IDEAS home Printed from https://ideas.repec.org/a/vrs/aicuec/v65y2018i4p365-383n8.html
   My bibliography  Save this article

On the Gains of Using High Frequency Data in Portfolio Selection

Author

Listed:
  • Brito Rui Pedro

    (Centre for Business and Economics Research (CeBER), Grupo de Estudos Monetários e Financeiros (GEMF), Faculty of Economics, University of Coimbra, Portugal)

  • Sebastião Helder

    (Centre for Business and Economics Research (CeBER), Grupo de Estudos Monetários e Financeiros (GEMF), Faculty of Economics, University of Coimbra, Portugal)

  • Godinho Pedro

    (Centre for Business and Economics Research (CeBER), Faculty of Economics, University of Coimbra, Portugal)

Abstract

This paper analyzes empirically the performance gains of using high frequency data in portfolio selection. Assuming Constant Relative Risk Aversion (CRRA) preferences, with different relative risk aversion levels, we compare low and high frequency portfolios within mean-variance, mean-variance-skewness and mean-variance-skewness-kurtosis frameworks. Using data on fourteen stocks of the Euronext Paris, from January 1999 to December 2005, we conclude that the high frequency portfolios outperform the low frequency portfolios for every out-of-sample measure, irrespectively to the relative risk aversion coefficient considered. The empirical results also suggest that for moderate relative risk aversion the best performance is always achieved through the jointly use of the realized variance, skewness and kurtosis. This claim is reinforced when trading costs are taken into account.

Suggested Citation

  • Brito Rui Pedro & Sebastião Helder & Godinho Pedro, 2018. "On the Gains of Using High Frequency Data in Portfolio Selection," Scientific Annals of Economics and Business, Sciendo, vol. 65(4), pages 365-383, December.
  • Handle: RePEc:vrs:aicuec:v:65:y:2018:i:4:p:365-383:n:8
    DOI: 10.2478/saeb-2018-0030
    as

