IDEAS home Printed from https://ideas.repec.org/a/eee/finana/v95y2024ipbs1057521924003442.html
   My bibliography  Save this article

State-dependent intra-day volatility pattern and its impact on price jump detection - Evidence from international equity indices

Author

Listed:
  • Tsai, Ping Chen
  • Eom, Cheoljun
  • Wang, Chou Wen

Abstract

Current price jump tests assume a constant intra-day volatility pattern (IVP) over sample period. We test this assumption by allowing IVP to depend on some state variables such as the sign of previous returns or the relative levels of volatility. Estimation results from 5-min GARCH model for four equity indices show that squared-return-based IVP weights increase in early morning hours when previous returns are negative, suggesting an asymmetric IVP. For a jump-robust IVP estimator, distinct responses are found for days with Realized Variance (RV) increasing from the previous day. Our results are consistent with and complement recent studies on time-varying IVP. Price jumps obtained using the state-dependent IVP are more prudent, show lower degree of clustering and are less concentrated over trading hours.

Suggested Citation

  • Tsai, Ping Chen & Eom, Cheoljun & Wang, Chou Wen, 2024. "State-dependent intra-day volatility pattern and its impact on price jump detection - Evidence from international equity indices," International Review of Financial Analysis, Elsevier, vol. 95(PB).
  • Handle: RePEc:eee:finana:v:95:y:2024:i:pb:s1057521924003442
    DOI: 10.1016/j.irfa.2024.103412
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1057521924003442
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.irfa.2024.103412?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jondeau, Eric & Lahaye, Jérôme & Rockinger, Michael, 2015. "Estimating the price impact of trades in a high-frequency microstructure model with jumps," Journal of Banking & Finance, Elsevier, vol. 61(S2), pages 205-224.
    2. Ole E. Barndorff-Nielsen & Neil Shephard, 2006. "Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation," Journal of Financial Econometrics, Oxford University Press, vol. 4(1), pages 1-30.
    3. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
    4. Fulvio Corsi & Roberto Renò, 2012. "Discrete-Time Volatility Forecasting With Persistent Leverage Effect and the Link With Continuous-Time Volatility Modeling," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 368-380, January.
    5. Ahn, Yongkil & Tsai, Shih-Chuan, 2021. "What factors are associated with stock price jumps in high frequency?," Pacific-Basin Finance Journal, Elsevier, vol. 68(C).
    6. Madhavan, Ananth & Richardson, Matthew & Roomans, Mark, 1997. "Why Do Security Prices Change? A Transaction-Level Analysis of NYSE Stocks," The Review of Financial Studies, Society for Financial Studies, vol. 10(4), pages 1035-1064.
    7. Agarwalla, Sobhesh Kumar & Varma, Jayanth R. & Virmani, Vineet, 2021. "The impact of COVID-19 on tail risk: Evidence from Nifty index options," Economics Letters, Elsevier, vol. 204(C).
    8. Christensen, Kim & Hounyo, Ulrich & Podolskij, Mark, 2018. "Is the diurnal pattern sufficient to explain intraday variation in volatility? A nonparametric assessment," Journal of Econometrics, Elsevier, vol. 205(2), pages 336-362.
    9. Leopoldo Catania, 2022. "A Stochastic Volatility Model With a General Leverage Specification," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(2), pages 678-689, April.
    10. Piccotti, Louis R., 2018. "Jumps, cojumps, and efficiency in the spot foreign exchange market," Journal of Banking & Finance, Elsevier, vol. 87(C), pages 49-67.
    11. Torben G. Andersen & Martin Thyrsgaard & Viktor Todorov, 2019. "Time-Varying Periodicity in Intraday Volatility," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(528), pages 1695-1707, October.
    12. Zhang, Wenting & He, Xie & Hamori, Shigeyuki, 2023. "The impact of the COVID-19 pandemic and Russia-Ukraine war on multiscale spillovers in green finance markets: Evidence from lower and higher order moments," International Review of Financial Analysis, Elsevier, vol. 89(C).
    13. Andersen, Torben G. & Bollerslev, Tim, 1997. "Intraday periodicity and volatility persistence in financial markets," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 115-158, June.
