IDEAS home Printed from https://ideas.repec.org/e/c/pti8.html
   My authors  Follow this author

Allan Timmermann

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Blog mentions

As found by EconAcademics.org, the blog aggregator for Economics research:
  1. Timmermann, Allan, 2006. "Forecast Combinations," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 4, pages 135-196, Elsevier.

    Mentioned in:

    1. Combining Forecasts
      by Clive Jones in Business Forecasting on 2012-06-26 00:30:56
  2. Pesaran, M. Hashem & Timmermann, Allan, 2007. "Selection of estimation window in the presence of breaks," Journal of Econometrics, Elsevier, vol. 137(1), pages 134-161, March.

    Mentioned in:

    1. Forecasting GDP in the presence of breaks: when is the past is a good guide to the future?
      by bankunderground in Bank Underground on 2015-08-20 11:30:00
    2. Forecasting GDP in the presence of breaks: when is the past a good guide to the future?
      by Guest Author in The Big Picture on 2015-09-01 14:00:11
  3. Author Profile
    1. Top Forecasting Institutions and Researchers According to IDEAS!
      by Clive Jones in Business Forecasting on 2013-06-28 01:43:46
    2. Ranking California Economists as of May 2015
      by Matthew Kahn in Environmental and Urban Economics on 2015-06-04 02:25:00
    3. Peers at Work as of August 2016
      by Matthew Kahn in Environmental and Urban Economics on 2016-09-04 19:36:00

RePEc Biblio mentions

As found on the RePEc Biblio, the curated bibliography of Economics:
  1. G. Elliott & C. Granger & A. Timmermann (ed.), 2006. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 1, number 1.

    Mentioned in:

    1. > Econometrics > Forecasting

Wikipedia or ReplicationWiki mentions

(Only mentions on Wikipedia that link back to a page on a RePEc service)
  1. Allan Timmermann & Massimo Guidolin, 2006. "An econometric model of nonlinear dynamics in the joint distribution of stock and bond returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 1-22.

    Mentioned in:

    1. An econometric model of nonlinear dynamics in the joint distribution of stock and bond returns (Journal of Applied Econometrics 2006) in ReplicationWiki ()
  2. Timmermann, Allan, 1995. "Cointegration Tests of Present Value Models with a Time-Varying Discount Factor," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(1), pages 17-31, Jan.-Marc.

    Mentioned in:

    1. Cointegration tests of present value models with a time-varying discount factor (Journal of Applied Econometrics 1995) in ReplicationWiki ()

Working papers

  1. Simon Smith & Allan Timmermann & Jonathan H. Wright, 2023. "Breaks in the Phillips Curve: Evidence from Panel Data," NBER Working Papers 31153, National Bureau of Economic Research, Inc.

    Cited by:

    1. Barbara Rossi & Atsushi Inoue & Yiru Wang, 2024. "Has the Phillips curve flattened?," French Stata Users' Group Meetings 2024 22, Stata Users Group.
    2. Ferri, Piero & Cristini, Annalisa & Tramontana, Fabio, 2023. "Meta-models of the Phillips curve and income distribution," Journal of Economic Behavior & Organization, Elsevier, vol. 213(C), pages 215-232.
    3. Pierpaolo Benigno & Gauti B. Eggertsson, 2023. "It’s Baaack: The Surge in Inflation in the 2020s and the Return of the Non-Linear Phillips Curve," NBER Working Papers 31197, National Bureau of Economic Research, Inc.

  2. Peter Reinhard HANSEN & Allan TIMMERMANN, 2012. "Choice of Sample Split in Out-of-Sample Forecast Evaluation," Economics Working Papers ECO2012/10, European University Institute.

    Cited by:

