IDEAS home Printed from https://ideas.repec.org/p/ecm/wc2000/1903.html
   My bibliography  Save this paper

Temporal Aggregation of Volatility Models

Author

Listed:
  • Nour Meddahi

    (University of Montreal)

Abstract

In this paper, we consider temporal aggregation of volatility models. We introduce a semiparametric class of volatility models termed square-root stochastic autoregressive volatility (SR-SARV) and characterized by an autoregressive dynamic of the stochastic variance. Our class encompasses the usual GARCH models and various asymmetric GARCH models. Moreover, our stochastic volatility models are characterized by observable multiperiod conditional moment restrictions. The SR-SARV class is a natural extension of the weak GARCH models. Our extension has four advantages: i) we do not assume that the fourth moment is finite; ii) we allow for asymmetries (skewness, leverage effect) that are excluded by the weak GARCH models; iii) we derive conditional moment restrictions which are useful for non-linear inference; iv) our framework allows us to study temporal aggregation of IGARCH models and non-linear models such as EGARCH and Exponential SV in discrete and continuous time. Dans cet article, nous considérons l'agrégation temporelle des modèles de volatilité. Nous introduisons une classe de modèles de volatilité semi-paramétrique dénommée SR-SARV et caractérisée par une variance stochastique ayant une dynamique autorégressive. Notre classe contient les modèles GARCH usuels ainsi que plusieurs variantes asymétriques. De plus, nos modèles à volatilité stochastique sont caractérisés par des moments conditionnels observables et à plusieurs horizons. La classe des modèles SR-SARV est une généralisation naturelle des modèles GARCH faibles. Notre extension présente quatre avantages: i) nous ne supposons pas que le moment d'ordre quatre est fini; ii) nous permettons des asymétries (de type skewness et effet de levier) qui sont exclues par les modèles GARCH faibles; iii) nous dérivons des restrictions sur des moments conditionnels utiles pour l'inférence non-linéaire; iv) notre cadre de travail nous permet d'étudier l'agrégation temporelle des modèles IGARCH ainsi que des modèles non
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Nour Meddahi, 2000. "Temporal Aggregation of Volatility Models," Econometric Society World Congress 2000 Contributed Papers 1903, Econometric Society.
  • Handle: RePEc:ecm:wc2000:1903
    as

