IDEAS home Printed from https://ideas.repec.org/a/spr/elcore/v23y2023i1d10.1007_s10660-022-09545-9.html
   My bibliography  Save this article

Research on cojumps of electronic commerce overnight factors in volatility prediction based on joint BW test

Author

Listed:
  • Liling Deng

    (Chongqing Three Gorges University)

  • Haifang Xiong

    (Dongbei University of Finance and Economics)

  • Zhiqiang Wang

    (Dongbei University of Finance and Economics)

Abstract

Volatility is an important feature of e-commerce activities, and overnight information has the greatest impact on the market volatility of e-commerce. The identification of contemporaneous jumps (cojumps) is crucial to studying the effect of overnight information on market volatility. This paper takes stock and futures e-commerce as the research object, based on the heterogeneous autoregression model of the Realized Volatility under high-frequency data, not only the characteristics of cojumps between the CSI 300 stock index and the future index are investigated, but also the effects of overnight factors on the future volatility. The results indicate that the Extended-Weighted Realized Volatility (EWRV) modifying both the intraday and overnight effects may be a better estimator of volatility. The joint BW test could be more efficient in the identification of cojumps with significant overnight characteristics. The effect of the overnight cojumps on the future volatility is significantly positive and greater than that of the intraday cojumps. In the Electronic Commerce stock index market, there is not enough evidence of the transmission from the overnight cojumps to the intraday volatility, which means the future index market may have no significant spillover to the stock index market.

