IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v130y2020i3p1159-1205.html
   My bibliography  Save this article

Bootstrap confidence bands for spectral estimation of Lévy densities under high-frequency observations

Author

Listed:
  • Kato, Kengo
  • Kurisu, Daisuke

Abstract

This paper develops bootstrap methods to construct uniform confidence bands for nonparametric spectral estimation of Lévy densities under high-frequency observations. We are given n discrete observations at frequency 1∕Δ, and assume that Δ=Δn→0 and nΔ→∞ as n→∞. We employ a spectral estimator of the Lévy density, and develop novel implementations of multiplier and empirical bootstraps to construct confidence bands on a compact set away from the origin. We provide conditions under which the confidence bands are asymptotically valid. We also develop a practical method for bandwidth selection, and conduct numerical studies.

Suggested Citation

  • Kato, Kengo & Kurisu, Daisuke, 2020. "Bootstrap confidence bands for spectral estimation of Lévy densities under high-frequency observations," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1159-1205.
  • Handle: RePEc:eee:spapps:v:130:y:2020:i:3:p:1159-1205
    DOI: 10.1016/j.spa.2019.04.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414919302790
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2019.04.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kappus, Johanna, 2014. "Adaptive nonparametric estimation for Lévy processes observed at low frequency," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 730-758.
    2. Belomestny, Denis, 2011. "Spectral estimation of the Lévy density in partially observed affine models," Stochastic Processes and their Applications, Elsevier, vol. 121(6), pages 1217-1244, June.
    3. Chernozhukov, Victor & Chetverikov, Denis & Kato, Kengo, 2016. "Empirical and multiplier bootstraps for suprema of empirical processes of increasing complexity, and related Gaussian couplings," Stochastic Processes and their Applications, Elsevier, vol. 126(12), pages 3632-3651.
    4. Johanna Kappus & Markus Reiß, 2010. "Estimation of the characteristics of a Lévy process observed at arbitrary frequency," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 64(3), pages 314-328, August.
    5. Mélina Bec & Claire Lacour, 2015. "Adaptive pointwise estimation for pure jump Lévy processes," Statistical Inference for Stochastic Processes, Springer, vol. 18(3), pages 229-256, October.
    6. Kappus, Johanna & Reiß, Markus, 2010. "Estimation of the characteristics of a Lévy process observed at arbitrary frequency," SFB 649 Discussion Papers 2010-015, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    7. Yacine Aït-Sahalia & Jean Jacod, 2014. "High-Frequency Financial Econometrics," Economics Books, Princeton University Press, edition 1, number 10261.
    8. Johanna Kappus & Markus Reiß, 2010. "Estimation of the characteristics of a Lévy process observed at arbitrary frequency," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 64(s1), pages 314-328.
    9. Bissantz, Nicolai & Dümbgen, Lutz & Holzmann, Hajo & Munk, Axel, 2007. "Nonparametric confidence bands in deconvolution density estimation," Technical Reports 2007,03, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    10. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    11. repec:bla:jfinan:v:59:y:2004:i:1:p:227-260 is not listed on IDEAS
    12. Nickl, Richard & Reiß, Markus, 2012. "A Donsker theorem for Lévy measures," SFB 649 Discussion Papers 2012-003, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    13. Vetter, Mathias, 2014. "Inference on the Lévy measure in case of noisy observations," Statistics & Probability Letters, Elsevier, vol. 87(C), pages 125-133.
    14. Trabs, Mathias, 2015. "Quantile estimation for Lévy measures," Stochastic Processes and their Applications, Elsevier, vol. 125(9), pages 3484-3521.
    15. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
    16. Hoffmann, Michael & Vetter, Mathias, 2017. "Weak convergence of the empirical truncated distribution function of the Lévy measure of an Itō semimartingale," Stochastic Processes and their Applications, Elsevier, vol. 127(5), pages 1517-1543.
    17. Ole E. Barndorff-Nielsen, 2004. "Power and Bipower Variation with Stochastic Volatility and Jumps," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 1-37.
    18. Nicolai Bissantz & Lutz Dümbgen & Hajo Holzmann & Axel Munk, 2007. "Non‐parametric confidence bands in deconvolution density estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(3), pages 483-506, June.