    14. V. Filimonov & D. Sornette, 2015. "Apparent criticality and calibration issues in the Hawkes self-excited point process model: application to high-frequency financial data," Quantitative Finance, Taylor & Francis Journals, vol. 15(8), pages 1293-1314, August.
    15. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    16. Yu, Jun, 2005. "On leverage in a stochastic volatility model," Journal of Econometrics, Elsevier, vol. 127(2), pages 165-178, August.
    17. Gilder, Dudley & Shackleton, Mark B. & Taylor, Stephen J., 2014. "Cojumps in stock prices: Empirical evidence," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 443-459.
    18. Maneesoonthorn, Worapree & Martin, Gael M. & Forbes, Catherine S., 2020. "High-frequency jump tests: Which test should we use?," Journal of Econometrics, Elsevier, vol. 219(2), pages 478-487.
    19. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    20. P.J. Rousseeuw & A.M. Leroy, 1988. "A robust scale estimator based on the shortest half," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 42(2), pages 103-116, June.
    21. Müller, Hans-Georg & Sen, Rituparna & Stadtmüller, Ulrich, 2011. "Functional data analysis for volatility," Journal of Econometrics, Elsevier, vol. 165(2), pages 233-245.
    22. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    23. Amihud, Yakov, 2002. "Illiquidity and stock returns: cross-section and time-series effects," Journal of Financial Markets, Elsevier, vol. 5(1), pages 31-56, January.
    24. Caporin, Massimiliano & Poli, Francesco, 2022. "News and intraday jumps: Evidence from regularization and class imbalance," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    25. Stephen J. Hardiman & Jean-Philippe Bouchaud, 2014. "Branching ratio approximation for the self-exciting Hawkes process," Papers 1403.5227, arXiv.org, revised Oct 2014.
    26. Taylor, Stephen J. & Xu, Xinzhong, 1997. "The incremental volatility information in one million foreign exchange quotations," Journal of Empirical Finance, Elsevier, vol. 4(4), pages 317-340, December.
    27. Darrat, Ali F. & Rahman, Shafiqur & Zhong, Maosen, 2003. "Intraday trading volume and return volatility of the DJIA stocks: A note," Journal of Banking & Finance, Elsevier, vol. 27(10), pages 2035-2043, October.
    28. Le, Trung Hai & Do, Hung Xuan & Nguyen, Duc Khuong & Sensoy, Ahmet, 2021. "Covid-19 pandemic and tail-dependency networks of financial assets," Finance Research Letters, Elsevier, vol. 38(C).
    29. Andersen, Torben G. & Bollerslev, Tim & Dobrev, Dobrislav, 2007. "No-arbitrage semi-martingale restrictions for continuous-time volatility models subject to leverage effects, jumps and i.i.d. noise: Theory and testable distributional implications," Journal of Econometrics, Elsevier, vol. 138(1), pages 125-180, May.
    30. Suzanne S. Lee & Per A. Mykland, 2008. "Jumps in Financial Markets: A New Nonparametric Test and Jump Dynamics," The Review of Financial Studies, Society for Financial Studies, vol. 21(6), pages 2535-2563, November.
    31. Chou, Ray Yeutien, 2005. "Forecasting Financial Volatilities with Extreme Values: The Conditional Autoregressive Range (CARR) Model," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 561-582, June.
    32. Sun, Bianxia & Gao, Yang, 2020. "Market liquidity and macro announcement around intraday jumps: Evidence from Chinese stock index futures markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    33. Longin, Francois M, 1997. "The Threshold Effect in Expected Volatility: A Model Based on Asymmetric Information," The Review of Financial Studies, Society for Financial Studies, vol. 10(3), pages 837-869.
    34. Boudt, Kris & Croux, Christophe & Laurent, Sébastien, 2011. "Robust estimation of intraweek periodicity in volatility and jump detection," Journal of Empirical Finance, Elsevier, vol. 18(2), pages 353-367, March.
    35. Riccardo Marcaccioli & Jean-Philippe Bouchaud & Michael Benzaquen, 2022. "Exogenous and Endogenous Price Jumps Belong to Different Dynamical Classes," Post-Print hal-03378876, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deniz Erdemlioglu & Sébastien Laurent & Christopher J. Neely, 2013. "Econometric modeling of exchange rate volatility and jumps," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 16, pages 373-427, Edward Elgar Publishing.
