Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(2), pages 225-234, April.
    21. Nijman, Theo & Sentana, Enrique, 1996. "Marginalization and contemporaneous aggregation in multivariate GARCH processes," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 71-87.
    22. Engle, Robert F & Lilien, David M & Robins, Russell P, 1987. "Estimating Time Varying Risk Premia in the Term Structure: The Arch-M Model," Econometrica, Econometric Society, vol. 55(2), pages 391-407, March.
    23. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    24. Meddahi, N & Renault, E., 1996. "Aggregations and Marginalization of Garch and Stochastic Volatility Models," Papers 96.433, Toulouse - GREMAQ.
    25. Robert F. Engle & David F. Hendry & David Trumble, 1985. "Small-Sample Properties of ARCH Estimators and Tests," Canadian Journal of Economics, Canadian Economics Association, vol. 18(1), pages 66-93, February.
    26. R. F. Engle & A. J. Patton, 2001. "What good is a volatility model?," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 237-245.
    27. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    2. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Volatility forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies (CFS).
    3. Meddahi, Nour & Renault, Eric, 2004. "Temporal aggregation of volatility models," Journal of Econometrics, Elsevier, vol. 119(2), pages 355-379, April.
    4. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    5. MEDDAHI, Nour, 2001. "An Eigenfunction Approach for Volatility Modeling," Cahiers de recherche 2001-29, Universite de Montreal, Departement de sciences economiques.
    6. Font, Begoña, 1998. "Modelización de series temporales financieras. Una recopilación," DES - Documentos de Trabajo. Estadística y Econometría. DS 3664, Universidad Carlos III de Madrid. Departamento de Estadística.
    7. Nour Meddahi, 2002. "A theoretical comparison between integrated and realized volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 479-508.
    8. Bollerslev, Tim, 2001. "Financial econometrics: Past developments and future challenges," Journal of Econometrics, Elsevier, vol. 100(1), pages 41-51, January.
    9. Bollerslev, Tim & Ghysels, Eric, 1996. "Periodic Autoregressive Conditional Heteroscedasticity," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(2), pages 139-151, April.
    10. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, September.
    11. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    12. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    13. Francis X. Diebold & Jose A. Lopez, 1995. "Measuring Volatility Dynamics," NBER Technical Working Papers 0173, National Bureau of Economic Research, Inc.
    14. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    15. Prosper Dovonon, 2013. "Conditionally Heteroskedastic Factor Models With Skewness And Leverage Effects," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(7), pages 1110-1137, November.
    16. Nour Meddahi, 2002. "ARMA Representation of Two-Factor Models," CIRANO Working Papers 2002s-92, CIRANO.
    17. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
    18. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    19. Teräsvirta, Timo, 2006. "An introduction to univariate GARCH models," SSE/EFI Working Paper Series in Economics and Finance 646, Stockholm School of Economics.
    20. Xiufeng Yan, 2021. "Autoregressive conditional duration modelling of high frequency data," Papers 2111.02300, arXiv.org.

    More about this item

    Keywords

    Volatility; model risk; ARCH; GARCH; forecasting; structural model; Volatilité; risque de modèle; ARCH; GARCH; prévision; modèle structurel;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:2001s-06. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Webmaster (email available below). General contact details of provider: https://edirc.repec.org/data/ciranca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.