Forecasting international equity market volatility: A new approach
Author
Abstract
Suggested Citation
DOI: 10.1002/for.2869
Download full text from publisher
References listed on IDEAS
- Buncic, Daniel & Gisler, Katja I.M., 2016.
"Global equity market volatility spillovers: A broader role for the United States,"
International Journal of Forecasting, Elsevier, vol. 32(4), pages 1317-1339.
- Buncic, Daniel & Gisler, Katja I. M., 2015. "Global Equity Market Volatility Spillovers: A Broader Role for the United States," Economics Working Paper Series 1508, University of St. Gallen, School of Economics and Political Science.
- Corsi, Fulvio & Pirino, Davide & Renò, Roberto, 2010.
"Threshold bipower variation and the impact of jumps on volatility forecasting,"
Journal of Econometrics, Elsevier, vol. 159(2), pages 276-288, December.
- Fulvio Corsi & Davide Pirino & Roberto Reno', 2010. "Threshold Bipower Variation and the Impact of Jumps on Volatility Forecasting," LEM Papers Series 2010/11, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
- Fulvio Corsi & Davide Pirino & Roberto Renò, 2010. "Threshold bipower variation and the impact of jumps on volatility forecasting," Post-Print hal-00741630, HAL.
- Tim Bollerslev & Benjamin Hood & John Huss & Lasse Heje Pedersen, 2018.
"Risk Everywhere: Modeling and Managing Volatility,"
The Review of Financial Studies, Society for Financial Studies, vol. 31(7), pages 2729-2773.
- Pedersen, Lasse Heje & Bollerslev, Tim & Hood, Benjamin & Huss, John, 2018. "Risk Everywhere: Modeling and Managing Volatility," CEPR Discussion Papers 12687, C.E.P.R. Discussion Papers.
- Fang, Libing & Bouri, Elie & Gupta, Rangan & Roubaud, David, 2019.
"Does global economic uncertainty matter for the volatility and hedging effectiveness of Bitcoin?,"
International Review of Financial Analysis, Elsevier, vol. 61(C), pages 29-36.
- Libing Fang & Elie Bouri & Rangan Gupta & David Roubaud, 2018. "Does Global Economic Uncertainty Matter for the Volatility and Hedging Effectiveness of Bitcoin?," Working Papers 201858, University of Pretoria, Department of Economics.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007.
"Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility,"
The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2005. "Roughing it Up: Including Jump Components in the Measurement, Modeling and Forecasting of Return Volatility," NBER Working Papers 11775, National Bureau of Economic Research, Inc.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling and Forecasting of Return Volatility," CREATES Research Papers 2007-18, Department of Economics and Business Economics, Aarhus University.
- Fulvio Corsi & Roberto Renò, 2012. "Discrete-Time Volatility Forecasting With Persistent Leverage Effect and the Link With Continuous-Time Volatility Modeling," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 368-380, January.
- Eduardo Rossi & Dean Fantazzini, 2015.
"Long Memory and Periodicity in Intraday Volatility,"
Journal of Financial Econometrics, Oxford University Press, vol. 13(4), pages 922-961.
- Eduardo Rossi & Dean Fantazzini, 2012. "Long memory and Periodicity in Intraday Volatility," DEM Working Papers Series 015, University of Pavia, Department of Economics and Management.
- Tian, Fengping & Yang, Ke & Chen, Langnan, 2017. "Realized volatility forecasting of agricultural commodity futures using the HAR model with time-varying sparsity," International Journal of Forecasting, Elsevier, vol. 33(1), pages 132-152.
- Degiannakis, Stavros & Filis, George, 2017.
"Forecasting oil price realized volatility using information channels from other asset classes,"
Journal of International Money and Finance, Elsevier, vol. 76(C), pages 28-49.
- Degiannakis, Stavros & Filis, George, 2017. "Forecasting oil price realized volatility using information channels from other asset classes," MPRA Paper 96276, University Library of Munich, Germany.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2011.