    2. Dumitru, Ana-Maria & Hizmeri, Rodrigo & Izzeldin, Marwan, 2019. "Forecasting the Realized Variance in the Presence of Intraday Periodicity," EconStor Preprints 193631, ZBW - Leibniz Information Centre for Economics.
    3. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
    4. Chorro, Christophe & Ielpo, Florian & Sévi, Benoît, 2020. "The contribution of intraday jumps to forecasting the density of returns," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    5. Olusanya E. Olubusoye & OlaOluwa S. Yaya, 2016. "Time series analysis of volatility in the petroleum pricing markets: the persistence, asymmetry and jumps in the returns series," OPEC Energy Review, Organization of the Petroleum Exporting Countries, vol. 40(3), pages 235-262, September.
    6. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Documents de travail du Centre d'Economie de la Sorbonne 17006, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    7. Jérôme Lahaye & Christopher Neely, 2020. "The Role of Jumps in Volatility Spillovers in Foreign Exchange Markets: Meteor Shower and Heat Waves Revisited," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 410-427, April.
    8. Clements, Adam & Liao, Yin, 2017. "Forecasting the variance of stock index returns using jumps and cojumps," International Journal of Forecasting, Elsevier, vol. 33(3), pages 729-742.
    9. Dinesh Gajurel & Biplob Chowdhury, 2021. "Realized Volatility, Jump and Beta: evidence from Canadian Stock Market," Applied Economics, Taylor & Francis Journals, vol. 53(55), pages 6376-6397, November.
    10. Jondeau, Eric & Lahaye, Jérôme & Rockinger, Michael, 2015. "Estimating the price impact of trades in a high-frequency microstructure model with jumps," Journal of Banking & Finance, Elsevier, vol. 61(S2), pages 205-224.
    11. Bu, Ruijun & Hizmeri, Rodrigo & Izzeldin, Marwan & Murphy, Anthony & Tsionas, Mike, 2023. "The contribution of jump signs and activity to forecasting stock price volatility," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 144-164.
    12. Caporin, Massimiliano & Kolokolov, Aleksey & Renò, Roberto, 2017. "Systemic co-jumps," Journal of Financial Economics, Elsevier, vol. 126(3), pages 563-591.
    13. Yao, Wenying & Tian, Jing, 2015. "The role of intra-day volatility pattern in jump detection: empirical evidence on how financial markets respond to macroeconomic news announcements," Working Papers 2015-05, University of Tasmania, Tasmanian School of Business and Economics.
    14. Dumitru, Ana-Maria & Urga, Giovanni, 2016. "Jumps and Information Asymmetry in the US Treasury Market," EconStor Preprints 130148, ZBW - Leibniz Information Centre for Economics.
    15. Denisa Banulescu-Radu & Christophe Hurlin & Bertrand Candelon & Sébastien Laurent, 2016. "Do We Need High Frequency Data to Forecast Variances?," Annals of Economics and Statistics, GENES, issue 123-124, pages 135-174.
    16. Serdengeçti, Süleyman & Sensoy, Ahmet & Nguyen, Duc Khuong, 2021. "Dynamics of return and liquidity (co) jumps in emerging foreign exchange markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 73(C).
    17. Jean-Yves Gnabo & J�rôme Lahaye & S�bastien Laurent & Christelle Lecourt, 2012. "Do jumps mislead the FX market?," Quantitative Finance, Taylor & Francis Journals, vol. 12(10), pages 1521-1532, October.
    18. repec:uts:finphd:39 is not listed on IDEAS
    19. Chen, Yixiang & Ma, Feng & Zhang, Yaojie, 2019. "Good, bad cojumps and volatility forecasting: New evidence from crude oil and the U.S. stock markets," Energy Economics, Elsevier, vol. 81(C), pages 52-62.
    20. Boudt, Kris & Croux, Christophe & Laurent, Sébastien, 2011. "Robust estimation of intraweek periodicity in volatility and jump detection," Journal of Empirical Finance, Elsevier, vol. 18(2), pages 353-367, March.
    21. Francesco Audrino & Yujia Hu, 2016. "Volatility Forecasting: Downside Risk, Jumps and Leverage Effect," Econometrics, MDPI, vol. 4(1), pages 1-24, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finana:v:95:y:2024:i:pb:s1057521924003442. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620166 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.