IDEAS home Printed from https://ideas.repec.org/p/aah/create/2017-16.html
   My bibliography  Save this paper

Does the ARFIMA really shift?

Author

Listed:
  • Davide Delle Monache

    (Banca d'Italia)

  • Stefano Grassi

    (University of Kent and CREATES)

  • Paolo Santucci de Magistris

    (Aarhus University and CREATES)

Abstract

Short memory models contaminated by level shifts have long-memory features similar to those associated to processes generated under fractional integration. In this paper, we propose a robust testing procedure, based on an encompassing parametric specification, that allows to disentangle the level shift term from the ARFIMA component. The estimation is carried out via a state-space methodology and it leads to a robust estimate of the fractional integration parameter also in presence of level shifts.The Monte Carlo simulations show that this approach produces unbiased estimates of the fractional integration parameter when shifts in the mean, or in other slowly varying trends, are present in the data. Once the fractional integration parameter is estimated, the KPSS test statistic is adopted to assess if the level shift component is statistically significant. The test has correct size and generally the highest power compared to other existing tests for spurious long-memory. Finally, we illustrate the usefulness of the proposed approach on the daily series of bipower variation and share turnover and on the monthly inflation series of G7 countries.

Suggested Citation

  • Davide Delle Monache & Stefano Grassi & Paolo Santucci de Magistris, 2017. "Does the ARFIMA really shift?," CREATES Research Papers 2017-16, Department of Economics and Business Economics, Aarhus University.
  • Handle: RePEc:aah:create:2017-16
    as

