IDEAS home Printed from https://ideas.repec.org/a/spr/decfin/v42y2019i2d10.1007_s10203-019-00259-6.html
   My bibliography  Save this article

Asymptotic results for the Fourier estimator of the integrated quarticity

Author

Listed:
  • Giulia Livieri

    (Scuola Normale Superiore)

  • Maria Elvira Mancino

    (University of Firenze)

  • Stefano Marmi

    (Scuola Normale Superiore)

Abstract

In this paper, we prove a central limit theorem for an estimator of the integrated quarticity based on Fourier analysis, strictly related to the one proposed in Mancino and Sanfelici (Quant Finance 12: 607–622, 2012). Also, a consistency result is derived. We show that the estimator reaches the parametric rate $$\rho (n)^{1/2}$$ρ(n)1/2, where $$\rho (n)$$ρ(n) is the discretization mesh and n the number of points of such discretization. The optimal variance is obtained, with a suitable choice of the number of frequencies employed to compute the Fourier coefficients of the volatility, while the limiting distribution has a bias. As a by-product, thanks to the Fourier methodology, we obtain consistent estimators of any even power of the volatility function as well as an estimator of the spot quarticity. We assess the finite-sample performance of the Fourier quarticity estimator in a numerical simulation.

Suggested Citation

  • Giulia Livieri & Maria Elvira Mancino & Stefano Marmi, 2019. "Asymptotic results for the Fourier estimator of the integrated quarticity," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 471-502, December.
  • Handle: RePEc:spr:decfin:v:42:y:2019:i:2:d:10.1007_s10203-019-00259-6
    DOI: 10.1007/s10203-019-00259-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10203-019-00259-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10203-019-00259-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ana-Maria Dumitru & Giovanni Urga, 2011. "Identifying Jumps in Financial Assets: A Comparison Between Nonparametric Jump Tests," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(2), pages 242-255, October.
    2. Maria Elvira Mancino & Simona Sanfelici, 2012. "Estimation of quarticity with high-frequency data," Quantitative Finance, Taylor & Francis Journals, vol. 12(4), pages 607-622, December.
    3. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2008. "Designing Realized Kernels to Measure the ex post Variation of Equity Prices in the Presence of Noise," Econometrica, Econometric Society, vol. 76(6), pages 1481-1536, November.
    4. Simona Sanfelici & Imma Valentina Curato & Maria Elvira Mancino, 2015. "High-frequency volatility of volatility estimation free from spot volatility estimates," Quantitative Finance, Taylor & Francis Journals, vol. 15(8), pages 1331-1345, August.
    5. Shigeyoshi Ogawa & Simona Sanfelici, 2011. "An Improved Two‐step Regularization Scheme for Spot Volatility Estimation," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 40(3), pages 105-132, November.
    6. Andersen, Torben G. & Dobrev, Dobrislav & Schaumburg, Ernst, 2014. "A Robust Neighborhood Truncation Approach To Estimation Of Integrated Quarticity," Econometric Theory, Cambridge University Press, vol. 30(1), pages 3-59, February.
    7. Ole E. Barndorff‐Nielsen & Neil Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280, May.
    8. Aleksey Kolokolov & Roberto Renò, 2018. "Efficient Multipowers," Journal of Financial Econometrics, Oxford University Press, vol. 16(4), pages 629-659.
    9. Cuchiero, Christa & Teichmann, Josef, 2015. "Fourier transform methods for pathwise covariance estimation in the presence of jumps," Stochastic Processes and their Applications, Elsevier, vol. 125(1), pages 116-160.
    10. Bandi, Federico M. & Russell, Jeffrey R., 2006. "Separating microstructure noise from volatility," Journal of Financial Economics, Elsevier, vol. 79(3), pages 655-692, March.
    11. Clément, Emmanuelle & Gloter, Arnaud, 2011. "Limit theorems in the Fourier transform method for the estimation of multivariate volatility," Stochastic Processes and their Applications, Elsevier, vol. 121(5), pages 1097-1124, May.
    12. Mancino, M.E. & Sanfelici, S., 2008. "Robustness of Fourier estimator of integrated volatility in the presence of microstructure noise," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2966-2989, February.
    13. Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2016. "Exploiting the errors: A simple approach for improved volatility forecasting," Journal of Econometrics, Elsevier, vol. 192(1), pages 1-18.
    14. Maria Elvira Mancino & Paul Malliavin, 2002. "Fourier series method for measurement of multivariate volatilities," Finance and Stochastics, Springer, vol. 6(1), pages 49-61.
    15. Torben G. Andersen & Luca Benzoni & Jesper Lund, 2002. "An Empirical Investigation of Continuous‐Time Equity Return Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1239-1284, June.
    16. Emilio Barucci & Maria Elvira Mancino, 2010. "Computation Of Volatility In Stochastic Volatility Models With High Frequency Data," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 13(05), pages 767-787.
    17. Ole E. Barndorff-Nielsen, 2004. "Power and Bipower Variation with Stochastic Volatility and Jumps," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 1-37.
    18. Ole E. Barndorff-Nielsen & Almut E. D. Veraart, 2012. "Stochastic Volatility of Volatility and Variance Risk Premia," Journal of Financial Econometrics, Oxford University Press, vol. 11(1), pages 1-46, December.
    19. repec:taf:jnlbes:v:30:y:2012:i:2:p:242-255 is not listed on IDEAS