    Download full text from publisher

    File URL: https://doi.org/10.2478/saeb-2018-0030
    Download Restriction: no

    File URL: https://libkey.io/10.2478/saeb-2018-0030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. repec:hal:journl:peer-00815564 is not listed on IDEAS
    2. Barndorff-Nielsen, Ole E. & Hansen, Peter Reinhard & Lunde, Asger & Shephard, Neil, 2011. "Multivariate realised kernels: Consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading," Journal of Econometrics, Elsevier, vol. 162(2), pages 149-169, June.
    3. Amaya, Diego & Christoffersen, Peter & Jacobs, Kris & Vasquez, Aurelio, 2015. "Does realized skewness predict the cross-section of equity returns?," Journal of Financial Economics, Elsevier, vol. 118(1), pages 135-167.
    4. Lionel Martellini & Volker Ziemann, 2010. "Improved Estimates of Higher-Order Comoments and Implications for Portfolio Selection," The Review of Financial Studies, Society for Financial Studies, vol. 23(4), pages 1467-1502, April.
    5. Rui Pedro Brito & Hélder Sebastião & Pedro Godinho, 2016. "Portfolio Choice with High Frequency Data: CRRA Preferences and the Liquidity Effect," GEMF Working Papers 2016-13, GEMF, Faculty of Economics, University of Coimbra.
    6. R. P. Brito & H. Sebastião & P. Godinho, 2017. "Portfolio choice with high frequency data: CRRA preferences and the liquidity effect," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 16(2), pages 65-86, August.
    7. Merton, Robert C., 1980. "On estimating the expected return on the market : An exploratory investigation," Journal of Financial Economics, Elsevier, vol. 8(4), pages 323-361, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yunhan & Gabauer, David & Gupta, Rangan & Ji, Qiang, 2024. "How connected is the oil-bank network? Firm-level and high-frequency evidence," Energy Economics, Elsevier, vol. 136(C).
    2. R. P. Brito & H. Sebastião & P. Godinho, 2017. "Portfolio choice with high frequency data: CRRA preferences and the liquidity effect," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 16(2), pages 65-86, August.
    3. Rui Pedro Brito & Hélder Sebastião & Pedro Godinho, 2016. "Portfolio Choice with High Frequency Data: CRRA Preferences and the Liquidity Effect," GEMF Working Papers 2016-13, GEMF, Faculty of Economics, University of Coimbra.
    4. Ang, Andrew & Kristensen, Dennis, 2012. "Testing conditional factor models," Journal of Financial Economics, Elsevier, vol. 106(1), pages 132-156.
    5. Lassance, Nathan & Vrins, Frédéric, 2021. "Portfolio selection with parsimonious higher comoments estimation," Journal of Banking & Finance, Elsevier, vol. 126(C).
    6. Jayawardena, Nirodha I. & Todorova, Neda & Li, Bin & Su, Jen-Je & Gau, Yin-Feng, 2022. "Risk-return trade-off in the Australian Securities Exchange: Accounting for overnight effects, realized higher moments, long-run relations, and fractional cointegration," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 384-401.
    7. Jia, Yuecheng & Liu, Yuzheng & Yan, Shu, 2021. "Higher moments, extreme returns, and cross–section of cryptocurrency returns," Finance Research Letters, Elsevier, vol. 39(C).
    8. Golosnoy, Vasyl & Gribisch, Bastian, 2022. "Modeling and forecasting realized portfolio weights," Journal of Banking & Finance, Elsevier, vol. 138(C).
    9. Fulvio Corsi & Stefano Peluso & Francesco Audrino, 2015. "Missing in Asynchronicity: A Kalman‐em Approach for Multivariate Realized Covariance Estimation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(3), pages 377-397, April.
    10. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    11. Martin Magris, 2019. "A Vine-copula extension for the HAR model," Papers 1907.08522, arXiv.org.
    12. Lassance, Nathan & Vrins, Frédéric, 2023. "Portfolio selection: A target-distribution approach," European Journal of Operational Research, Elsevier, vol. 310(1), pages 302-314.
    13. Elyas Elyasiani & Luca Gambarelli & Silvia Muzzioli, 2015. "Towards a skewness index for the Italian stock market," Department of Economics 0064, University of Modena and Reggio E., Faculty of Economics "Marco Biagi".
    14. Zia-ur-Rehman Rao & Muhammad Zubair Tauni & Tanveer Ahsan & Muhammad Umar, 2020. "Do mutual funds have consistency in their performance?," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 19(2), pages 139-153, May.
    15. Lassance, Nathan & Vanderveken, Rodolphe & Vrins, Frédéric, 2022. "On the optimal combination of naive and mean-variance portfolio strategies," LIDAM Discussion Papers LFIN 2022006, Université catholique de Louvain, Louvain Finance (LFIN).
    16. Lorenzo Mercuri & Edit Rroji, 2014. "Parametric Risk Parity," Papers 1409.7933, arXiv.org.
    17. Rui Pedro Brito & Hélder Sebastião & Pedro Godinho, 2017. "On the gains of using high frequency data and higher moments in Portfolio Selection," CeBER Working Papers 2017-02, Centre for Business and Economics Research (CeBER), University of Coimbra.
    18. Cai, T. Tony & Hu, Jianchang & Li, Yingying & Zheng, Xinghua, 2020. "High-dimensional minimum variance portfolio estimation based on high-frequency data," Journal of Econometrics, Elsevier, vol. 214(2), pages 482-494.
    19. Gian Paolo Clemente & Rosanna Grassi & Asmerilda Hitaj, 2018. "Asset allocation: new evidence through network approaches," Papers 1810.09825, arXiv.org.
    20. Lassance, Nathan & Vrins, Frédéric, 2019. "Robust portfolio selection using sparse estimation of comoment tensors," LIDAM Discussion Papers LFIN 2019007, Université catholique de Louvain, Louvain Finance (LFIN).

    More about this item

    Keywords

    Portfolio selection; utility maximization criteria; higher moments; high frequency data;
    All these keywords.

    JEL classification:

    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:aicuec:v:65:y:2018:i:4:p:365-383:n:8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.