IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v19y2019i12p2033-2050.html
   My bibliography  Save this article

Forecasting jump arrivals in stock prices: new attention-based network architecture using limit order book data

Author

Listed:
  • Ymir Mäkinen
  • Juho Kanniainen
  • Moncef Gabbouj
  • Alexandros Iosifidis

Abstract

The existing literature provides evidence that limit order book data can be used to predict short-term price movements in stock markets. This paper proposes a new neural network architecture for predicting return jump arrivals one minute ahead in equity markets with high-frequency limit order book data. This new architecture, based on Convolutional Long Short-Term Memory with Attention, is introduced to apply time series representation learning with memory and to focus the prediction attention on the most important features to improve performance. The use of the attention mechanism makes it possible to analyze the importance of the inclusion limit order book data and other input variables. Our architecture with this mechanism is used and compared to existing deep learning architectures with the data set that consists of order book data on five liquid U.S. stocks over 18 months. We provide evidence that (i) the new architecture with attention model outperforms existing architectures and (ii) the use of limit order book data was found to improve the performance of the proposed model in jump prediction, either clearly or marginally, depending on the underlying stock. This suggests that path-dependence in limit order book markets is a stock specific feature. Moreover, we find that the proposed approach with an attention mechanism outperforms the multi-layer perceptron network as well as the convolutional neural network and Long Short-Term memory model.