    20. Clément, Emmanuelle & Delattre, Sylvain & Gloter, Arnaud, 2013. "An infinite dimensional convolution theorem with applications to the efficient estimation of the integrated volatility," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2500-2521.
    21. Zu, Yang & Peter Boswijk, H., 2014. "Estimating spot volatility with high-frequency financial data," Journal of Econometrics, Elsevier, vol. 181(2), pages 117-135.
    22. Per Mykland, 2012. "A Gaussian calculus for inference from high frequency data," Annals of Finance, Springer, vol. 8(2), pages 235-258, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elisa Alòs & Maria Elvira Mancino & Tai-Ho Wang, 2019. "Volatility and volatility-linked derivatives: estimation, modeling, and pricing," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 321-349, December.
    2. Giacomo Toscano & Giulia Livieri & Maria Elvira Mancino & Stefano Marmi, 2021. "Volatility of volatility estimation: central limit theorems for the Fourier transform estimator and empirical study of the daily time series stylized facts," Papers 2112.14529, arXiv.org, revised Sep 2022.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria Elvira Mancino & Tommaso Mariotti & Giacomo Toscano, 2022. "Asymptotic Normality for the Fourier spot volatility estimator in the presence of microstructure noise," Papers 2209.08967, arXiv.org.
    2. Maria Elvira Mancino & Maria Cristina Recchioni, 2015. "Fourier Spot Volatility Estimator: Asymptotic Normality and Efficiency with Liquid and Illiquid High-Frequency Data," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-33, September.
    3. Curato, Imma Valentina, 2019. "Estimation of the stochastic leverage effect using the Fourier transform method," Stochastic Processes and their Applications, Elsevier, vol. 129(9), pages 3207-3238.
    4. Giacomo Toscano & Giulia Livieri & Maria Elvira Mancino & Stefano Marmi, 2021. "Volatility of volatility estimation: central limit theorems for the Fourier transform estimator and empirical study of the daily time series stylized facts," Papers 2112.14529, arXiv.org, revised Sep 2022.
    5. Bu, Ruijun & Hizmeri, Rodrigo & Izzeldin, Marwan & Murphy, Anthony & Tsionas, Mike, 2023. "The contribution of jump signs and activity to forecasting stock price volatility," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 144-164.
    6. Cecilia Mancini & Vanessa Mattiussi & Roberto Renò, 2015. "Spot volatility estimation using delta sequences," Finance and Stochastics, Springer, vol. 19(2), pages 261-293, April.
    7. Wang, Fangfang, 2014. "Optimal design of Fourier estimator in the presence of microstructure noise," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 708-722.
    8. Kim Christensen & Mark Podolskij & Mathias Vetter, 2009. "Bias-correcting the realized range-based variance in the presence of market microstructure noise," Finance and Stochastics, Springer, vol. 13(2), pages 239-268, April.
    9. Christensen, Kim & Thyrsgaard, Martin & Veliyev, Bezirgen, 2019. "The realized empirical distribution function of stochastic variance with application to goodness-of-fit testing," Journal of Econometrics, Elsevier, vol. 212(2), pages 556-583.
    10. Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2016. "Exploiting the errors: A simple approach for improved volatility forecasting," Journal of Econometrics, Elsevier, vol. 192(1), pages 1-18.
    11. Nielsen, Morten Ørregaard & Frederiksen, Per, 2008. "Finite sample accuracy and choice of sampling frequency in integrated volatility estimation," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 265-286, March.
    12. Simon Clinet & Yoann Potiron, 2021. "Estimation for high-frequency data under parametric market microstructure noise," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(4), pages 649-669, August.
    13. Imma Valentina Curato, 2013. "Fourier estimation of stochastic leverage using high frequency data," Working Papers - Mathematical Economics 2013-04, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
    14. Li, Yingying & Liu, Guangying & Zhang, Zhiyuan, 2022. "Volatility of volatility: Estimation and tests based on noisy high frequency data with jumps," Journal of Econometrics, Elsevier, vol. 229(2), pages 422-451.
    15. Curato, Imma Valentina & Mancino, Maria Elvira & Recchioni, Maria Cristina, 2018. "Spot volatility estimation using the Laplace transform," Econometrics and Statistics, Elsevier, vol. 6(C), pages 22-43.
    16. Jean Jacod, 2019. "Estimation of volatility in a high-frequency setting: a short review," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 351-385, December.
    17. Large, Jeremy, 2011. "Estimating quadratic variation when quoted prices change by a constant increment," Journal of Econometrics, Elsevier, vol. 160(1), pages 2-11, January.
    18. Federico M. Bandi & Roberto Reno, 2009. "Nonparametric Stochastic Volatility," Global COE Hi-Stat Discussion Paper Series gd08-035, Institute of Economic Research, Hitotsubashi University.
    19. Bollerslev, Tim & Kretschmer, Uta & Pigorsch, Christian & Tauchen, George, 2009. "A discrete-time model for daily S & P500 returns and realized variations: Jumps and leverage effects," Journal of Econometrics, Elsevier, vol. 150(2), pages 151-166, June.
    20. Maria Elvira Mancino & Simona Sanfelici, 2012. "Estimation of quarticity with high-frequency data," Quantitative Finance, Taylor & Francis Journals, vol. 12(4), pages 607-622, December.

    More about this item

    Keywords

    (Powers of) volatility estimation; Quarticity; Central limit theorem; Fourier analysis; High-frequency data.;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:decfin:v:42:y:2019:i:2:d:10.1007_s10203-019-00259-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.