IDEAS home Printed from https://ideas.repec.org/p/cor/louvco/2001039.html
   My bibliography  Save this paper

Volatility impulse response functions for multivariate GARCH models

Author

Listed:
  • HAFNER, Christian
  • HERWARTZ, Helmut

Abstract

In the empirical analysis of financial time series, multivariate GARCH models have been used in various forms. As it is typical for nonlinear models there is yet no unique framework available to uncover dynamic covariance relationships for vector return processes. We introduce a new concept of impulse response functions tracing the effects of independent shocks on volatility through time. The advocated methodology avoids typical orthogonalization and ordering problems. Theoretical properties of volatility impulse response functions are derived and compared with conditional moment profiles introduced by Gallant, Rossi and Tauchen (1993) for semi-nonparametric models. In an empirical study of a bivariate foreign exchange rate series we use volatility impulse response functions to compare alternative parametric volatility specifications. It is shown that for shocks affecting foreign exchange rates in an asymmetric way, the difference between our methodology and conditional volatility profiles can be substantial.

Suggested Citation

  • HAFNER, Christian & HERWARTZ, Helmut, 2001. "Volatility impulse response functions for multivariate GARCH models," LIDAM Discussion Papers CORE 2001039, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  • Handle: RePEc:cor:louvco:2001039
    as

