IDEAS home Printed from https://ideas.repec.org/p/ags/aaea15/205771.html
   My bibliography  Save this paper

A common factor of stochastic volatilities between oil and commodity prices

Author

Listed:
  • Lee, Eunhee
  • Han, Doo Bong
  • Ito, Shoichi
  • Rodolfo M. Nayga, Jr

Abstract

This paper analyzes the multivariate stochastic volatilities with a common factor which is affecting both the volatilities of crude oil and agricultural commodity prices in both biofuel and non-biofuel use. We develop a stochastic volatility model which has a latent common volatility with two asymptotic regimes and a smooth transition between them. In contrast with conventional volatility models, stochastic volatilities in this study are generated by a logistic transformation of the latent factors, which consists of two components: the common volatility factor and the idiosyncratic component. In this study, we analyze the stochastic volatility model with a common factor for oil, corn and wheat from August 8, 2005 to October 10, 2014 using a Markov-Chain-Monte-Carlo (MCMC) method and estimate the stochastic volatilities and also extract the common factor. Our results suggest that the volatility of oil and grain markets are very persistent since the common factor generating the stochastic volatilities of oil and commodity markets is highly persistent. In addition, the volatilities of oil prices are more affected by a common factor while the volatilities of corn are more determined by the idiosyncratic component.

