IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1502.07321.html
   My bibliography  Save this paper

An Ordinal Pattern Approach to Detect and to Model Leverage Effects and Dependence Structures Between Financial Time Series

Author

Listed:
  • Alexander Schnurr

Abstract

We introduce two types of ordinal pattern dependence between time series. Positive (resp. negative) ordinal pattern dependence can be seen as a non-paramatric and in particular non-linear counterpart to positive (resp. negative) correlation. We show in an explorative study that both types of this dependence show up in real world financial data.

Suggested Citation

  • Alexander Schnurr, 2015. "An Ordinal Pattern Approach to Detect and to Model Leverage Effects and Dependence Structures Between Financial Time Series," Papers 1502.07321, arXiv.org.
  • Handle: RePEc:arx:papers:1502.07321
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1502.07321
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carr, Peter & Wu, Liuren, 2007. "Stochastic skew in currency options," Journal of Financial Economics, Elsevier, vol. 86(1), pages 213-247, October.
    2. Yu, Jun, 2005. "On leverage in a stochastic volatility model," Journal of Econometrics, Elsevier, vol. 127(2), pages 165-178, August.
    3. Ole E. Barndorff‐Nielsen & Neil Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280, May.
    4. Almut Veraart & Luitgard Veraart, 2012. "Stochastic volatility and stochastic leverage," Annals of Finance, Springer, vol. 8(2), pages 205-233, May.
    5. H. Zarei & H. Jabbari, 2011. "Complete convergence of weighted sums under negative dependence," Statistical Papers, Springer, vol. 52(2), pages 413-418, May.
    6. Keller, K. & Sinn, M., 2005. "Ordinal analysis of time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 356(1), pages 114-120.
    7. Soo Sung, 2012. "Complete convergence for weighted sums of negatively dependent random variables," Statistical Papers, Springer, vol. 53(1), pages 73-82, February.
    8. Chstoph Bandt & Faten Shiha, 2007. "Order Patterns in Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(5), pages 646-665, September.
    9. Sinn, Mathieu & Keller, Karsten, 2011. "Estimation of ordinal pattern probabilities in Gaussian processes with stationary increments," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1781-1790, April.
    10. Dilip Madan & Marc Yor, 2011. "The S&P 500 Index as a Sato Process Travelling at the Speed of the VIX," Applied Mathematical Finance, Taylor & Francis Journals, vol. 18(3), pages 227-244.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander Schnurr, 2014. "An ordinal pattern approach to detect and to model leverage effects and dependence structures between financial time series," Statistical Papers, Springer, vol. 55(4), pages 919-931, November.
    2. Curato, Imma Valentina, 2019. "Estimation of the stochastic leverage effect using the Fourier transform method," Stochastic Processes and their Applications, Elsevier, vol. 129(9), pages 3207-3238.
    3. Almut Veraart & Luitgard Veraart, 2012. "Stochastic volatility and stochastic leverage," Annals of Finance, Springer, vol. 8(2), pages 205-233, May.
    4. Imma Valentina Curato & Simona Sanfelici, 2019. "Stochastic leverage effect in high-frequency data: a Fourier based analysis," Papers 1910.06660, arXiv.org, revised Mar 2021.
    5. Imma Valentina Curato, 2013. "Fourier estimation of stochastic leverage using high frequency data," Working Papers - Mathematical Economics 2013-04, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
    6. Ole E. Barndorff-Nielsen & Almut E. D. Veraart, 2009. "Stochastic volatility of volatility in continuous time," CREATES Research Papers 2009-25, Department of Economics and Business Economics, Aarhus University.
    7. Annika Betken & Jannis Buchsteiner & Herold Dehling & Ines Münker & Alexander Schnurr & Jeannette H.C. Woerner, 2021. "Ordinal patterns in long‐range dependent time series," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(3), pages 969-1000, September.
    8. Asai, Manabu & McAleer, Michael, 2015. "Forecasting co-volatilities via factor models with asymmetry and long memory in realized covariance," Journal of Econometrics, Elsevier, vol. 189(2), pages 251-262.
    9. Yu, Jun, 2012. "A semiparametric stochastic volatility model," Journal of Econometrics, Elsevier, vol. 167(2), pages 473-482.
    10. Schnurr, Alexander & Fischer, Svenja, 2022. "Generalized ordinal patterns allowing for ties and their applications in hydrology," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
    11. Catania, Leopoldo & Proietti, Tommaso, 2020. "Forecasting volatility with time-varying leverage and volatility of volatility effects," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1301-1317.
    12. Michael Pitt & Sheheryar Malik & Arnaud Doucet, 2014. "Simulated likelihood inference for stochastic volatility models using continuous particle filtering," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(3), pages 527-552, June.
    13. Federico M. Bandi & Roberto Reno, 2009. "Nonparametric Stochastic Volatility," Global COE Hi-Stat Discussion Paper Series gd08-035, Institute of Economic Research, Hitotsubashi University.
    14. Yacine Aït-Sahalia & Jianqing Fan & Roger J. A. Laeven & Christina Dan Wang & Xiye Yang, 2017. "Estimation of the Continuous and Discontinuous Leverage Effects," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1744-1758, October.
    15. Asai, Manabu & Chang, Chia-Lin & McAleer, Michael, 2017. "Realized stochastic volatility with general asymmetry and long memory," Journal of Econometrics, Elsevier, vol. 199(2), pages 202-212.
    16. Shirota, Shinichiro & Hizu, Takayuki & Omori, Yasuhiro, 2014. "Realized stochastic volatility with leverage and long memory," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 618-641.
    17. Virbickaitė, Audronė & Frey, Christoph & Macedo, Demian N., 2020. "Bayesian sequential stock return prediction through copulas," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
    18. Manabu Asai & Michael McAleer & Marcelo C. Medeiros, 2012. "Asymmetry and Long Memory in Volatility Modeling," Journal of Financial Econometrics, Oxford University Press, vol. 10(3), pages 495-512, June.
    19. Bretó, Carles, 2014. "On idiosyncratic stochasticity of financial leverage effects," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 20-26.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1502.07321. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.