Suggested Citation

  • Ymir Mäkinen & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2019. "Forecasting jump arrivals in stock prices: new attention-based network architecture using limit order book data," Quantitative Finance, Taylor & Francis Journals, vol. 19(12), pages 2033-2050, December.
  • Handle: RePEc:taf:quantf:v:19:y:2019:i:12:p:2033-2050
    DOI: 10.1080/14697688.2019.1634277
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2019.1634277
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2019.1634277?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dat Thanh Tran & Martin Magris & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2017. "Tensor Representation in High-Frequency Financial Data for Price Change Prediction," Papers 1709.01268, arXiv.org, revised Nov 2017.
    2. Corsi, Fulvio & Pirino, Davide & Renò, Roberto, 2010. "Threshold bipower variation and the impact of jumps on volatility forecasting," Journal of Econometrics, Elsevier, vol. 159(2), pages 276-288, December.
    3. Daniel Bradley & Jonathan Clarke & Suzanne Lee & Chayawat Ornthanalai, 2014. "Are Analysts’ Recommendations Informative? Intraday Evidence on the Impact of Time Stamp Delays," Journal of Finance, American Finance Association, vol. 69(2), pages 645-673, April.
    4. Xin Huang & George Tauchen, 2005. "The Relative Contribution of Jumps to Total Price Variance," Journal of Financial Econometrics, Oxford University Press, vol. 3(4), pages 456-499.
    5. Thierry Foucault & Sophie Moinas & Erik Theissen, 2007. "Does Anonymity Matter in Electronic Limit Order Markets?," The Review of Financial Studies, Society for Financial Studies, vol. 20(5), pages 1707-1747, 2007 28.
    6. Copeland, Thomas E & Galai, Dan, 1983. "Information Effects on the Bid-Ask Spread," Journal of Finance, American Finance Association, vol. 38(5), pages 1457-1469, December.
    7. Rama Cont & Adrien De Larrard, 2012. "Order book dynamics in liquid markets: limit theorems and diffusion approximations," Papers 1202.6412, arXiv.org.
    8. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," The Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
    9. Dat Thanh Tran & Alexandros Iosifidis & Juho Kanniainen & Moncef Gabbouj, 2017. "Temporal Attention augmented Bilinear Network for Financial Time-Series Data Analysis," Papers 1712.00975, arXiv.org.
    10. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    11. Justin Sirignano & Rama Cont, 2018. "Universal features of price formation in financial markets: perspectives from Deep Learning," Papers 1803.06917, arXiv.org.
    12. repec:bla:jfinan:v:59:y:2004:i:3:p:1367-1404 is not listed on IDEAS
    13. Lee, Suzanne S. & Hannig, Jan, 2010. "Detecting jumps from Lévy jump diffusion processes," Journal of Financial Economics, Elsevier, vol. 96(2), pages 271-290, May.
    14. Justin Sirignano & Rama Cont, 2018. "Universal features of price formation in financial markets: perspectives from Deep Learning," Working Papers hal-01754054, HAL.
    15. Andersen, Torben G. & Bollerslev, Tim & Dobrev, Dobrislav, 2007. "No-arbitrage semi-martingale restrictions for continuous-time volatility models subject to leverage effects, jumps and i.i.d. noise: Theory and testable distributional implications," Journal of Econometrics, Elsevier, vol. 138(1), pages 125-180, May.
    16. Chiarella, Carl & He, Xue-Zhong & Wei, Lijian, 2015. "Learning, information processing and order submission in limit order markets," Journal of Economic Dynamics and Control, Elsevier, vol. 61(C), pages 245-268.
    17. Suzanne S. Lee & Per A. Mykland, 2008. "Jumps in Financial Markets: A New Nonparametric Test and Jump Dynamics," The Review of Financial Studies, Society for Financial Studies, vol. 21(6), pages 2535-2563, November.
    18. Rama Cont & Sasha Stoikov & Rishi Talreja, 2010. "A Stochastic Model for Order Book Dynamics," Operations Research, INFORMS, vol. 58(3), pages 549-563, June.
    19. repec:hal:journl:peer-00741630 is not listed on IDEAS
    20. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    21. Tóth, Bence & Palit, Imon & Lillo, Fabrizio & Farmer, J. Doyne, 2015. "Why is equity order flow so persistent?," Journal of Economic Dynamics and Control, Elsevier, vol. 51(C), pages 218-239.
    22. Juho Kanniainen, 2009. "Can properly discounted projects follow geometric Brownian motion?," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 70(3), pages 435-450, December.
    23. Ole E. Barndorff-Nielsen, 2004. "Power and Bipower Variation with Stochastic Volatility and Jumps," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 1-37.
    24. Hanxue Yang & Juho Kanniainen, 2017. "Jump and Volatility Dynamics for the S&P 500: Evidence for Infinite-Activity Jumps with Non-Affine Volatility Dynamics from Stock and Option Markets," Review of Finance, European Finance Association, vol. 21(2), pages 811-844.
    25. Alec N. Kercheval & Yuan Zhang, 2015. "Modelling high-frequency limit order book dynamics with support vector machines," Quantitative Finance, Taylor & Francis Journals, vol. 15(8), pages 1315-1329, August.
    26. Rainer Schöbel & Jianwei Zhu, 1999. "Stochastic Volatility With an Ornstein–Uhlenbeck Process: An Extension," Review of Finance, European Finance Association, vol. 3(1), pages 23-46.
    27. Suzanne S. Lee, 2012. "Jumps and Information Flow in Financial Markets," The Review of Financial Studies, Society for Financial Studies, vol. 25(2), pages 439-479.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sevcan Uzun & Ahmet Sensoy & Duc Khuong Nguyen, 2023. "Jump forecasting in foreign exchange markets: A high‐frequency analysis," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(3), pages 578-624, April.
    2. Adamantios Ntakaris & Moncef Gabbouj & Juho Kanniainen, 2023. "Optimum Output Long Short-Term Memory Cell for High-Frequency Trading Forecasting," Papers 2304.09840, arXiv.org, revised May 2023.
    3. Ao Kong & Hongliang Zhu & Robert Azencott, 2021. "Predicting intraday jumps in stock prices using liquidity measures and technical indicators," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 416-438, April.
    4. James Wallbridge, 2020. "Transformers for Limit Order Books," Papers 2003.00130, arXiv.org.
    5. Luca Grilli & Domenico Santoro, 2022. "Forecasting financial time series with Boltzmann entropy through neural networks," Computational Management Science, Springer, vol. 19(4), pages 665-681, October.