    Download full text from publisher

    File URL: https://sites.uclouvain.be/core/publications/coredp/coredp2001.html
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bollerslev, Tim & Engle, Robert F & Wooldridge, Jeffrey M, 1988. "A Capital Asset Pricing Model with Time-Varying Covariances," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 116-131, February.
    2. Bollerslev, Tim & Engle, Robert F, 1993. "Common Persistence in Conditional Variances," Econometrica, Econometric Society, vol. 61(1), pages 167-186, January.
    3. Drost, Feike C & Nijman, Theo E, 1993. "Temporal Aggregation of GARCH Processes," Econometrica, Econometric Society, vol. 61(4), pages 909-927, July.
    4. Rose, Andrew K. & Svensson, Lars E. O., 1994. "European exchange rate credibility before the fall," European Economic Review, Elsevier, vol. 38(6), pages 1185-1216, June.
    5. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    6. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    7. Christian M. Hafner & Helmut Herwartz, 2000. "Testing for linear autoregressive dynamics under heteroskedasticity," Econometrics Journal, Royal Economic Society, vol. 3(2), pages 177-197.
    8. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    9. Engle, Robert F & Ng, Victor K, 1993. "Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    10. Bauwens, L. & Lubrano, M., 1997. "Bayesian Option Pricing Using Asymmetric GARCH," G.R.E.Q.A.M. 97a40, Universite Aix-Marseille III.
    11. Andrew Harvey & Esther Ruiz & Neil Shephard, 1994. "Multivariate Stochastic Variance Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(2), pages 247-264.
    12. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    13. Nelson, Daniel B., 1990. "Stationarity and Persistence in the GARCH(1,1) Model," Econometric Theory, Cambridge University Press, vol. 6(3), pages 318-334, September.
    14. Gallant, A Ronald & Rossi, Peter E & Tauchen, George, 1993. "Nonlinear Dynamic Structures," Econometrica, Econometric Society, vol. 61(4), pages 871-907, July.
    15. Lin, Wen-Ling, 1997. "Impulse Response Function for Conditional Volatility in GARCH Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(1), pages 15-25, January.
    16. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    17. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Walid Ben Omrane & Christian M. Hafner, 2009. "Information Spillover, Volatility and the Currency Markets for the Binary Choice Model," International Econometric Review (IER), Econometric Research Association, vol. 1(1), pages 50-62, April.
    2. Hafner, Christian M. & Rombouts, Jeroen V.K., 2007. "Semiparametric Multivariate Volatility Models," Econometric Theory, Cambridge University Press, vol. 23(2), pages 251-280, April.
    3. Ólan T. Henry & Nilss Olekalns & Kalvinder K. Shields, 2013. "Quantifying time variation and asymmetry in measures of covariance risk: a simulation approach," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 18, pages 457-476, Edward Elgar Publishing.
    4. Kalvinder Shields & Nilss Olekalns & Ãlan T. Henry & Chris Brooks, 2005. "Measuring the Response of Macroeconomic Uncertainty to Shocks," The Review of Economics and Statistics, MIT Press, vol. 87(2), pages 362-370, May.
    5. Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), 2013. "Handbook of Research Methods and Applications in Empirical Finance," Books, Edward Elgar Publishing, number 14545.
    6. Hafner, Christian M., 2000. "Fourth moments of multivariate GARCH processes," SFB 373 Discussion Papers 2000,80, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    7. Manuel Carlos Nogueira & Mara Madaleno, 2022. "Are Sustainability Indices Infected by the Volatility of Stock Indices? Analysis before and after the COVID-19 Pandemic," Sustainability, MDPI, vol. 14(22), pages 1-13, November.
    8. Płuciennik Piotr, 2012. "Influence of the American Financial Market on Other Markets During the Subprime Crisis," Folia Oeconomica Stetinensia, Sciendo, vol. 12(2), pages 19-30, December.
    9. E.Panopoulou & T. Pantelidis, 2005. "Integration at a cost: Evidence from volatility impulse response functions," Economics Department Working Paper Series n1540305, Department of Economics, National University of Ireland - Maynooth.
    10. Luis Fernando Melo Velandia & Oscar Reinaldo Becerra Camargo, 2006. "Una Aproximación a La Dinámica de las Tasas de Interés de Corto Plazo en Colombia a través de Modelos GARCH Multivariados," Borradores de Economia 3694, Banco de la Republica.
    11. Olan T. Henry & Nilss Olekalns & Kalvinder Shields, 2004. "Time Variation And Asymmetry In The World Price Of Covariance Risk: The Implications For International Diversification," Department of Economics - Working Papers Series 907, The University of Melbourne.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hafner, Christian M. & Herwartz, Helmut, 2006. "Volatility impulse responses for multivariate GARCH models: An exchange rate illustration," Journal of International Money and Finance, Elsevier, vol. 25(5), pages 719-740, August.
    2. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, September.
    3. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    4. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    5. Bollerslev, Tim & Engle, Robert F. & Nelson, Daniel B., 1986. "Arch models," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 49, pages 2959-3038, Elsevier.
    6. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    7. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    8. Lütkepohl,Helmut & Krätzig,Markus (ed.), 2004. "Applied Time Series Econometrics," Cambridge Books, Cambridge University Press, number 9780521547871, October.
    9. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
    10. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
    11. Jin, Xiaoye & An, Ximeng, 2016. "Global financial crisis and emerging stock market contagion: A volatility impulse response function approach," Research in International Business and Finance, Elsevier, vol. 36(C), pages 179-195.
    12. Meddahi, N., 2001. "An Eigenfunction Approach for Volatility Modeling," Cahiers de recherche 2001-29, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    13. Nelson, Daniel B., 1996. "Asymptotic filtering theory for multivariate ARCH models," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 1-47.
    14. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    15. Font, Begoña, 1998. "Modelización de series temporales financieras. Una recopilación," DES - Documentos de Trabajo. Estadística y Econometría. DS 3664, Universidad Carlos III de Madrid. Departamento de Estadística.
    16. Committee, Nobel Prize, 2003. "Time-series Econometrics: Cointegration and Autoregressive Conditional Heteroskedasticity," Nobel Prize in Economics documents 2003-1, Nobel Prize Committee.
    17. Giorgio Canarella & Stephen M. Miller & Stephen K. Pollard, 2008. "Dynamic Stock Market Interactions between the Canadian, Mexican, and the United States Markets: The NAFTA Experience," Working papers 2008-49, University of Connecticut, Department of Economics.
    18. Hafner, Christian M., 2000. "Fourth moments of multivariate GARCH processes," SFB 373 Discussion Papers 2000,80, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    19. Fuentes Vélez, Mariana & Pinilla Barrera, Alejandro, 2021. "Transmisión de volatilidad en el Mercado Integrado Latinoamericano (MILA): una evidencia del grado de integración. || Transmission of volatility in the Latin American Integrated Market (MILA): evidenc," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 31(1), pages 301-328, June.
    20. Le Pen, Yannick & Sévi, Benoît, 2010. "Volatility transmission and volatility impulse response functions in European electricity forward markets," Energy Economics, Elsevier, vol. 32(4), pages 758-770, July.

    More about this item

    Keywords

    Multivariate GARCH; impulse response; exchange rate; volatility;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cor:louvco:2001039. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alain GILLIS (email available below). General contact details of provider: https://edirc.repec.org/data/coreebe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.