Parameter Learning and Change Detection Using a Particle Filter With Accelerated Adaptation
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Karol Gellert & Erik Schlögl, 2021. "Parameter Learning and Change Detection Using a Particle Filter with Accelerated Adaptation," Risks, MDPI, vol. 9(12), pages 1-18, December.
- Karol Gellert & Erik Schlögl, 2018. "Parameter Learning and Change Detection Using a Particle Filter With Accelerated Adaptation," Research Paper Series 392, Quantitative Finance Research Centre, University of Technology, Sydney.
References listed on IDEAS
- Carvalho, Carlos M. & Lopes, Hedibert F., 2007. "Simulation-based sequential analysis of Markov switching stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4526-4542, May.
- Yun Bao & Carl Chiarella & Boda Kang, 2012. "Particle Filters for Markov Switching Stochastic Volatility Models," Research Paper Series 299, Quantitative Finance Research Centre, University of Technology, Sydney.
- repec:dau:papers:123456789/6066 is not listed on IDEAS
- Neil Shephard & Thomas Flury, 2009. "Learning and filtering via simulation: smoothly jittered particle filters," Economics Series Working Papers 469, University of Oxford, Department of Economics.
- Nicolas Chopin & Alessandra Iacobucci & Jean-Michel Marin & Kerrie L. Mengersen & Christian P. Robert & Robin Ryder & Christian Schafer, 2010. "On Particle Learning," Working Papers 2010-22, Center for Research in Economics and Statistics.
- Xiaojun Yang & Keyi Xing, 2011. "Joint State and Parameter Estimation in Particle Filtering and Stochastic Optimization," Chapters, in: Ioannis Dritsas (ed.), Stochastic Optimization - Seeing the Optimal for the Uncertain, IntechOpen.
- Mathieu Gerber & Nicolas Chopin, 2015. "Sequential quasi Monte Carlo," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(3), pages 509-579, June.
- Nicholas G. Polson & Jonathan R. Stroud & Peter Müller, 2008. "Practical filtering with sequential parameter learning," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(2), pages 413-428, April.
- Drew Creal, 2012.
"A Survey of Sequential Monte Carlo Methods for Economics and Finance,"
Econometric Reviews, Taylor & Francis Journals, vol. 31(3), pages 245-296.
- Creal, D., 2009. "A survey of sequential Monte Carlo methods for economics and finance," Serie Research Memoranda 0018, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
- Hedibert F. Lopes & Ruey S. Tsay, 2011. "Particle filters and Bayesian inference in financial econometrics," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(1), pages 168-209, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kenichiro McAlinn & Asahi Ushio & Teruo Nakatsuma, 2016. "Volatility Forecasts Using Nonlinear Leverage Effects," Papers 1605.06482, arXiv.org, revised Dec 2017.
- Kenichiro McAlinn & Asahi Ushio & Teruo Nakatsuma, 2020. "Volatility forecasts using stochastic volatility models with nonlinear leverage effects," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 143-154, March.
- Karamé, Frédéric, 2018.
"A new particle filtering approach to estimate stochastic volatility models with Markov-switching,"
Econometrics and Statistics, Elsevier, vol. 8(C), pages 204-230.
- Frédéric Karamé, 2018. "A new particle filtering approach to estimate stochastic volatility models with Markov-switching," Post-Print hal-02296093, HAL.
- Gorynin, Ivan & Derrode, Stéphane & Monfrini, Emmanuel & Pieczynski, Wojciech, 2017. "Fast smoothing in switching approximations of non-linear and non-Gaussian models," Computational Statistics & Data Analysis, Elsevier, vol. 114(C), pages 38-46.
- Turnbull, Kathryn & Nemeth, Christopher & Nunes, Matthew & McCormick, Tyler, 2023. "Sequential estimation of temporally evolving latent space network models," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
- Bhattacharya, Arnab & Wilson, Simon P., 2018. "Sequential Bayesian inference for static parameters in dynamic state space models," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 187-203.
- Benjamin K. Johannsen & Elmar Mertens, 2021.