    Download full text from publisher

    File URL: http://fmwww.bc.edu/RePEc/es2000/1903.pdf
    File Function: main text
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Nelson, Daniel B., 1990. "ARCH models as diffusion approximations," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 7-38.
    2. Drost, Feike C & Nijman, Theo E, 1993. "Temporal Aggregation of GARCH Processes," Econometrica, Econometric Society, vol. 61(4), pages 909-927, July.
    3. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    4. Drost, Feike C & Nijman, Theo E, 1993. "Temporal Aggregation of GARCH Processes," Econometrica, Econometric Society, vol. 61(4), pages 909-927, July.
    5. Diebold, Francis X & Nerlove, Marc, 1989. "The Dynamics of Exchange Rate Volatility: A Multivariate Latent Factor Arch Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 4(1), pages 1-21, Jan.-Mar..
    6. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    7. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 1999. "The Distribution of Exchange Rate Volatility," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-059, New York University, Leonard N. Stern School of Business-.
    8. Nijman, Theo & Sentana, Enrique, 1996. "Marginalization and contemporaneous aggregation in multivariate GARCH processes," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 71-87.
    9. Serge Darolles & Jean-Pierre Florens & Christian Gourieroux, 1998. "Kernel Based Nonlinear Canonical Analysis," Working Papers 98-55, Center for Research in Economics and Statistics.
    10. Conley, Timothy G, et al, 1997. "Short-Term Interest Rates as Subordinated Diffusions," The Review of Financial Studies, Society for Financial Studies, vol. 10(3), pages 525-577.
    11. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    12. Constantinides, George M, 1992. "A Theory of the Nominal Term Structure of Interest Rates," The Review of Financial Studies, Society for Financial Studies, vol. 5(4), pages 531-552.
    13. Harvey, Andrew & Ruiz, Esther & Sentana, Enrique, 1992. "Unobserved component time series models with Arch disturbances," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 129-157.
    14. Hansen, Lars Peter & Singleton, Kenneth J, 1996. "Efficient Estimation of Linear Asset-Pricing Models with Moving Average Errors," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 53-68, January.
    15. Meddahi, N & Renault, E., 1996. "Aggregations and Marginalization of Garch and Stochastic Volatility Models," Papers 96.433, Toulouse - GREMAQ.
    16. Xiaohong Chen & Lars Peter Hansen & Jos´e A. Scheinkman, 2005. "Principal Components and the Long Run," Levine's Bibliography 122247000000000997, UCLA Department of Economics.
    17. West, Kenneth D, 1996. "Asymptotic Inference about Predictive Ability," Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
    18. Elerain, Ola & Chib, Siddhartha & Shephard, Neil, 2001. "Likelihood Inference for Discretely Observed Nonlinear Diffusions," Econometrica, Econometric Society, vol. 69(4), pages 959-993, July.
    19. Fabienne Comte & Eric Renault, 1998. "Long memory in continuous‐time stochastic volatility models," Mathematical Finance, Wiley Blackwell, vol. 8(4), pages 291-323, October.
    20. Hansen, Lars Peter & Alexandre Scheinkman, Jose & Touzi, Nizar, 1998. "Spectral methods for identifying scalar diffusions," Journal of Econometrics, Elsevier, vol. 86(1), pages 1-32, June.
    21. Tim Bollerslev, 1988. "On The Correlation Structure For The Generalized Autoregressive Conditional Heteroskedastic Process," Journal of Time Series Analysis, Wiley Blackwell, vol. 9(2), pages 121-131, March.
    22. Andersen, Torben G & Bollerslev, Tim, 1997. "Heterogeneous Information Arrivals and Return Volatility Dynamics: Uncovering the Long-Run in High Frequency Returns," Journal of Finance, American Finance Association, vol. 52(3), pages 975-1005, July.
    23. Peter F. Christoffersen & Francis X. Diebold, 2000. "How Relevant is Volatility Forecasting for Financial Risk Management?," The Review of Economics and Statistics, MIT Press, vol. 82(1), pages 12-22, February.
    24. Nelson, Daniel B., 1992. "Filtering and forecasting with misspecified ARCH models I : Getting the right variance with the wrong model," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 61-90.
    25. Drost, Feike C. & Werker, Bas J. M., 1996. "Closing the GARCH gap: Continuous time GARCH modeling," Journal of Econometrics, Elsevier, vol. 74(1), pages 31-57, September.
    26. Hansen, Lars Peter & Scheinkman, Jose Alexandre, 1995. "Back to the Future: Generating Moment Implications for Continuous-Time Markov Processes," Econometrica, Econometric Society, vol. 63(4), pages 767-804, July.
    27. Nelson, Daniel B & Foster, Dean P, 1994. "Asymptotic Filtering Theory for Univariate ARCH Models," Econometrica, Econometric Society, vol. 62(1), pages 1-41, January.
    28. King, Mervyn & Sentana, Enrique & Wadhwani, Sushil, 1994. "Volatility and Links between National Stock Markets," Econometrica, Econometric Society, vol. 62(4), pages 901-933, July.
    29. Darrell Duffie & Rui Kan, 1996. "A Yield‐Factor Model Of Interest Rates," Mathematical Finance, Wiley Blackwell, vol. 6(4), pages 379-406, October.
    30. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    31. Elerain, Ola & Chib, Siddhartha & Shephard, Neil, 2001. "Likelihood Inference for Discretely Observed Nonlinear Diffusions," Econometrica, Econometric Society, vol. 69(4), pages 959-93, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    2. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Volatility forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies (CFS).
    3. MEDDAHI, Nour, 2001. "An Eigenfunction Approach for Volatility Modeling," Cahiers de recherche 2001-29, Universite de Montreal, Departement de sciences economiques.
    4. Font, Begoña, 1998. "Modelización de series temporales financieras. Una recopilación," DES - Documentos de Trabajo. Estadística y Econometría. DS 3664, Universidad Carlos III de Madrid. Departamento de Estadística.
    5. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    6. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    7. Nour Meddahi, 2002. "ARMA Representation of Two-Factor Models," CIRANO Working Papers 2002s-92, CIRANO.
    8. Nour Meddahi, 2002. "A theoretical comparison between integrated and realized volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 479-508.
    9. Nour Meddahi, 2003. "ARMA representation of integrated and realized variances," Econometrics Journal, Royal Economic Society, vol. 6(2), pages 335-356, December.
    10. Francis X. Diebold & Jose A. Lopez, 1995. "Measuring Volatility Dynamics," NBER Technical Working Papers 0173, National Bureau of Economic Research, Inc.
    11. Bollerslev, Tim, 2001. "Financial econometrics: Past developments and future challenges," Journal of Econometrics, Elsevier, vol. 100(1), pages 41-51, January.
    12. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    13. Torben G. Andersen & Tim Bollerslev & Nour Meddahi, 2004. "Analytical Evaluation Of Volatility Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 45(4), pages 1079-1110, November.
    14. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, September.
    15. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 1999. "The Distribution of Exchange Rate Volatility," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-059, New York University, Leonard N. Stern School of Business-.
    16. Bollerslev, Tim & Zhou, Hao, 2002. "Estimating stochastic volatility diffusion using conditional moments of integrated volatility," Journal of Econometrics, Elsevier, vol. 109(1), pages 33-65, July.
    17. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
    18. Torben G. Andersen & Tim Bollerslev, 1997. "Answering the Critics: Yes, ARCH Models Do Provide Good Volatility Forecasts," NBER Working Papers 6023, National Bureau of Economic Research, Inc.
    19. Alexander Subbotin & Thierry Chauveau & Kateryna Shapovalova, 2009. "Volatility Models: from GARCH to Multi-Horizon Cascades," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00390636, HAL.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:wc2000:1903. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.