IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v201y2012i1p325-34310.1007-s10479-012-1229-8.html
   My bibliography  Save this article

Measuring financial risk and portfolio optimization with a non-Gaussian multivariate model

Author

Listed:
  • Young Kim
  • Rosella Giacometti
  • Svetlozar Rachev
  • Frank Fabozzi
  • Domenico Mignacca

Abstract

In this paper, we propose a multivariate market model with returns assumed to follow a multivariate normal tempered stable distribution. This distribution, defined by a mixture of the multivariate normal distribution and the tempered stable subordinator, is consistent with two stylized facts that have been observed for asset distributions: fat-tails and an asymmetric dependence structure. Assuming infinitely divisible distributions, we derive closed-form solutions for two important measures used by portfolio managers in portfolio construction: the marginal VaR and the marginal AVaR. We illustrate the proposed model using stocks comprising the Dow Jones Industrial Average, first statistically validating the model based on goodness-of-fit tests and then demonstrating how the marginal VaR and marginal AVaR can be used for portfolio optimization using the model. Based on the empirical evidence presented in this paper, our framework offers more realistic portfolio risk measures and a more tractable method for portfolio optimization. Copyright Springer Science+Business Media New York 2012

Suggested Citation

  • Young Kim & Rosella Giacometti & Svetlozar Rachev & Frank Fabozzi & Domenico Mignacca, 2012. "Measuring financial risk and portfolio optimization with a non-Gaussian multivariate model," Annals of Operations Research, Springer, vol. 201(1), pages 325-343, December.
  • Handle: RePEc:spr:annopr:v:201:y:2012:i:1:p:325-343:10.1007/s10479-012-1229-8
    DOI: 10.1007/s10479-012-1229-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-012-1229-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-012-1229-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Desheng Dash Wu & David L. Olson & Luis A. Seco & John Birge, 2011. "Introduction To The Special Issue On "Operational Research And Asia Risk Management"," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 28(01), pages 1-1.
    2. Neil Shephard & Ole E. Barndorff-Nielsen & University of Aarhus, 2001. "Normal Modified Stable Processes," Economics Series Working Papers 72, University of Oxford, Department of Economics.
    3. Gourieroux, C. & Laurent, J. P. & Scaillet, O., 2000. "Sensitivity analysis of Values at Risk," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 225-245, November.
    4. Svetlozar Rachev & Seonkoo Han, 2000. "Portfolio management with stable distributions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 51(2), pages 341-352, April.
    5. Bruce D. Craven & Sardar M. N. Islam, 2005. "Optimization in Economics and Finance," Dynamic Modeling and Econometrics in Economics and Finance, Springer, number 978-0-387-24280-4, June.
    6. Eugene F. Fama, 1963. "Mandelbrot and the Stable Paretian Hypothesis," The Journal of Business, University of Chicago Press, vol. 36, pages 420-420.
    7. Jordan Stoyanov, 2011. "Stochastic Financial Models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 174(2), pages 510-511, April.
    8. Benoit Mandelbrot, 1963. "New Methods in Statistical Economics," Journal of Political Economy, University of Chicago Press, vol. 71(5), pages 421-421.
    9. D Wu & D L Olson, 2010. "Enterprise risk management: coping with model risk in a large bank," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(2), pages 179-190, February.
    10. C. Adcock, 2010. "Asset pricing and portfolio selection based on the multivariate extended skew-Student-t distribution," Annals of Operations Research, Springer, vol. 176(1), pages 221-234, April.
    11. Renata Mansini & Włodzimierz Ogryczak & M. Speranza, 2007. "Conditional value at risk and related linear programming models for portfolio optimization," Annals of Operations Research, Springer, vol. 152(1), pages 227-256, July.