    6. Ao Kong & Hongliang Zhu & Robert Azencott, 2019. "Predicting intraday jumps in stock prices using liquidity measures and technical indicators," Papers 1912.07165, arXiv.org.
    7. Kandaswamy Paramasivan & Rahul Subburaj & Saish Jaiswal & Nandan Sudarsanam, 2022. "Empirical evidence of the impact of mobility on property crimes during the first two waves of the COVID-19 pandemic," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-14, December.
    8. Zijian Shi & John Cartlidge, 2021. "The Limit Order Book Recreation Model (LOBRM): An Extended Analysis," Papers 2107.00534, arXiv.org.
    9. Grilli, Luca & Santoro, Domenico, 2020. "How Boltzmann Entropy Improves Prediction with LSTM," MPRA Paper 100578, University Library of Munich, Germany.
    10. Qinkai Chen, 2021. "Stock Movement Prediction with Financial News using Contextualized Embedding from BERT," Papers 2107.08721, arXiv.org.
    11. Ao Kong & Robert Azencott & Hongliang Zhu & Xindan Li, 2024. "Pattern Recognition in Microtrading Behaviors Preceding Stock Price Jumps: A Study Based on Mutual Information for Multivariate Time Series," Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1401-1429, April.
    12. Dat Thanh Tran & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2021. "Bilinear Input Normalization for Neural Networks in Financial Forecasting," Papers 2109.00983, arXiv.org.
    13. Radu LUPU & Iulia LUPU & Tanase STAMULE & Mihai ROMAN, 2022. "Entropy as Leading Indicator for Extreme Systemic Risk Events," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 58-73, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ymir Makinen & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2018. "Forecasting of Jump Arrivals in Stock Prices: New Attention-based Network Architecture using Limit Order Book Data," Papers 1810.10845, arXiv.org.
    2. Juho Kanniainen & Ye Yue, 2019. "The Arrival of News and Return Jumps in Stock Markets: A Nonparametric Approach," Papers 1901.02691, arXiv.org.
    3. Gilder, Dudley & Shackleton, Mark B. & Taylor, Stephen J., 2014. "Cojumps in stock prices: Empirical evidence," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 443-459.
    4. Jan Hanousek & Jan Novotný, 2014. "Cenové skoky během finanční nejistoty: od intuice k regulační perspektivě [Price Jumps during Financial Crisis: From Intuition to Financial Regulation]," Politická ekonomie, Prague University of Economics and Business, vol. 2014(1), pages 32-48.
    5. Maneesoonthorn, Worapree & Martin, Gael M. & Forbes, Catherine S., 2020. "High-frequency jump tests: Which test should we use?," Journal of Econometrics, Elsevier, vol. 219(2), pages 478-487.
    6. Worapree Maneesoonthorn & Gael M. Martin & Catherine S. Forbes, 2017. "Dynamic asset price jumps and the performance of high frequency tests and measures," Monash Econometrics and Business Statistics Working Papers 14/17, Monash University, Department of Econometrics and Business Statistics.
    7. Worapree Maneesoonthorn & Gael M Martin & Catherine S Forbes, 2018. "Dynamic price jumps: The performance of high frequency tests and measures, and the robustness of inference," Monash Econometrics and Business Statistics Working Papers 17/18, Monash University, Department of Econometrics and Business Statistics.
    8. Yingjie Dong & Yiu-Kuen Tse, 2017. "Business Time Sampling Scheme with Applications to Testing Semi-Martingale Hypothesis and Estimating Integrated Volatility," Econometrics, MDPI, vol. 5(4), pages 1-19, November.
    9. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
    10. Kim Christensen & Ulrich Hounyo & Mark Podolskij, 2017. "Is the diurnal pattern sufficient to explain the intraday variation in volatility? A nonparametric assessment," CREATES Research Papers 2017-30, Department of Economics and Business Economics, Aarhus University.
    11. Francesco Audrino & Yujia Hu, 2016. "Volatility Forecasting: Downside Risk, Jumps and Leverage Effect," Econometrics, MDPI, vol. 4(1), pages 1-24, February.
    12. Chao Yu & Yue Fang & Zeng Li & Bo Zhang & Xujie Zhao, 2014. "Non-Parametric Estimation Of High-Frequency Spot Volatility For Brownian Semimartingale With Jumps," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(6), pages 572-591, November.
    13. Konstantinos Gkillas & Dimitrios Vortelinos & Christos Floros & Alexandros Garefalakis & Nikolaos Sariannidis, 2020. "Greek sovereign crisis and European exchange rates: effects of news releases and their providers," Annals of Operations Research, Springer, vol. 294(1), pages 515-536, November.
    14. Barunik, Jozef & Vacha, Lukas, 2018. "Do co-jumps impact correlations in currency markets?," Journal of Financial Markets, Elsevier, vol. 37(C), pages 97-119.
    15. Chan, Kam Fong & Powell, John G. & Treepongkaruna, Sirimon, 2014. "Currency jumps and crises: Do developed and emerging market currencies jump together?," Pacific-Basin Finance Journal, Elsevier, vol. 30(C), pages 132-157.
    16. F. Lilla, 2016. "High Frequency vs. Daily Resolution: the Economic Value of Forecasting Volatility Models," Working Papers wp1084, Dipartimento Scienze Economiche, Universita' di Bologna.
    17. Sensoy, Ahmet & Serdengeçti, Süleyman, 2020. "Impact of portfolio flows and heterogeneous expectations on FX jumps: Evidence from an emerging market," International Review of Financial Analysis, Elsevier, vol. 68(C).
    18. Ma, Feng & Wahab, M.I.M. & Huang, Dengshi & Xu, Weiju, 2017. "Forecasting the realized volatility of the oil futures market: A regime switching approach," Energy Economics, Elsevier, vol. 67(C), pages 136-145.
    19. Yao, Wenying & Tian, Jing, 2015. "The role of intra-day volatility pattern in jump detection: empirical evidence on how financial markets respond to macroeconomic news announcements," Working Papers 2015-05, University of Tasmania, Tasmanian School of Business and Economics.
    20. Torben G. Andersen & Tim Bollerslev & Per Frederiksen & Morten Ørregaard Nielsen, 2010. "Continuous-time models, realized volatilities, and testable distributional implications for daily stock returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 233-261.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:19:y:2019:i:12:p:2033-2050. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.