Suggested Citation

  • Lee, Eunhee & Han, Doo Bong & Ito, Shoichi & Rodolfo M. Nayga, Jr, 2015. "A common factor of stochastic volatilities between oil and commodity prices," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205771, Agricultural and Applied Economics Association.
  • Handle: RePEc:ags:aaea15:205771
    DOI: 10.22004/ag.econ.205771
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/205771/files/Volatility%20paper.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.205771?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    2. Anders B. Trolle & Eduardo S. Schwartz, 2009. "Unspanned Stochastic Volatility and the Pricing of Commodity Derivatives," The Review of Financial Studies, Society for Financial Studies, vol. 22(11), pages 4423-4461, November.
    3. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 2002. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 69-87, January.
    4. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 1994. "Bayesian Analysis of Stochastic Volatility Models: Comments: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 413-417, October.
    5. Danielsson, Jon, 1994. "Stochastic volatility in asset prices estimation with simulated maximum likelihood," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 375-400.
    6. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2006. "Analysis of high dimensional multivariate stochastic volatility models," Journal of Econometrics, Elsevier, vol. 134(2), pages 341-371, October.
    7. Du, Xiaodong & Yu, Cindy L. & Hayes, Dermot J., 2011. "Speculation and volatility spillover in the crude oil and agricultural commodity markets: A Bayesian analysis," Energy Economics, Elsevier, vol. 33(3), pages 497-503, May.
    8. Vo, Minh T., 2009. "Regime-switching stochastic volatility: Evidence from the crude oil market," Energy Economics, Elsevier, vol. 31(5), pages 779-788, September.
    9. Jacquier, Eric & Polson, Nicholas G. & Rossi, P.E.Peter E., 2004. "Bayesian analysis of stochastic volatility models with fat-tails and correlated errors," Journal of Econometrics, Elsevier, vol. 122(1), pages 185-212, September.
    10. Larsson, Karl & Nossman, Marcus, 2011. "Jumps and stochastic volatility in oil prices: Time series evidence," Energy Economics, Elsevier, vol. 33(3), pages 504-514, May.
    11. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2002. "Markov chain Monte Carlo methods for stochastic volatility models," Journal of Econometrics, Elsevier, vol. 108(2), pages 281-316, June.
    12. repec:bla:jfinan:v:44:y:1989:i:1:p:1-17 is not listed on IDEAS
    13. Shephard, Neil (ed.), 2005. "Stochastic Volatility: Selected Readings," OUP Catalogue, Oxford University Press, number 9780199257201.
    14. Timo Terasvirta & Zhenfang Zhao, 2011. "Stylized facts of return series, robust estimates and three popular models of volatility," Applied Financial Economics, Taylor & Francis Journals, vol. 21(1-2), pages 67-94.
    15. Park, Joon Y., 2002. "Nonstationary nonlinear heteroskedasticity," Journal of Econometrics, Elsevier, vol. 110(2), pages 383-415, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Apostolos Ampountolas, 2024. "Enhancing Forecasting Accuracy in Commodity and Financial Markets: Insights from GARCH and SVR Models," IJFS, MDPI, vol. 12(3), pages 1-20, June.
    2. Hualin Xie & Bohao Wang, 2017. "An Empirical Analysis of the Impact of Agricultural Product Price Fluctuations on China’s Grain Yield," Sustainability, MDPI, vol. 9(6), pages 1-14, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Eunhee & Han, Doo Bong, 2016. "Oil Price Volatility and Asymmetric Leverage Effects," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235480, Agricultural and Applied Economics Association.
    2. Juan Hoyo & Guillermo Llorente & Carlos Rivero, 2020. "A Testing Procedure for Constant Parameters in Stochastic Volatility Models," Computational Economics, Springer;Society for Computational Economics, vol. 56(1), pages 163-186, June.
    3. Du, Xiaodong & Yu, Cindy L. & Hayes, Dermot J., 2011. "Speculation and volatility spillover in the crude oil and agricultural commodity markets: A Bayesian analysis," Energy Economics, Elsevier, vol. 33(3), pages 497-503, May.
    4. Wang, Joanna J.J. & Chan, Jennifer S.K. & Choy, S.T. Boris, 2011. "Stochastic volatility models with leverage and heavy-tailed distributions: A Bayesian approach using scale mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 852-862, January.
    5. Nonejad, Nima, 2017. "Parameter instability, stochastic volatility and estimation based on simulated likelihood: Evidence from the crude oil market," Economic Modelling, Elsevier, vol. 61(C), pages 388-408.
    6. Asai, Manabu, 2009. "Bayesian analysis of stochastic volatility models with mixture-of-normal distributions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2579-2596.
    7. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility," Microeconomics Working Papers 22058, East Asian Bureau of Economic Research.
    8. Tsionas, Mike G., 2021. "Bayesian analysis of static and dynamic Hurst parameters under stochastic volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    9. Jean Pierre Fernández Prada Saucedo & Gabriel Rodríguez, 2020. "Modeling the Volatility of Returns on Commodities: An Application and Empirical Comparison of GARCH and SV Models," Documentos de Trabajo / Working Papers 2020-484, Departamento de Economía - Pontificia Universidad Católica del Perú.
    10. Tsionas, Mike G., 2017. "A non-iterative (trivial) method for posterior inference in stochastic volatility models," Statistics & Probability Letters, Elsevier, vol. 126(C), pages 83-87.
    11. Yu, Jun & Yang, Zhenlin & Zhang, Xibin, 2006. "A class of nonlinear stochastic volatility models and its implications for pricing currency options," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2218-2231, December.
    12. So, Mike K.P. & Choi, C.Y., 2008. "A multivariate threshold stochastic volatility model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 306-317.
    13. Lengua Lafosse, Patricia & Rodríguez, Gabriel, 2018. "An empirical application of a stochastic volatility model with GH skew Student's t-distribution to the volatility of Latin-American stock returns," The Quarterly Review of Economics and Finance, Elsevier, vol. 69(C), pages 155-173.
    14. Legrand, Romain, 2018. "Time-Varying Vector Autoregressions: Efficient Estimation, Random Inertia and Random Mean," MPRA Paper 88925, University Library of Munich, Germany.
    15. Virbickaitė, Audronė & Ausín, M. Concepción & Galeano, Pedro, 2020. "Copula stochastic volatility in oil returns: Approximate Bayesian computation with volatility prediction," Energy Economics, Elsevier, vol. 92(C).
    16. Philipp Otto & Osman Dou{g}an & Suleyman Tac{s}p{i}nar & Wolfgang Schmid & Anil K. Bera, 2023. "Spatial and Spatiotemporal Volatility Models: A Review," Papers 2308.13061, arXiv.org.
    17. António Alberto Santos, 2015. "The evolution of the Volatility in Financial Returns: Realized Volatility vs Stochastic Volatility Measures," GEMF Working Papers 2015-10, GEMF, Faculty of Economics, University of Coimbra.
    18. Hautsch, Nikolaus & Ou, Yangguoyi, 2008. "Discrete-time stochastic volatility models and MCMC-based statistical inference," SFB 649 Discussion Papers 2008-063, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    19. Carmen Broto & Esther Ruiz, 2004. "Estimation methods for stochastic volatility models: a survey," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 613-649, December.
    20. Patricia Lengua Lafosse & Cristian Bayes & Gabriel Rodríguez, 2015. "A Stochastic Volatility Model with GH Skew Student’s t-Distribution: Application to Latin-American Stock Returns," Documentos de Trabajo / Working Papers 2015-405, Departamento de Economía - Pontificia Universidad Católica del Perú.

    More about this item

    Keywords

    Research Methods/ Statistical Methods; Risk and Uncertainty;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea15:205771. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.