Suggested Citation

  • Liling Deng & Haifang Xiong & Zhiqiang Wang, 2023. "Research on cojumps of electronic commerce overnight factors in volatility prediction based on joint BW test," Electronic Commerce Research, Springer, vol. 23(1), pages 115-135, March.
  • Handle: RePEc:spr:elcore:v:23:y:2023:i:1:d:10.1007_s10660-022-09545-9
    DOI: 10.1007/s10660-022-09545-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10660-022-09545-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10660-022-09545-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bollerslev, Tim & Todorov, Viktor & Li, Sophia Zhengzi, 2013. "Jump tails, extreme dependencies, and the distribution of stock returns," Journal of Econometrics, Elsevier, vol. 172(2), pages 307-324.
    2. Wang, Hao & Yue, Mengqi & Zhao, Hua, 2015. "Cojumps in China's spot and stock index futures markets," Pacific-Basin Finance Journal, Elsevier, vol. 35(PB), pages 541-557.
    3. Bollerslev, Tim & Law, Tzuo Hann & Tauchen, George, 2008. "Risk, jumps, and diversification," Journal of Econometrics, Elsevier, vol. 144(1), pages 234-256, May.
    4. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    5. Ole E. Barndorff-Nielsen & Neil Shephard, 2006. "Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation," Journal of Financial Econometrics, Oxford University Press, vol. 4(1), pages 1-30.
    6. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
    7. Aït-Sahalia, Yacine & Xiu, Dacheng, 2016. "Increased correlation among asset classes: Are volatility or jumps to blame, or both?," Journal of Econometrics, Elsevier, vol. 194(2), pages 205-219.
    8. Jérôme Lahaye & Sébastien Laurent & Christopher J. Neely, 2011. "Jumps, cojumps and macro announcements," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(6), pages 893-921, September.
    9. Peter Reinhard Hansen & Asger Lunde, 2005. "A Realized Variance for the Whole Day Based on Intermittent High-Frequency Data," Journal of Financial Econometrics, Oxford University Press, vol. 3(4), pages 525-554.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yeh, Jin-Huei & Yun, Mu-Shu, 2023. "Assessing jump and cojumps in financial asset returns with applications in futures markets," Pacific-Basin Finance Journal, Elsevier, vol. 82(C).
    2. Gilder, Dudley & Shackleton, Mark B. & Taylor, Stephen J., 2014. "Cojumps in stock prices: Empirical evidence," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 443-459.
    3. Usman Arief & Zaäfri Ananto Husodo, 2021. "Private Information from Extreme Price Movements (Empirical Evidences from Southeast Asia Countries)," International Symposia in Economic Theory and Econometrics, in: Recent Developments in Asian Economics International Symposia in Economic Theory and Econometrics, volume 28, pages 221-242, Emerald Group Publishing Limited.
    4. Gregory Bauer & Keith Vorkink, 2007. "Multivariate Realized Stock Market Volatility," Staff Working Papers 07-20, Bank of Canada.
    5. Barunik, Jozef & Vacha, Lukas, 2018. "Do co-jumps impact correlations in currency markets?," Journal of Financial Markets, Elsevier, vol. 37(C), pages 97-119.
    6. Ewald, Christian & Hadina, Jelena & Haugom, Erik & Lien, Gudbrand & Størdal, Ståle & Yahya, Muhammad, 2023. "Sample frequency robustness and accuracy in forecasting Value-at-Risk for Brent Crude Oil futures," Finance Research Letters, Elsevier, vol. 58(PA).
    7. Arouri, Mohamed & M’saddek, Oussama & Nguyen, Duc Khuong & Pukthuanthong, Kuntara, 2019. "Cojumps and asset allocation in international equity markets," Journal of Economic Dynamics and Control, Elsevier, vol. 98(C), pages 1-22.
    8. Zhou, Haigang & Zhu, John Qi, 2019. "Firm characteristics and jump dynamics in stock prices around earnings announcements," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    9. Lee, Suzanne S. & Wang, Minho, 2020. "Tales of tails: Jumps in currency markets," Journal of Financial Markets, Elsevier, vol. 48(C).
    10. Yin Liao & Heather Anderson & Farshid Vahid, 2010. "Do Jumps Matter? Forecasting Multivariate Realized Volatility Allowing for Common Jumps," ANU Working Papers in Economics and Econometrics 2010-520, Australian National University, College of Business and Economics, School of Economics.
    11. Donggyu Kim & Minseok Shin & Yazhen Wang, 2023. "Overnight GARCH-Itô Volatility Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1215-1227, October.
    12. Degiannakis, Stavros & Floros, Christos, 2013. "Modeling CAC40 volatility using ultra-high frequency data," Research in International Business and Finance, Elsevier, vol. 28(C), pages 68-81.
    13. Wang, Hao & Yue, Mengqi & Zhao, Hua, 2015. "Cojumps in China's spot and stock index futures markets," Pacific-Basin Finance Journal, Elsevier, vol. 35(PB), pages 541-557.
    14. Ole E. Barndorff-Nielsen & Neil Shephard, 2005. "Variation, jumps, market frictions and high frequency data in financial econometrics," OFRC Working Papers Series 2005fe08, Oxford Financial Research Centre.
    15. Andersen, Torben G. & Bollerslev, Tim & Huang, Xin, 2011. "A reduced form framework for modeling volatility of speculative prices based on realized variation measures," Journal of Econometrics, Elsevier, vol. 160(1), pages 176-189, January.
    16. Clements, Adam & Liao, Yin, 2017. "Forecasting the variance of stock index returns using jumps and cojumps," International Journal of Forecasting, Elsevier, vol. 33(3), pages 729-742.
    17. Song, Shijia & Li, Handong, 2023. "Is a co-jump in prices a sparse jump?," The North American Journal of Economics and Finance, Elsevier, vol. 67(C).
    18. Denisa Georgiana Banulescu & Ferrara Laurent & Marsilli Clément, 2019. "Prévoir la volatilité d’un actif financier à l’aide d’un modèle à mélange de fréquences," Working Papers hal-03563168, HAL.
    19. Degiannakis, Stavros & Floros, Christos, 2016. "Intra-day realized volatility for European and USA stock indices," Global Finance Journal, Elsevier, vol. 29(C), pages 24-41.
    20. Chorro, Christophe & Ielpo, Florian & Sévi, Benoît, 2020. "The contribution of intraday jumps to forecasting the density of returns," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:elcore:v:23:y:2023:i:1:d:10.1007_s10660-022-09545-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.