IDEAS home Printed from https://ideas.repec.org/p/sbs/wpsefe/2008fe32.html
   My bibliography  Save this paper

Bayesian inference based only on simulated likelihood: particle filter analysis of dynamic economic models

Author

Listed:
  • Thomas Flury
  • Neil Shephard

Abstract

Suppose we wish to carry out likelihood based inference but we solely have an unbiased simulation based estimator of the likelihood. We note that unbiasedness is enough when the estimated likelihood is used inside a Metropolis-Hastings algorithm. This result has recently been intro- duced in statistics literature by Andrieu, Doucet, and Holenstein (2007) and is perhaps surprising given the celebrated results on maximum simulated likelihood estimation. Bayesian inference based on simulated likelihood can be widely applied in microeconomics, macroeconomics and financial econometrics. One way of generating unbiased estimates of the likelihood is by the use of a particle filter. We illustrate these methods on four problems in econometrics, producing rather generic methods. Taken together, these methods imply that if we can simulate from an economic model we can carry out likelihood based inference using its simulations.

Suggested Citation

  • Thomas Flury & Neil Shephard, 2008. "Bayesian inference based only on simulated likelihood: particle filter analysis of dynamic economic models," OFRC Working Papers Series 2008fe32, Oxford Financial Research Centre.
  • Handle: RePEc:sbs:wpsefe:2008fe32
    as

    Download full text from publisher

    File URL: http://www.finance.ox.ac.uk/file_links/finecon_papers/2008fe32.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    More about this item

    Keywords

    Dynamic stochastic general equilibrium models; inference; likelihood; MCMC; Metropolis-Hastings; particle filter; state space models; stochastic volatility;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sbs:wpsefe:2008fe32. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Maxine Collett (email available below). General contact details of provider: https://edirc.repec.org/data/frcoxuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.