"The Model Confidence Set,"
Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2010. "The Model Confidence Set," CREATES Research Papers 2010-76, Department of Economics and Business Economics, Aarhus University.
- Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2008.
"Designing Realized Kernels to Measure the ex post Variation of Equity Prices in the Presence of Noise,"
Econometrica, Econometric Society, vol. 76(6), pages 1481-1536, November.
- Ole E Barndorff-Nielsen & Peter Hansen & Asger Lunde & Neil Shephard, 2006. "Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise," OFRC Working Papers Series 2006fe05, Oxford Financial Research Centre.
- Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2006. "Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise," Economics Papers 2006-W03, Economics Group, Nuffield College, University of Oxford.
- Cheung, Yin-Wong & Lai, Kon S, 1995. "Lag Order and Critical Values of the Augmented Dickey-Fuller Test," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 277-280, July.
- Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
- Clark, Todd E. & West, Kenneth D., 2007.
"Approximately normal tests for equal predictive accuracy in nested models,"
Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
- Todd E. Clark & Kenneth D. West, 2005. "Approximately normal tests for equal predictive accuracy in nested models," Research Working Paper RWP 05-05, Federal Reserve Bank of Kansas City.
- Kenneth D. West & Todd Clark, 2006. "Approximately Normal Tests for Equal Predictive Accuracy in Nested Models," NBER Technical Working Papers 0326, National Bureau of Economic Research, Inc.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003.
"Modeling and Forecasting Realized Volatility,"
Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," Center for Financial Institutions Working Papers 01-01, Wharton School Center for Financial Institutions, University of Pennsylvania.
- Anderson, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Labys, Paul, 2002. "Modeling and Forecasting Realized Volatility," Working Papers 02-12, Duke University, Department of Economics.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," NBER Working Papers 8160, National Bureau of Economic Research, Inc.
- Xu Gong & Boqiang Lin, 2018. "Structural breaks and volatility forecasting in the copper futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(3), pages 290-339, March.
- Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015.
"Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes,"
Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
- Kevin Sheppard & Lily Liu & Andrew J. Patton, 2013. "Does Anything Beat 5-Minute RV? A Comparison of Realized Measures Across Multiple Asset Classes," Economics Series Working Papers 645, University of Oxford, Department of Economics.
- Patton, Andrew J., 2011.
"Volatility forecast comparison using imperfect volatility proxies,"
Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
- Andrew Patton, 2006. "Volatility Forecast Comparison using Imperfect Volatility Proxies," Research Paper Series 175, Quantitative Finance Research Centre, University of Technology, Sydney.
- David E. Rapach & Jack K. Strauss & Guofu Zhou, 2013. "International Stock Return Predictability: What Is the Role of the United States?," Journal of Finance, American Finance Association, vol. 68(4), pages 1633-1662, August.
- O. E. Barndorff-Nielsen & P. Reinhard Hansen & A. Lunde & N. Shephard, 2009. "Realized kernels in practice: trades and quotes," Econometrics Journal, Royal Economic Society, vol. 12(3), pages 1-32, November.
- John Y. Campbell & Samuel B. Thompson, 2008.
"Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?,"
The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
- Campbell, John & Thompson, Samuel P., 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," Scholarly Articles 2622619, Harvard University Department of Economics.
- Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2016.
"Exploiting the errors: A simple approach for improved volatility forecasting,"
Journal of Econometrics, Elsevier, vol. 192(1), pages 1-18.
- Tim Bollerslev & Andrew J. Patton & Rogier Quaedvlieg, 2015. "Exploiting the Errors: A Simple Approach for Improved Volatility Forecasting," CREATES Research Papers 2015-14, Department of Economics and Business Economics, Aarhus University.
- Zhang, Yaojie & Ma, Feng & Wang, Yudong, 2019. "Forecasting crude oil prices with a large set of predictors: Can LASSO select powerful predictors?," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 97-117.