    12. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    13. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Young Shin Kim, 2022. "Portfolio optimization and marginal contribution to risk on multivariate normal tempered stable model," Annals of Operations Research, Springer, vol. 312(2), pages 853-881, May.
    2. Young Shin Kim, 2020. "Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk," Papers 2007.13972, arXiv.org, revised Sep 2020.
    3. Young Shin Kim, 2023. "Portfolio Optimization with Relative Tail Risk," Papers 2303.12209, arXiv.org, revised Mar 2023.
    4. Anand, Abhinav & Li, Tiantian & Kurosaki, Tetsuo & Kim, Young Shin, 2016. "Foster–Hart optimal portfolios," Journal of Banking & Finance, Elsevier, vol. 68(C), pages 117-130.
    5. Shao, Barret Pengyuan & Rachev, Svetlozar T. & Mu, Yu, 2015. "Applied mean-ETL optimization in using earnings forecasts," International Journal of Forecasting, Elsevier, vol. 31(2), pages 561-567.
    6. Abhinav Anand & Tiantian Li & Tetsuo Kurosaki & Young Shin Kim, 2017. "The equity risk posed by the too-big-to-fail banks: a Foster–Hart estimation," Annals of Operations Research, Springer, vol. 253(1), pages 21-41, June.
    7. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, November.
    8. Young Shin Kim & Frank J. Fabozzi, 2024. "Portfolio optimization with relative tail risk," Annals of Operations Research, Springer, vol. 341(2), pages 1023-1055, October.
    9. Stoyan Stoyanov & Borjana Racheva-Iotova & Svetlozar Rachev & Frank Fabozzi, 2010. "Stochastic models for risk estimation in volatile markets: a survey," Annals of Operations Research, Springer, vol. 176(1), pages 293-309, April.
    10. Sabiou M. Inoua & Vernon L. Smith, 2022. "Perishable goods versus re-tradable assets: A theoretical reappraisal of a fundamental dichotomy," Chapters, in: Sascha Füllbrunn & Ernan Haruvy (ed.), Handbook of Experimental Finance, chapter 15, pages 162-171, Edward Elgar Publishing.
    11. Rachev, Svetlozar & Jasic, Teo & Stoyanov, Stoyan & Fabozzi, Frank J., 2007. "Momentum strategies based on reward-risk stock selection criteria," Journal of Banking & Finance, Elsevier, vol. 31(8), pages 2325-2346, August.
    12. Sung Ik Kim, 2022. "ARMA–GARCH model with fractional generalized hyperbolic innovations," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-25, December.
    13. Qu, Yan & Dassios, Angelos & Zhao, Hongbiao, 2021. "Random variate generation for exponential and gamma tilted stable distributions," LSE Research Online Documents on Economics 108593, London School of Economics and Political Science, LSE Library.
    14. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    15. W. Walls, 2005. "Modeling Movie Success When ‘Nobody Knows Anything’: Conditional Stable-Distribution Analysis Of Film Returns," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 29(3), pages 177-190, August.
    16. W. D. Walls & Jordi McKenzie, 2020. "Black swan models for the entertainment industry with an application to the movie business," Empirical Economics, Springer, vol. 59(6), pages 3019-3032, December.
    17. Ortobelli, Sergio & Rachev, Svetlozar T. & Fabozzi, Frank J., 2010. "Risk management and dynamic portfolio selection with stable Paretian distributions," Journal of Empirical Finance, Elsevier, vol. 17(2), pages 195-211, March.
    18. Asmussen, Søren & Avram, Florin & Pistorius, Martijn R., 2004. "Russian and American put options under exponential phase-type Lévy models," Stochastic Processes and their Applications, Elsevier, vol. 109(1), pages 79-111, January.
    19. Grobys, Klaus, 2023. "A multifractal model of asset (in)variances," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 85(C).
    20. Calzolari, Giorgio & Halbleib, Roxana, 2018. "Estimating stable latent factor models by indirect inference," Journal of Econometrics, Elsevier, vol. 205(1), pages 280-301.

    More about this item

    Keywords

    Portfolio risk; Portfolio optimization; Portfolio budgeting; Marginal contribution; Fat-tailed distribution; Multivariate normal tempered stable distribution;
    All these keywords.

    JEL classification:

    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:201:y:2012:i:1:p:325-343:10.1007/s10479-012-1229-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.