    1. Christian Hutter & Enzo Weber, 2015. "Constructing a new leading indicator for unemployment from a survey among German employment agencies," Applied Economics, Taylor & Francis Journals, vol. 47(33), pages 3540-3558, July.
    2. Barbara Rossi, 2011. "Advances in Forecasting Under Instability," Working Papers 11-20, Duke University, Department of Economics.
    3. Tae-Hwy Lee & Weiping Yang, 2012. "Money–Income Granger-Causality in Quantiles," Advances in Econometrics, in: 30th Anniversary Edition, pages 385-409, Emerald Group Publishing Limited.
    4. Fabian Baetje & Lukas Menkhoff, 2016. "Equity Premium Prediction: Are Economic and Technical Indicators Unstable?," Discussion Papers of DIW Berlin 1552, DIW Berlin, German Institute for Economic Research.
    5. Kuntz, Laura-Chloé, 2020. "Beta dispersion and market timing," Journal of Empirical Finance, Elsevier, vol. 59(C), pages 235-256.
    6. Li, Chenchen & Wang, Yudong & Wu, Chongfeng, 2022. "Oil implied volatility and expected stock returns along the worldwide supply chain," Energy Economics, Elsevier, vol. 114(C).
    7. Papapostolou, Nikos C. & Pouliasis, Panos K. & Nomikos, Nikos K. & Kyriakou, Ioannis, 2016. "Shipping investor sentiment and international stock return predictability," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 96(C), pages 81-94.
    8. Giovannelli, Alessandro & Massacci, Daniele & Soccorsi, Stefano, 2021. "Forecasting stock returns with large dimensional factor models," Journal of Empirical Finance, Elsevier, vol. 63(C), pages 252-269.
    9. Goodness C. Aye & Frederick W. Deale & Rangan Gupta, 2016. "Does Debt Ceiling and Government Shutdown Help in Forecasting the US Equity Risk Premium?," Panoeconomicus, Savez ekonomista Vojvodine, Novi Sad, Serbia, vol. 63(3), pages 273-291.
    10. Chen, Jian & Jiang, Fuwei & Liu, Yangshu & Tu, Jun, 2017. "International volatility risk and Chinese stock return predictability," Journal of International Money and Finance, Elsevier, vol. 70(C), pages 183-203.
    11. Firmin Doko Tchatoka & Qazi Haque, 2020. "On bootstrapping tests of equal forecast accuracy for nested models," Economics Discussion / Working Papers 20-06, The University of Western Australia, Department of Economics.
    12. Wang, Cindy Shin-Huei & Bauwens, Luc & Hsiao, Cheng, 2013. "Forecasting a long memory process subject to structural breaks," Journal of Econometrics, Elsevier, vol. 177(2), pages 171-184.
    13. Chen, Jian & Tang, Guohao & Yao, Jiaquan & Zhou, Guofu, 2023. "Employee sentiment and stock returns," Journal of Economic Dynamics and Control, Elsevier, vol. 149(C).
    14. Peter Reinhard Hansen & Allan Timmermann, 2012. "Equivalence Between Out-of-Sample Forecast Comparisons and Wald Statistics," CREATES Research Papers 2012-45, Department of Economics and Business Economics, Aarhus University.
    15. Xing, Li-Min & Zhang, Yue-Jun, 2022. "Forecasting crude oil prices with shrinkage methods: Can nonconvex penalty and Huber loss help?," Energy Economics, Elsevier, vol. 110(C).
    16. Biqing Cai & Jiti Gao, 2017. "A simple nonlinear predictive model for stock returns," Monash Econometrics and Business Statistics Working Papers 18/17, Monash University, Department of Econometrics and Business Statistics.
    17. Pönkä, Harri, 2014. "Predicting the direction of US stock markets using industry returns," MPRA Paper 62942, University Library of Munich, Germany.
    18. Bätje, Fabian & Menkhoff, Lukas, 2016. "Predicting the equity premium via its components," VfS Annual Conference 2016 (Augsburg): Demographic Change 145789, Verein für Socialpolitik / German Economic Association.
    19. Timmermann, Allan, 2018. "Forecasting Methods in Finance," CEPR Discussion Papers 12692, C.E.P.R. Discussion Papers.
    20. Fernald, John G. & Hsu, Eric & Spiegel, Mark M., 2021. "Is China fudging its GDP figures? Evidence from trading partner data," Journal of International Money and Finance, Elsevier, vol. 110(C).
    21. Zhang, Pinyi & Ci, Bicong, 2020. "Deep belief network for gold price forecasting," Resources Policy, Elsevier, vol. 69(C).
    22. Sakkas, Athanasios & Tessaromatis, Nikolaos, 2020. "Factor based commodity investing," Journal of Banking & Finance, Elsevier, vol. 115(C).
    23. Hatice Gökçe Karasoy Can & Çağlar Yüncüler, 2018. "The Explanatory Power and the Forecast Performance of Consumer Confidence Indices for Private Consumption Growth in Turkey," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 54(9), pages 2136-2152, July.