    Download full text from publisher

    File URL: https://repec.econ.au.dk/repec/creates/rp/17/rp17_16.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Diebold, Francis X & Husted, Steven & Rush, Mark, 1991. "Real Exchange Rates under the Gold Standard," Journal of Political Economy, University of Chicago Press, vol. 99(6), pages 1252-1271, December.
    2. Sowell, Fallaw, 1992. "Maximum likelihood estimation of stationary univariate fractionally integrated time series models," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 165-188.
    3. Rossi, Eduardo & Santucci de Magistris, Paolo, 2013. "Long memory and tail dependence in trading volume and volatility," Journal of Empirical Finance, Elsevier, vol. 22(C), pages 94-112.
    4. Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
    5. Rasmus T. Varneskov & Pierre Perron, 2018. "Combining long memory and level shifts in modelling and forecasting the volatility of asset returns," Quantitative Finance, Taylor & Francis Journals, vol. 18(3), pages 371-393, March.
    6. Diebold, Francis X. & Inoue, Atsushi, 2001. "Long memory and regime switching," Journal of Econometrics, Elsevier, vol. 105(1), pages 131-159, November.
    7. Perron, Pierre & Qu, Zhongjun, 2010. "Long-Memory and Level Shifts in the Volatility of Stock Market Return Indices," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(2), pages 275-290.
    8. Harvey, Andrew & Proietti, Tommaso (ed.), 2005. "Readings in Unobserved Components Models," OUP Catalogue, Oxford University Press, number 9780199278695.
    9. Jan J. J. Groen & Richard Paap & Francesco Ravazzolo, 2013. "Real-Time Inflation Forecasting in a Changing World," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 29-44, January.
    10. Qu, Zhongjun, 2011. "A Test Against Spurious Long Memory," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(3), pages 423-438.
    11. Ohanissian, Arek & Russell, Jeffrey R. & Tsay, Ruey S., 2008. "True or Spurious Long Memory? A New Test," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 161-175, April.
    12. Johansen, Søren & Nielsen, Morten Ørregaard, 2016. "The Role Of Initial Values In Conditional Sum-Of-Squares Estimation Of Nonstationary Fractional Time Series Models," Econometric Theory, Cambridge University Press, vol. 32(5), pages 1095-1139, October.
    13. Arturo Leccadito & Omar Rachedi & Giovanni Urga, 2015. "True Versus Spurious Long Memory: Some Theoretical Results and a Monte Carlo Comparison," Econometric Reviews, Taylor & Francis Journals, vol. 34(4), pages 452-479, April.
    14. Baillie, Richard T. & Morana, Claudio, 2012. "Adaptive ARFIMA models with applications to inflation," Economic Modelling, Elsevier, vol. 29(6), pages 2451-2459.
    15. Philip Hans Franses & Marius Ooms & Charles S. Bos, 1999. "Long memory and level shifts: Re-analyzing inflation rates," Empirical Economics, Springer, vol. 24(3), pages 427-449.
    16. Bos, Charles S. & Koopman, Siem Jan & Ooms, Marius, 2014. "Long memory with stochastic variance model: A recursive analysis for US inflation," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 144-157.
    17. Philipp Sibbertsen & Robinson Kruse, 2009. "Testing for a break in persistence under long‐range dependencies," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(3), pages 263-285, May.
    18. Grassi, Stefano & Santucci de Magistris, Paolo, 2014. "When long memory meets the Kalman filter: A comparative study," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 301-319.
    19. Philipp Sibbertsen & Juliane Willert, 2012. "Testing for a break in persistence under long-range dependencies and mean shifts," Statistical Papers, Springer, vol. 53(2), pages 357-370, May.
    20. Hassler, Uwe & Wolters, Jurgen, 1995. "Long Memory in Inflation Rates: International Evidence," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 37-45, January.
    21. Dolado Juan J. & Gonzalo Jesus & Mayoral Laura, 2008. "Wald Tests of I(1) against I(d) Alternatives: Some New Properties and an Extension to Processes with Trending Components," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(4), pages 1-35, December.
    22. N. G. Shephard & A. C. Harvey, 1990. "On The Probability Of Estimating A Deterministic Component In The Local Level Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 11(4), pages 339-347, July.
    23. Berenguer-Rico, Vanessa & Gonzalo, Jesús, 2014. "Summability of stochastic processes—A generalization of integration for non-linear processes," Journal of Econometrics, Elsevier, vol. 178(P2), pages 331-341.
    24. Kim, Chang-Jin, 1993. "Unobserved-Component Time Series Models with Markov-Switching Heteroscedasticity: Changes in Regime and the Link between Inflation Rates and Inflation Uncertainty," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(3), pages 341-349, July.
    25. Ruud, Paul A., 2000. "An Introduction to Classical Econometric Theory," OUP Catalogue, Oxford University Press, number 9780195111644.
    26. Lobato, Ignacio N & Velasco, Carlos, 2000. "Long Memory in Stock-Market Trading Volume," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(4), pages 410-427, October.
    27. Harvey,Andrew C., 1991. "Forecasting, Structural Time Series Models and the Kalman Filter," Cambridge Books, Cambridge University Press, number 9780521405737.
    28. Granger, C. W. J., 1980. "Long memory relationships and the aggregation of dynamic models," Journal of Econometrics, Elsevier, vol. 14(2), pages 227-238, October.
    29. Bollerslev, Tim & Jubinski, Dan, 1999. "Equity Trading Volume and Volatility: Latent Information Arrivals and Common Long-Run Dependencies," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(1), pages 9-21, January.
    30. Christensen, Bent Jesper & Varneskov, Rasmus Tangsgaard, 2017. "Medium band least squares estimation of fractional cointegration in the presence of low-frequency contamination," Journal of Econometrics, Elsevier, vol. 197(2), pages 218-244.
    31. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
    32. Granger, Clive W. J. & Hyung, Namwon, 2004. "Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 399-421, June.
    33. Mccloskey, Adam & Perron, Pierre, 2013. "Memory Parameter Estimation In The Presence Of Level Shifts And Deterministic Trends," Econometric Theory, Cambridge University Press, vol. 29(6), pages 1196-1237, December.
    34. Giordani, Paolo & Kohn, Robert & van Dijk, Dick, 2007. "A unified approach to nonlinearity, structural change, and outliers," Journal of Econometrics, Elsevier, vol. 137(1), pages 112-133, March.