- Francesco Audrino & Yujia Hu, 2016.
"Volatility Forecasting: Downside Risk, Jumps and Leverage Effect,"
Econometrics, MDPI, vol. 4(1), pages 1-24, February.
- Audrino, Francesco & Hu, Yujia, 2011. "Volatility Forecasting: Downside Risk, Jumps and Leverage Effect," Economics Working Paper Series 1138, University of St. Gallen, School of Economics and Political Science.
- repec:hal:journl:peer-00741630 is not listed on IDEAS
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- French, Kenneth R. & Schwert, G. William & Stambaugh, Robert F., 1987. "Expected stock returns and volatility," Journal of Financial Economics, Elsevier, vol. 19(1), pages 3-29, September.
- Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2006.
"Predicting volatility: getting the most out of return data sampled at different frequencies,"
Journal of Econometrics, Elsevier, vol. 131(1-2), pages 59-95.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies," CIRANO Working Papers 2004s-19, CIRANO.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies," NBER Working Papers 10914, National Bureau of Economic Research, Inc.
- Ma, Feng & Liao, Yin & Zhang, Yaojie & Cao, Yang, 2019. "Harnessing jump component for crude oil volatility forecasting in the presence of extreme shocks," Journal of Empirical Finance, Elsevier, vol. 52(C), pages 40-55.
- Buncic, Daniel & Gisler, Katja I.M., 2017. "The role of jumps and leverage in forecasting volatility in international equity markets," Journal of International Money and Finance, Elsevier, vol. 79(C), pages 1-19.
- Chao Liang & Yu Wei & Xiafei Li & Xuhui Zhang & Yifeng Zhang, 2020. "Uncertainty and crude oil market volatility: new evidence," Applied Economics, Taylor & Francis Journals, vol. 52(27), pages 2945-2959, May.
- Liang, Chao & Tang, Linchun & Li, Yan & Wei, Yu, 2020. "Which sentiment index is more informative to forecast stock market volatility? Evidence from China," International Review of Financial Analysis, Elsevier, vol. 71(C).
- Wang, Yudong & Ma, Feng & Wei, Yu & Wu, Chongfeng, 2016. "Forecasting realized volatility in a changing world: A dynamic model averaging approach," Journal of Banking & Finance, Elsevier, vol. 64(C), pages 136-149.
- Chao Liang & Yu Wei & Yaojie Zhang, 2020. "Is implied volatility more informative for forecasting realized volatility: An international perspective," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1253-1276, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wu, Hanlin & Li, Pan & Cao, Jiawei & Xu, Zijian, 2024. "Forecasting the Chinese crude oil futures volatility using jump intensity and Markov-regime switching model," Energy Economics, Elsevier, vol. 134(C).
- Wang, Jia & Wang, Xinyi & Wang, Xu, 2024. "International oil shocks and the volatility forecasting of Chinese stock market based on machine learning combination models," The North American Journal of Economics and Finance, Elsevier, vol. 70(C).
- Qiu, Rui & Liu, Jing & Li, Yan, 2023. "Long-term adjusted volatility: Powerful capability in forecasting stock market returns," International Review of Financial Analysis, Elsevier, vol. 86(C).
- Peng, Lijuan & Liang, Chao, 2023. "Sustainable development during the post-COVID-19 period: Role of crude oil," Resources Policy, Elsevier, vol. 85(PA).
- Su, Yuandong & Liang, Chao & Zhang, Li & Zeng, Qing, 2022. "Uncover the response of the U.S grain commodity market on El Niño–Southern Oscillation," International Review of Economics & Finance, Elsevier, vol. 81(C), pages 98-112.
- Li, Xiafei & Guo, Qiang & Liang, Chao & Umar, Muhammad, 2023. "Forecasting gold volatility with geopolitical risk indices," Research in International Business and Finance, Elsevier, vol. 64(C).