"A Time‐Series Model of Interest Rates with the Effective Lower Bound,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 53(5), pages 1005-1046, August.
- Benjamin K. Johannsen & Elmar Mertens, 2016. "A Time Series Model of Interest Rates With the Effective Lower Bound," Finance and Economics Discussion Series 2016-033, Board of Governors of the Federal Reserve System (U.S.).
- Benjamin K Johannsen & Elmar Mertens, 2018. "A time series model of interest rates with the effective lower bound," BIS Working Papers 715, Bank for International Settlements.
- He, Zhongfang & Maheu, John M., 2010.
"Real time detection of structural breaks in GARCH models,"
Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2628-2640, November.
- Zhongfang He & John M Maheu, 2008. "Real Time Detection of Structural Breaks in GARCH Models," Working Papers tecipa-336, University of Toronto, Department of Economics.
- Zhongfang He & John M. Maheu, 2009. "Real Time Detection of Structural Breaks in GARCH Models," Working Paper series 11_09, Rimini Centre for Economic Analysis.
- Zhongfang He & John M. Maheu, 2009. "Real Time Detection of Structural Breaks in GARCH Models," Staff Working Papers 09-31, Bank of Canada.
- Paul Gaskell & Frank McGroarty & Thanassis Tiropanis, 2014. "Signal Diffusion Mapping: Optimal Forecasting with Time Varying Lags," Papers 1409.6443, arXiv.org.
- Elmar Mertens & James M. Nason, 2020.
"Inflation and professional forecast dynamics: An evaluation of stickiness, persistence, and volatility,"
Quantitative Economics, Econometric Society, vol. 11(4), pages 1485-1520, November.
- Elmar Mertens & James M Nason, 2015. "Inflation and Professional Forecast Dynamics: An Evaluation of Stickiness, Persistence, and Volatility," CAMA Working Papers 2015-06, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Elmar Mertens & James M. Nason, 2017. "Inflation and professional forecast dynamics: An evaluation of stickiness, persistence, and volatility," CAMA Working Papers 2017-60, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Elmar Mertens & James M. Nason, 2018. "Inflation and professional forecast dynamics: an evaluation of stickiness, persistence, and volatility," BIS Working Papers 713, Bank for International Settlements.
- Liu Xiangdong & Li Xianglong & Zheng Shaozhi & Qian Hangyong, 2020. "PMCMC for Term Structure of Interest Rates under Markov Regime Switching and Jumps," Journal of Systems Science and Information, De Gruyter, vol. 8(2), pages 159-169, April.
- Audrone Virbickaite & Hedibert F. Lopes, 2018. "Bayesian Semi-Parametric Markov Switching Stochastic Volatility Model," DEA Working Papers 89, Universitat de les Illes Balears, Departament d'Economía Aplicada.
- Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 50-71.
- Mumtaz, Haroon & Theodoridis, Konstantinos, 2017.
"Common and country specific economic uncertainty,"
Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.
- Haroon Mumtaz & Konstantinos Theodoridis, 2015. "Common and Country Specific Economic Uncertainty," Working Papers 752, Queen Mary University of London, School of Economics and Finance.
- Raggi, Davide & Bordignon, Silvano, 2012.
"Long memory and nonlinearities in realized volatility: A Markov switching approach,"
Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3730-3742.
- S. Bordignon & D. Raggi, 2010. "Long memory and nonlinearities in realized volatility: a Markov switching approach," Working Papers 694, Dipartimento Scienze Economiche, Universita' di Bologna.
- Wen Xu, 2016. "Estimation of Dynamic Panel Data Models with Stochastic Volatility Using Particle Filters," Econometrics, MDPI, vol. 4(4), pages 1-13, October.
- Ioannis Bournakis & Mike Tsionas, 2024.
"A Non‐parametric Estimation of Productivity with Idiosyncratic and Aggregate Shocks: The Role of Research and Development (R&D) and Corporate Tax,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(3), pages 641-671, June.