    35. Harvey, Andrew & Streibel, Mariane, 1998. "Testing for a slowly changing level with special reference to stochastic volatility," Journal of Econometrics, Elsevier, vol. 87(1), pages 167-189, August.
    36. Katsumi Shimotsu, 2006. "Simple (but Effective) Tests Of Long Memory Versus Structural Breaks," Working Paper 1101, Economics Department, Queen's University.
    37. Baillie, Richard T & Chung, Ching-Fan & Tieslau, Margie A, 1996. "Analysing Inflation by the Fractionally Integrated ARFIMA-GARCH Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(1), pages 23-40, Jan.-Feb..
    38. Kim, Chang-Jin, 1994. "Dynamic linear models with Markov-switching," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 1-22.
    39. Shiqing Ling & Michael McAleer, 2010. "A general asymptotic theory for time‐series models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 64(1), pages 97-111, February.
    40. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    41. Niels Haldrup & Robinson Kruse, 2014. "Discriminating between fractional integration and spurious long memory," CREATES Research Papers 2014-19, Department of Economics and Business Economics, Aarhus University.
    42. Leybourne, S J & McCabe, B P M, 1994. "A Consistent Test for a Unit Root," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(2), pages 157-166, April.
    43. Martens, Martin & van Dijk, Dick & de Pooter, Michiel, 2009. "Forecasting S&P 500 volatility: Long memory, level shifts, leverage effects, day-of-the-week seasonality, and macroeconomic announcements," International Journal of Forecasting, Elsevier, vol. 25(2), pages 282-303.
    44. Calvo, Guillermo A., 1983. "Staggered prices in a utility-maximizing framework," Journal of Monetary Economics, Elsevier, vol. 12(3), pages 383-398, September.
    45. Chang-Jin Kim & Charles R. Nelson, 1999. "State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262112388, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Davide Delle Monache & Stefano Grassi & Paolo Santucci, 2015. "Testing for Level Shifts in Fractionally Integrated Processes: a State Space Approach," Studies in Economics 1511, School of Economics, University of Kent.
    2. Grassi, Stefano & Santucci de Magistris, Paolo, 2014. "When long memory meets the Kalman filter: A comparative study," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 301-319.
    3. Javier Haulde & Morten Ørregaard Nielsen, 2022. "Fractional integration and cointegration," CREATES Research Papers 2022-02, Department of Economics and Business Economics, Aarhus University.
    4. Sibbertsen, Philipp & Leschinski, Christian & Busch, Marie, 2018. "A multivariate test against spurious long memory," Journal of Econometrics, Elsevier, vol. 203(1), pages 33-49.
    5. Canarella, Giorgio & Miller, Stephen M., 2017. "Inflation targeting and inflation persistence: New evidence from fractional integration and cointegration," Journal of Economics and Business, Elsevier, vol. 92(C), pages 45-62.
    6. Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
    7. Niels Haldrup & Robinson Kruse, 2014. "Discriminating between fractional integration and spurious long memory," CREATES Research Papers 2014-19, Department of Economics and Business Economics, Aarhus University.
    8. Abderrazak Ben Maatoug & Rim Lamouchi & Russell Davidson & Ibrahim Fatnassi, 2018. "Modelling Foreign Exchange Realized Volatility Using High Frequency Data: Long Memory versus Structural Breaks," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 10(1), pages 1-25, March.
    9. Hassler, Uwe & Rodrigues, Paulo M.M. & Rubia, Antonio, 2014. "Persistence in the banking industry: Fractional integration and breaks in memory," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 95-112.
    10. Ata Assaf & Luis Alberiko Gil-Alana & Khaled Mokni, 2022. "True or spurious long memory in the cryptocurrency markets: evidence from a multivariate test and other Whittle estimation methods," Empirical Economics, Springer, vol. 63(3), pages 1543-1570, September.
    11. Christensen, Bent Jesper & Varneskov, Rasmus Tangsgaard, 2017. "Medium band least squares estimation of fractional cointegration in the presence of low-frequency contamination," Journal of Econometrics, Elsevier, vol. 197(2), pages 218-244.
    12. Claudio Morana, 2013. "Factor Vector Autoregressive Estimation of Heteroskedastic Persistent and Non Persistent Processes Subject to Structural Breaks: New Insights on the US OIS SPreads Term Structure," Working Papers 233, University of Milano-Bicocca, Department of Economics, revised Feb 2013.
    13. Dissanayake, G.S. & Peiris, M.S. & Proietti, T., 2016. "State space modeling of Gegenbauer processes with long memory," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 115-130.
    14. Wenger, Kai & Leschinski, Christian & Sibbertsen, Philipp, 2017. "The Memory of Volatility," Hannover Economic Papers (HEP) dp-601, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    15. Giorgio Canarella & Stephen M. Miller, 2016. "Inflation Persistence and Structural Breaks: The Experience of Inflation Targeting Countries and the US," Working papers 2016-11, University of Connecticut, Department of Economics.
    16. Kruse, Robinson, 2015. "A modified test against spurious long memory," Economics Letters, Elsevier, vol. 135(C), pages 34-38.
    17. Rodríguez, Gabriel, 2017. "Modeling Latin-American stock and Forex markets volatility: Empirical application of a model with random level shifts and genuine long memory," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 393-420.
    18. Arturo Leccadito & Omar Rachedi & Giovanni Urga, 2015. "True Versus Spurious Long Memory: Some Theoretical Results and a Monte Carlo Comparison," Econometric Reviews, Taylor & Francis Journals, vol. 34(4), pages 452-479, April.
    19. Belkhouja, Mustapha & Mootamri, Imene, 2016. "Long memory and structural change in the G7 inflation dynamics," Economic Modelling, Elsevier, vol. 54(C), pages 450-462.
    20. Mccloskey, Adam & Perron, Pierre, 2013. "Memory Parameter Estimation In The Presence Of Level Shifts And Deterministic Trends," Econometric Theory, Cambridge University Press, vol. 29(6), pages 1196-1237, December.

    More about this item

    Keywords

    ARFIMA Processes; Level Shifts; State-Space methods; KPSS test;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C80 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aah:create:2017-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.econ.au.dk/afn/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.