- Ma, Feng & Lyu, Zhichong & Li, Haibo, 2024. "Can ChatGPT predict Chinese equity premiums?," Finance Research Letters, Elsevier, vol. 65(C).
- Sheng, Lin Wen & Uddin, Gazi Salah & Sen, Ding & Hao, Zhu Shi, 2024. "The asymmetric volatility spillover across Shanghai, Hong Kong and the U.S. stock markets: A regime weighted measure and its forecast inference," International Review of Financial Analysis, Elsevier, vol. 91(C).
- Jin, Daxiang & Yu, Jize, 2023. "Predicting cryptocurrency market volatility: Novel evidence from climate policy uncertainty," Finance Research Letters, Elsevier, vol. 58(PC).
- Dai, Zhifeng & Luo, Zhuang & Liu, Chang, 2023. "Dynamic volatility spillovers and investment strategies between crude oil, new energy, and resource related sectors," Resources Policy, Elsevier, vol. 83(C).
- Li, Jingwen & Wang, Yue & Song, Yubing & Su, Chi Wei, 2023. "How resistant is gold to stress? New evidence from global supply chain," Resources Policy, Elsevier, vol. 85(PB).
- Ma, Binfeng & Wang, Xiaofang, 2023. "How does green floating bond and financial sector readiness promote green economic growth evidence from China," Resources Policy, Elsevier, vol. 85(PB).
- Li, Yan & Huynh, Luu Duc Toan & Xu, Yongan & Liang, Hao, 2023. "The forecast ability of a belief-based momentum indicator in full-day, daytime, and nighttime volatilities of Chinese oil futures," Energy Economics, Elsevier, vol. 127(PB).
- Gao, Shang & Zhang, Zhikai & Wang, Yudong & Zhang, Yaojie, 2023. "Forecasting stock market volatility: The sum of the parts is more than the whole," Finance Research Letters, Elsevier, vol. 55(PA).
- Lu, Xinjie & Su, Yuandong & Huang, Dengshi, 2023. "Chinese agricultural futures volatility: New insights from potential domestic and global predictors," International Review of Financial Analysis, Elsevier, vol. 89(C).
- Chen, Juan & Xiao, Zuoping & Bai, Jiancheng & Guo, Hongling, 2023. "Predicting volatility in natural gas under a cloud of uncertainties," Resources Policy, Elsevier, vol. 82(C).
- Liang, Chao & Huynh, Luu Duc Toan & Li, Yan, 2023. "Market momentum amplifies market volatility risk: Evidence from China’s equity market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 88(C).
- Luo, Qin & Bu, Jinfeng & Xu, Weiju & Huang, Dengshi, 2023. "Stock market volatility prediction: Evidence from a new bagging model," International Review of Economics & Finance, Elsevier, vol. 87(C), pages 445-456.
- Li, Zepei & Huang, Haizhen, 2023. "Challenges for volatility forecasts of US fossil energy spot markets during the COVID-19 crisis," International Review of Economics & Finance, Elsevier, vol. 86(C), pages 31-45.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Danyan Wen & Mengxi He & Yaojie Zhang & Yudong Wang, 2022. "Forecasting realized volatility of Chinese stock market: A simple but efficient truncated approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 230-251, March.
- Yaojie Zhang & Yudong Wang & Feng Ma & Yu Wei, 2022. "To jump or not to jump: momentum of jumps in crude oil price volatility prediction," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-31, December.
- Yi, Yongsheng & He, Mengxi & Zhang, Yaojie, 2022. "Out-of-sample prediction of Bitcoin realized volatility: Do other cryptocurrencies help?," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
- Feng Ma & Chao Liang & Yuanhui Ma & M.I.M. Wahab, 2020. "Cryptocurrency volatility forecasting: A Markov regime‐switching MIDAS approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1277-1290, December.