    24. John Cotter & Emmanuel Eyiah-Donkor & Valerio Potì, 2023. "Commodity futures return predictability and intertemporal asset pricing," Post-Print hal-04192933, HAL.
    25. Narayan, Paresh Kumar & Bannigidadmath, Deepa, 2015. "Are Indian stock returns predictable?," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 506-531.
    26. Brooks, Chris & Burke, Simon P. & Stanescu, Silvia, 2016. "Finite sample weighting of recursive forecast errors," International Journal of Forecasting, Elsevier, vol. 32(2), pages 458-474.
    27. Baltas, Nick & Karyampas, Dimitrios, 2018. "Forecasting the equity risk premium: The importance of regime-dependent evaluation," Journal of Financial Markets, Elsevier, vol. 38(C), pages 83-102.
    28. Ignacio Garr'on & C. Vladimir Rodr'iguez-Caballero & Esther Ruiz, 2024. "International vulnerability of inflation," Papers 2410.20628, arXiv.org, revised Oct 2024.
    29. Chen, Jian & Jiang, Fuwei & Xue, Shuyu & Yao, Jiaquan, 2019. "The world predictive power of U.S. equity market skewness risk," Journal of International Money and Finance, Elsevier, vol. 96(C), pages 210-227.
    30. Thomadakis, Apostolos, 2016. "Do Combination Forecasts Outperform the Historical Average? Economic and Statistical Evidence," MPRA Paper 71589, University Library of Munich, Germany.
    31. Markiewicz, Agnieszka & Pick, Andreas, 2014. "Adaptive learning and survey data," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PB), pages 685-707.
    32. Li, Jia & Patton, Andrew J., 2018. "Asymptotic inference about predictive accuracy using high frequency data," Journal of Econometrics, Elsevier, vol. 203(2), pages 223-240.
    33. Huang, Yisu & Xu, Weiju & Huang, Dengshi & Zhao, Chenchen, 2023. "Chinese crude oil futures volatility and sustainability: An uncertainty indices perspective," Resources Policy, Elsevier, vol. 80(C).
    34. Fang, Jiali & Jacobsen, Ben & Qin, Yafeng, 2014. "Predictability of the simple technical trading rules: An out-of-sample test," Review of Financial Economics, Elsevier, vol. 23(1), pages 30-45.
    35. Jiang, Fuwei & Lee, Joshua & Martin, Xiumin & Zhou, Guofu, 2019. "Manager sentiment and stock returns," Journal of Financial Economics, Elsevier, vol. 132(1), pages 126-149.
    36. Liang, Chao & Wang, Lu & Duong, Duy, 2024. "More attention and better volatility forecast accuracy: How does war attention affect stock volatility predictability?," Journal of Economic Behavior & Organization, Elsevier, vol. 218(C), pages 1-19.
    37. Ruan, Xinfeng & Zhang, Jin E., 2018. "Risk-neutral moments in the crude oil market," Energy Economics, Elsevier, vol. 72(C), pages 583-600.
    38. Corradi, Valentina & Swanson, Norman R., 2014. "Testing for structural stability of factor augmented forecasting models," Journal of Econometrics, Elsevier, vol. 182(1), pages 100-118.
    39. Lin, Qi & Lin, Xi, 2021. "Cash conversion cycle and aggregate stock returns," Journal of Financial Markets, Elsevier, vol. 52(C).
    40. Khan, Faridoon & Muhammadullah, Sara & Sharif, Arshian & Lee, Chien-Chiang, 2024. "The role of green energy stock market in forecasting China's crude oil market: An application of IIS approach and sparse regression models," Energy Economics, Elsevier, vol. 130(C).
    41. Christian Hutter, 2020. "A new indicator for nowcasting employment subject to social security contributions in Germany," Journal for Labour Market Research, Springer;Institute for Employment Research/ Institut für Arbeitsmarkt- und Berufsforschung (IAB), vol. 54(1), pages 1-10, December.
    42. Kolev, Gueorgui I. & Karapandza, Rasa, 2017. "Out-of-sample equity premium predictability and sample split–invariant inference," Journal of Banking & Finance, Elsevier, vol. 84(C), pages 188-201.
    43. Chiang, I-Hsuan Ethan & Liao, Yin & Zhou, Qing, 2021. "Modeling the cross-section of stock returns using sensible models in a model pool," Journal of Empirical Finance, Elsevier, vol. 60(C), pages 56-73.
    44. Camila Epprecht & Dominique Guegan & Álvaro Veiga, 2013. "Comparing variable selection techniques for linear regression: LASSO and Autometrics," Documents de travail du Centre d'Economie de la Sorbonne 13080, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    45. He, Kaijian & Wang, Lijun & Zou, Yingchao & Lai, Kin Keung, 2014. "Value at risk estimation with entropy-based wavelet analysis in exchange markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 408(C), pages 62-71.
    46. Camila Epprecht & Dominique Guegan & Álvaro Veiga & Joel Correa da Rosa, 2017. "Variable selection and forecasting via automated methods for linear models: LASSO/adaLASSO and Autometrics," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00917797, HAL.
