IDEAS home Printed from https://ideas.repec.org/p/nuf/econwp/042.html
   My bibliography  Save this paper

Inference for Adaptive Time Series Models: Stochastic Volatility and Conditionally Gaussian State Space Form

Author

Listed:
  • Charles S. Bos

    (Tinbergen Institute and Vrije Universiteit Amsterdam,The Netherlands)

  • Neil Shephard

    (Nuffield College, Oxford University, UK)

Abstract

In this paper we replace the Gaussian errors in the standard Gaussian, linear state space model with stochastic volatility processes. This is called a GSSF-SV model. We show that conventional MCMC algoritms for this type of model are ineffective, but that this problem can be removed by reparameterising the model. We illustrate our results on an example from financial economics and one from the nonparametric regression literature. We also develop an effective particle filter for this model which is useful to assess the fit of the model.

Suggested Citation

  • Charles S. Bos & Neil Shephard, 2004. "Inference for Adaptive Time Series Models: Stochastic Volatility and Conditionally Gaussian State Space Form," Economics Papers 2004-W02, Economics Group, Nuffield College, University of Oxford.
  • Handle: RePEc:nuf:econwp:042
    as

    Download full text from publisher

    File URL: http://www.nuff.ox.ac.uk/economics/papers/2004/W2/svssf_bosshep.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Geweke, John, 1989. "Bayesian Inference in Econometric Models Using Monte Carlo Integration," Econometrica, Econometric Society, vol. 57(6), pages 1317-1339, November.
    2. Rong Chen & Jun S. Liu, 2000. "Mixture Kalman filters," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(3), pages 493-508.
    3. Andrew Harvey & Siem Jan Koopman, 2000. "Signal extraction and the formulation of unobserved components models," Econometrics Journal, Royal Economic Society, vol. 3(1), pages 84-107.
    4. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 2002. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 69-87, January.
    5. Michael K. Pitt & Neil Shephard, 1999. "Analytic Convergence Rates and Parameterization Issues for the Gibbs Sampler Applied to State Space Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 20(1), pages 63-85, January.
    6. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2006. "Analysis of high dimensional multivariate stochastic volatility models," Journal of Econometrics, Elsevier, vol. 134(2), pages 341-371, October.
    7. repec:cup:cbooks:9780521835954 is not listed on IDEAS
    8. Aguilar, Omar & West, Mike, 2000. "Bayesian Dynamic Factor Models and Portfolio Allocation," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(3), pages 338-357, July.
    9. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2006. "Analysis of high dimensional multivariate stochastic volatility models," Journal of Econometrics, Elsevier, vol. 134(2), pages 341-371, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beine, Michel & Bos, Charles S. & Coulombe, Serge, 2012. "Does the Canadian economy suffer from Dutch disease?," Resource and Energy Economics, Elsevier, vol. 34(4), pages 468-492.
    2. Broto Carmen & Ruiz Esther, 2009. "Testing for Conditional Heteroscedasticity in the Components of Inflation," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(2), pages 1-30, May.
    3. Michel Beine & Charles S. Bos & Sébastien Laurent, 2007. "The Impact of Central Bank FX Interventions on Currency Components," Journal of Financial Econometrics, Oxford University Press, vol. 5(1), pages 154-183.
    4. repec:jss:jstsof:41:i13 is not listed on IDEAS
    5. Strickland, Chris M. & Martin, Gael M. & Forbes, Catherine S., 2008. "Parameterisation and efficient MCMC estimation of non-Gaussian state space models," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2911-2930, February.
    6. Neil Shephard, 2013. "Martingale unobserved component models," Economics Series Working Papers 644, University of Oxford, Department of Economics.
    7. Siddhartha Chib & Yasuhiro Omori & Manabu Asai, 2007. "Multivariate stochastic volatility (Revised in May 2007, Handbook of Financial Time Series (Published in "Handbook of Financial Time Series" (eds T.G. Andersen, R.A. Davis, Jens-Peter Kreiss," CARF F-Series CARF-F-094, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    8. Huang Yu-Fan, 2021. "An effcient exact Bayesian method For state space models with stochastic volatility," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 25(2), pages 1-10, April.
    9. Charles S. Bos, 2011. "Relating Stochastic Volatility Estimation Methods," Tinbergen Institute Discussion Papers 11-049/4, Tinbergen Institute.
    10. Christophe Chesneau & Salima El Kolei & Fabien Navarro, 2022. "Parametric estimation of hidden Markov models by least squares type estimation and deconvolution," Statistical Papers, Springer, vol. 63(5), pages 1615-1648, October.
    11. Drew Creal, 2012. "A Survey of Sequential Monte Carlo Methods for Economics and Finance," Econometric Reviews, Taylor & Francis Journals, vol. 31(3), pages 245-296.
    12. Charles S. Bos, 2008. "Model-based Estimation of High Frequency Jump Diffusions with Microstructure Noise and Stochastic Volatility," Tinbergen Institute Discussion Papers 08-011/4, Tinbergen Institute.
    13. Grassi Stefano & Proietti Tommaso, 2010. "Has the Volatility of U.S. Inflation Changed and How?," Journal of Time Series Econometrics, De Gruyter, vol. 2(1), pages 1-22, September.
    14. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility," Microeconomics Working Papers 22058, East Asian Bureau of Economic Research.
    15. Strickland, Chris M. & Turner, Ian. W. & Denham, Robert & Mengersen, Kerrie L., 2009. "Efficient Bayesian estimation of multivariate state space models," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4116-4125, October.
    16. Kjartan Kloster Osmundsen & Tore Selland Kleppe & Roman Liesenfeld & Atle Oglend, 2021. "Estimating the Competitive Storage Model with Stochastic Trends in Commodity Prices," Econometrics, MDPI, vol. 9(4), pages 1-24, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Charles Bos & Neil Shephard, 2006. "Inference for Adaptive Time Series Models: Stochastic Volatility and Conditionally Gaussian State Space Form," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 219-244.

    More about this item

    Keywords

    Markov chain Monte Carlo; particle filter; cubic spline; state space form; stochastic volatility.;
    All these keywords.

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • F31 - International Economics - - International Finance - - - Foreign Exchange

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nuf:econwp:042. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Maxine Collett (email available below). General contact details of provider: https://www.nuffield.ox.ac.uk/economics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.