    19. Shota Gugushvili, 2009. "Nonparametric estimation of the characteristic triplet of a discretely observed Lévy process," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(3), pages 321-343.
    20. Chen, Song X. & Delaigle, Aurore & Hall, Peter, 2010. "Nonparametric estimation for a class of Lévy processes," Journal of Econometrics, Elsevier, vol. 157(2), pages 257-271, August.
    21. Comte, F. & Genon-Catalot, V., 2009. "Nonparametric estimation for pure jump Lévy processes based on high frequency data," Stochastic Processes and their Applications, Elsevier, vol. 119(12), pages 4088-4123, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reiß, Markus, 2013. "Testing the characteristics of a Lévy process," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2808-2828.
    2. Zhang, Zhimin & Yang, Hailiang, 2014. "Nonparametric estimation for the ruin probability in a Lévy risk model under low-frequency observation," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 168-177.
    3. Trabs, Mathias, 2011. "Calibration of self-decomposable Lévy models," SFB 649 Discussion Papers 2011-073, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    4. Trabs, Mathias, 2015. "Quantile estimation for Lévy measures," Stochastic Processes and their Applications, Elsevier, vol. 125(9), pages 3484-3521.
    5. Kappus, Johanna, 2014. "Adaptive nonparametric estimation for Lévy processes observed at low frequency," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 730-758.
    6. Schmisser, Émeline, 2019. "Non parametric estimation of the diffusion coefficients of a diffusion with jumps," Stochastic Processes and their Applications, Elsevier, vol. 129(12), pages 5364-5405.
    7. Andersen, Torben G. & Fusari, Nicola & Todorov, Viktor, 2015. "The risk premia embedded in index options," Journal of Financial Economics, Elsevier, vol. 117(3), pages 558-584.
    8. Paweł Kliber, 2019. "Continuous and jump changes in prices processes in the selected stock markets," Collegium of Economic Analysis Annals, Warsaw School of Economics, Collegium of Economic Analysis, issue 54, pages 333-344.
    9. Kurisu, Daisuke & Otsu, Taisuke, 2022. "On linearization of nonparametric deconvolution estimators for repeated measurements model," LSE Research Online Documents on Economics 112676, London School of Economics and Political Science, LSE Library.
    10. Ma, Jun & Marmer, Vadim & Yu, Zhengfei, 2023. "Inference on individual treatment effects in nonseparable triangular models," Journal of Econometrics, Elsevier, vol. 235(2), pages 2096-2124.
    11. Maciej Kostrzewski, 2014. "Bayesian DEJD model and detection of asymmetric jumps," Papers 1404.2050, arXiv.org.
    12. Dario Alitab & Giacomo Bormetti & Fulvio Corsi & Adam A. Majewski, 2019. "A realized volatility approach to option pricing with continuous and jump variance components," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 639-664, December.
    13. Sharon S. Yang & Jr-Wei Huang & Chuang-Chang Chang, 2016. "Detecting and modelling the jump risk of CO 2 emission allowances and their impact on the valuation of option on futures contracts," Quantitative Finance, Taylor & Francis Journals, vol. 16(5), pages 749-762, May.
    14. Dong, Hao & Taylor, Luke, 2022. "Nonparametric Significance Testing In Measurement Error Models," Econometric Theory, Cambridge University Press, vol. 38(3), pages 454-496, June.
    15. Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2021. "A data-driven framework for consistent financial valuation and risk measurement," European Journal of Operational Research, Elsevier, vol. 289(1), pages 381-398.
    16. Gabriel P. Mathy, 2014. "Uncertainty Shocks and Equity Return Jumps and Volatility During the Great Depression," Working Papers 2014-02, American University, Department of Economics.
    17. Bollerslev, Tim & Todorov, Viktor, 2014. "Time-varying jump tails," Journal of Econometrics, Elsevier, vol. 183(2), pages 168-180.
    18. Kato, Kengo & Sasaki, Yuya, 2019. "Uniform confidence bands for nonparametric errors-in-variables regression," Journal of Econometrics, Elsevier, vol. 213(2), pages 516-555.
    19. Amorino, Chiara & Gloter, Arnaud, 2020. "Unbiased truncated quadratic variation for volatility estimation in jump diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 130(10), pages 5888-5939.
    20. Kurisu, Daisuke & Otsu, Taisuke, 2022. "On linearization of nonparametric deconvolution estimators for repeated measurements model," Journal of Multivariate Analysis, Elsevier, vol. 189(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:130:y:2020:i:3:p:1159-1205. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.