IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1803.07021.html
   My bibliography  Save this paper

Jumping VaR: Order Statistics Volatility Estimator for Jumps Classification and Market Risk Modeling

Author

Listed:
  • Luca Spadafora
  • Francesca Sivero
  • Nicola Picchiotti

Abstract

This paper proposes a new integrated variance estimator based on order statistics within the framework of jump-diffusion models. Its ability to disentangle the integrated variance from the total process quadratic variation is confirmed by both simulated and empirical tests. For practical purposes, we introduce an iterative algorithm to estimate the time-varying volatility and the occurred jumps of log-return time series. Such estimates enable the definition of a new market risk model for the Value at Risk forecasting. We show empirically that this procedure outperforms the standard historical simulation method applying standard back-testing approach.

Suggested Citation

  • Luca Spadafora & Francesca Sivero & Nicola Picchiotti, 2018. "Jumping VaR: Order Statistics Volatility Estimator for Jumps Classification and Market Risk Modeling," Papers 1803.07021, arXiv.org, revised Mar 2018.
  • Handle: RePEc:arx:papers:1803.07021
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1803.07021
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ole E. Barndorff-Nielsen, 2004. "Power and Bipower Variation with Stochastic Volatility and Jumps," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 1-37.
    2. Jos'e E. Figueroa-L'opez & Cecilia Mancini, 2017. "Optimum thresholding using mean and conditional mean square error," Papers 1708.04339, arXiv.org.
    3. Luca Spadafora & Gennady P Berman, 2017. "Theoretical Foundations for Quantitative Finance," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 10326, February.
    4. Cecilia Mancini, 2010. "Speed of convergence of the threshold estimator of integrated variance," Working Papers - Mathematical Economics 2010-03, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dahlqvist, Carl-Henrik & Gnabo, Jean-Yves, 2018. "Effective network inference through multivariate information transfer estimation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 376-394.
    2. Taoufik Bouezmarni & Jeroen V.K. Rombouts & Abderrahim Taamouti, 2011. "Nonparametric Copula-Based Test for Conditional Independence with Applications to Granger Causality," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(2), pages 275-287, October.
    3. Elena Andreou & Eric Ghysels & Andros Kourtellos, 2010. "Forecasting with mixed-frequency data," University of Cyprus Working Papers in Economics 10-2010, University of Cyprus Department of Economics.
    4. Avouyi-Dovi, S. & Idier, J., 2010. "Central bank liquidity and market liquidity: the role of collateral provision on the French government debt securities market," Working papers 278, Banque de France.
    5. Huang, Jianbai & Tang, Jing & Zhang, Hongwei, 2020. "The effect of investors’ information search behaviors on rebar market return dynamics using high frequency data," Resources Policy, Elsevier, vol. 66(C).
    6. Perron, Benoit, 2004. "Détection non paramétrique de sauts dans la volatilité des marchés financiers," L'Actualité Economique, Société Canadienne de Science Economique, vol. 80(2), pages 229-251, Juin-Sept.
    7. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
    8. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    9. Grace Lee Ching Yap, 2020. "Optimal Filter Approximations for Latent Long Memory Stochastic Volatility," Computational Economics, Springer;Society for Computational Economics, vol. 56(2), pages 547-568, August.
    10. Christopher F. Baum & Mustafa Caglayan & Oleksandr Talavera, 2010. "On the sensitivity of firms' investment to cash flow and uncertainty," Oxford Economic Papers, Oxford University Press, vol. 62(2), pages 286-306, April.
    11. Christos Floros & Konstantinos Gkillas & Christoforos Konstantatos & Athanasios Tsagkanos, 2020. "Realized Measures to Explain Volatility Changes over Time," JRFM, MDPI, vol. 13(6), pages 1-19, June.
    12. Yuqian Xu & Lingjiong Zhu & Michael Pinedo, 2020. "Operational Risk Management: A Stochastic Control Framework with Preventive and Corrective Controls," Operations Research, INFORMS, vol. 68(6), pages 1804-1825, November.
    13. Kakinaka, Shinji & Umeno, Ken, 2021. "Exploring asymmetric multifractal cross-correlations of price–volatility and asymmetric volatility dynamics in cryptocurrency markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    14. Shahzad, Syed Jawad Hussain & Raza, Naveed & Balcilar, Mehmet & Ali, Sajid & Shahbaz, Muhammad, 2017. "Can economic policy uncertainty and investors sentiment predict commodities returns and volatility?," Resources Policy, Elsevier, vol. 53(C), pages 208-218.
    15. Barndorff-Nielsen, Ole E. & Graversen, Svend Erik & Jacod, Jean & Shephard, Neil, 2006. "Limit Theorems For Bipower Variation In Financial Econometrics," Econometric Theory, Cambridge University Press, vol. 22(4), pages 677-719, August.
    16. Dufour, Jean-Marie & García, René, 2008. "Measuring causality between volatility and returns with high-frequency data," UC3M Working papers. Economics we084422, Universidad Carlos III de Madrid. Departamento de Economía.
    17. Podolskij, Mark & Vetter, Mathias, 2009. "Bipower-type estimation in a noisy diffusion setting," Stochastic Processes and their Applications, Elsevier, vol. 119(9), pages 2803-2831, September.
    18. Doureige J. Jurdi, 2020. "Intraday Jumps, Liquidity, and U.S. Macroeconomic News: Evidence from Exchange Traded Funds," JRFM, MDPI, vol. 13(6), pages 1-19, June.
    19. Bollerslev, Tim & Gibson, Michael & Zhou, Hao, 2011. "Dynamic estimation of volatility risk premia and investor risk aversion from option-implied and realized volatilities," Journal of Econometrics, Elsevier, vol. 160(1), pages 235-245, January.
    20. Lee, Hwang Hee & Hyun, Jung-Soon, 2019. "The asymmetric effect of equity volatility on credit default swap spreads," Journal of Banking & Finance, Elsevier, vol. 98(C), pages 125-136.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1803.07021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.