- Bournakis, Ioannis & Tsionas, Mike G., 2023. "A Non-Parametric Estimation of Productivity with Idiosyncratic and Aggregate Shocks: The Role of Research and Development (R&D) and Corporate Tax," MPRA Paper 118100, University Library of Munich, Germany.
- S. Bogan Aruoba & Pablo Cuba-Borda & Kenji Higa-Flores & Frank Schorfheide & Sergio Villalvazo, 2021.
"Piecewise-Linear Approximations and Filtering for DSGE Models with Occasionally Binding Constraints,"
Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 41, pages 96-120, July.
- S. Boragan Aruoba & Pablo A. Cuba-Borda & Kenji Higa-Flores & Frank Schorfheide & Sergio Villalvazo, 2020. "Piecewise-Linear Approximations and Filtering for DSGE Models with Occasionally Binding Constraints," Working Papers 20-13, Federal Reserve Bank of Philadelphia.
- Schorfheide, Frank & Aruoba, Boragan & Cuba-Borda, Pablo & Hilga-Flores, Kenji & Villalvazo, Sergio, 2020. "Piecewise-Linear Approximations and Filtering for DSGE Models with Occasionally Binding Constraints," CEPR Discussion Papers 15388, C.E.P.R. Discussion Papers.
- S. Boragan Aruoba & Pablo Cuba-Borda & Kenji Higa-Flores & Frank Schorfheide & Sergio Villalvazo, 2020. "Piecewise-Linear Approximations and Filtering for DSGE Models with Occasionally Binding Constraints," PIER Working Paper Archive 20-037, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- S. Boragan Aruoba & Pablo A. Cuba-Borda & Kenji Higa-Flores & Frank Schorfheide & Sergio Villalvazo, 2020. "Piecewise-Linear Approximations and Filtering for DSGE Models with Occasionally Binding Constraints," International Finance Discussion Papers 1272, Board of Governors of the Federal Reserve System (U.S.).
- S. Borağan Aruoba & Pablo Cuba-Borda & Kenji Higa-Flores & Frank Schorfheide & Sergio Villalvazo, 2020. "Piecewise-Linear Approximations and Filtering for DSGE Models with Occasionally Binding Constraints," NBER Working Papers 27991, National Bureau of Economic Research, Inc.
- Arellano, Manuel & Blundell, Richard & Bonhomme, Stéphane & Light, Jack, 2024.
"Heterogeneity of consumption responses to income shocks in the presence of nonlinear persistence,"
Journal of Econometrics, Elsevier, vol. 240(2).
- Manuel Arellano & Richard Blundell & Stéphane Bonhomme & Jack Light, 2023. "Heterogeneity of Consumption Responses to Income Shocks in the Presence of Nonlinear Persistence," Working Papers wp2023_2301, CEMFI.
- Manuel Arellano & Richard Blundell & Stéphane Bonhomme & Jack Light, 2024. "Heterogeneity of consumption responses to income shocks in the presence of nonlinear persistence," Post-Print hal-04536563, HAL.
- Manuel Arellano & Richard Blundell & Stéphane Bonhomme & Jack Light, 2023. "Heterogeneity of consumption responses to income shocks in the presence of nonlinear persistence," CeMMAP working papers 07/23, Institute for Fiscal Studies.
- Arellano, Manuel & Blundell, Richard & Bonhomme, Stéphane & Light, Jack, 2023. "Heterogeneity of Consumption Responses to Income Shocks in the Presence of Nonlinear Persistence," TSE Working Papers 23-1435, Toulouse School of Economics (TSE).
- O. Samimi & Z. Mardani & S. Sharafpour & F. Mehrdoust, 2017. "LSM Algorithm for Pricing American Option Under Heston–Hull–White’s Stochastic Volatility Model," Computational Economics, Springer;Society for Computational Economics, vol. 50(2), pages 173-187, August.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-CMP-2018-07-09 (Computational Economics)
- NEP-KNM-2018-07-09 (Knowledge Management and Knowledge Economy)
- NEP-ORE-2018-07-09 (Operations Research)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1806.05387. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.