- Zhang, Yaojie & Lei, Likun & Wei, Yu, 2020. "Forecasting the Chinese stock market volatility with international market volatilities: The role of regime switching," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
- Li, Zhao-Chen & Xie, Chi & Wang, Gang-Jin & Zhu, You & Zeng, Zhi-Jian & Gong, Jue, 2024. "Forecasting global stock market volatilities: A shrinkage heterogeneous autoregressive (HAR) model with a large cross-market predictor set," International Review of Economics & Finance, Elsevier, vol. 93(PB), pages 673-711.
- Chen, Yixiang & Ma, Feng & Zhang, Yaojie, 2019. "Good, bad cojumps and volatility forecasting: New evidence from crude oil and the U.S. stock markets," Energy Economics, Elsevier, vol. 81(C), pages 52-62.
- Ma, Feng & Wahab, M.I.M. & Zhang, Yaojie, 2019. "Forecasting the U.S. stock volatility: An aligned jump index from G7 stock markets," Pacific-Basin Finance Journal, Elsevier, vol. 54(C), pages 132-146.
- Liang, Chao & Li, Yan & Ma, Feng & Wei, Yu, 2021. "Global equity market volatilities forecasting: A comparison of leverage effects, jumps, and overnight information," International Review of Financial Analysis, Elsevier, vol. 75(C).
- Wang, Jiqian & Huang, Yisu & Ma, Feng & Chevallier, Julien, 2020. "Does high-frequency crude oil futures data contain useful information for predicting volatility in the US stock market? New evidence," Energy Economics, Elsevier, vol. 91(C).
- Chao Liang & Yin Liao & Feng Ma & Bo Zhu, 2022. "United States Oil Fund volatility prediction: the roles of leverage effect and jumps," Empirical Economics, Springer, vol. 62(5), pages 2239-2262, May.
- Wang, Jiqian & Lu, Xinjie & He, Feng & Ma, Feng, 2020. "Which popular predictor is more useful to forecast international stock markets during the coronavirus pandemic: VIX vs EPU?," International Review of Financial Analysis, Elsevier, vol. 72(C).
- Zhang, Yaojie & Ma, Feng & Wei, Yu, 2019. "Out-of-sample prediction of the oil futures market volatility: A comparison of new and traditional combination approaches," Energy Economics, Elsevier, vol. 81(C), pages 1109-1120.
- Li, Zhao-Chen & Xie, Chi & Zeng, Zhi-Jian & Wang, Gang-Jin & Zhang, Ting, 2023. "Forecasting global stock market volatilities in an uncertain world," International Review of Financial Analysis, Elsevier, vol. 85(C).
- Chao Liang & Yi Zhang & Yaojie Zhang, 2022. "Forecasting the volatility of the German stock market: New evidence," Applied Economics, Taylor & Francis Journals, vol. 54(9), pages 1055-1070, February.
- Ding, Hui & Huang, Yisu & Wang, Jiqian, 2023. "Have the predictability of oil changed during the COVID-19 pandemic: Evidence from international stock markets," International Review of Financial Analysis, Elsevier, vol. 87(C).
- Yaojie Zhang & Mengxi He & Yuqi Zhao & Xianfeng Hao, 2023. "Predicting stock realized variance based on an asymmetric robust regression approach," Bulletin of Economic Research, Wiley Blackwell, vol. 75(4), pages 1022-1047, October.
- Yaojie Zhang & Yudong Wang & Feng Ma, 2021. "Forecasting US stock market volatility: How to use international volatility information," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 733-768, August.
- Chao Liang & Yu Wei & Yaojie Zhang, 2020. "Is implied volatility more informative for forecasting realized volatility: An international perspective," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1253-1276, December.
- Feng Ma & M. I. M. Wahab & Julien Chevallier & Ziyang Li, 2023. "A tug of war of forecasting the US stock market volatility: Oil futures overnight versus intraday information," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(1), pages 60-75, January.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:41:y:2022:i:7:p:1433-1457. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.