    47. Duangnate, Kannika & Mjelde, James W., 2017. "Comparison of data-rich and small-scale data time series models generating probabilistic forecasts: An application to U.S. natural gas gross withdrawals," Energy Economics, Elsevier, vol. 65(C), pages 411-423.
    48. Chen, Jian & Jiang, Fuwei & Li, Hongyi & Xu, Weidong, 2016. "Chinese stock market volatility and the role of U.S. economic variables," Pacific-Basin Finance Journal, Elsevier, vol. 39(C), pages 70-83.
    49. Huang, Dashan & Li, Jiangyuan & Wang, Liyao & Zhou, Guofu, 2020. "Time series momentum: Is it there?," Journal of Financial Economics, Elsevier, vol. 135(3), pages 774-794.
    50. Denisa Georgiana Banulescu & Gilbert Colletaz & Christophe Hurlin & Sessi Tokpavi, 2013. "High-Frequency Risk Measures," Working Papers halshs-00859456, HAL.
    51. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    52. Algaba, Andres & Boudt, Kris, 2017. "Generalized financial ratios to predict the equity premium," Economic Modelling, Elsevier, vol. 66(C), pages 244-257.
    53. Swasti R. Khuntia & Jose L. Rueda & Mart A.M.M. Van der Meijden, 2018. "Long-Term Electricity Load Forecasting Considering Volatility Using Multiplicative Error Model," Energies, MDPI, vol. 11(12), pages 1-19, November.
    54. Gebka, Bartosz & Wohar, Mark E., 2019. "Stock return distribution and predictability: Evidence from over a century of daily data on the DJIA index," International Review of Economics & Finance, Elsevier, vol. 60(C), pages 1-25.
    55. Stephen A. Gorman & Frank J. Fabozzi, 2021. "The ABC’s of the alternative risk premium: academic roots," Journal of Asset Management, Palgrave Macmillan, vol. 22(6), pages 405-436, October.
    56. Zhang, Qin & Ni, He & Xu, Hao, 2023. "Nowcasting Chinese GDP in a data-rich environment: Lessons from machine learning algorithms," Economic Modelling, Elsevier, vol. 122(C).
    57. Richard A. Ashley & Kwok Ping Tsang, 2014. "Credible Granger-Causality Inference with Modest Sample Lengths: A Cross-Sample Validation Approach," Econometrics, MDPI, vol. 2(1), pages 1-20, March.
    58. He, Kaijian & Yu, Lean & Tang, Ling, 2015. "Electricity price forecasting with a BED (Bivariate EMD Denoising) methodology," Energy, Elsevier, vol. 91(C), pages 601-609.
    59. Allan Timmermann, 2018. "Forecasting Methods in Finance," Annual Review of Financial Economics, Annual Reviews, vol. 10(1), pages 449-479, November.
    60. Li, Xiaowei & Wu, Zhengyu & Zhang, Hao & Zhang, Lu, 2024. "Risk-neutral skewness and stock market returns: A time-series analysis," The North American Journal of Economics and Finance, Elsevier, vol. 70(C).
    61. Hui Chen & Scott Joslin & Sophie X. Ni, 2019. "Demand for Crash Insurance, Intermediary Constraints, and Risk Premia in Financial Markets," NBER Working Papers 25573, National Bureau of Economic Research, Inc.
    62. Kuntz, Laura-Chloé, 2020. "Beta dispersion and market timing," Discussion Papers 46/2020, Deutsche Bundesbank.
    63. Ewa Feder-Sempach & Piotr Szczepocki & Wiesław Dębski, 2023. "What if beta is not stable? Applying the Kalman filter to risk estimates of top US companies over the long time horizon," Bank i Kredyt, Narodowy Bank Polski, vol. 54(1), pages 25-44.
    64. Fernald, John G. & Hsu, Eric & Spiegel, Mark M., 2021. "Reprint: Is China fudging its GDP figures? Evidence from trading partner data," Journal of International Money and Finance, Elsevier, vol. 114(C).
    65. Biqing Cai & Jiti Gao, 2013. "Hermite Series Estimation in Nonlinear Cointegrating Models," Monash Econometrics and Business Statistics Working Papers 17/13, Monash University, Department of Econometrics and Business Statistics.
    66. Jing Tian & Qing Zhou, 2018. "Improving equity premium forecasts by incorporating structural break uncertainty," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 58(S1), pages 619-656, November.
    67. Rossi, Barbara & Gürkaynak, Refet & Kısacıkoğlu, Burçin, 2013. "Do DSGE Models Forecast More Accurately Out-of-Sample than VAR Models?," CEPR Discussion Papers 9576, C.E.P.R. Discussion Papers.
    68. He, Kaijian & Liu, Youjin & Yu, Lean & Lai, Kin Keung, 2016. "Multiscale dependence analysis and portfolio risk modeling for precious metal markets," Resources Policy, Elsevier, vol. 50(C), pages 224-233.
    69. James Lightwood & Steve Anderson & Stanton A Glantz, 2020. "Predictive validation and forecasts of short-term changes in healthcare expenditure associated with changes in smoking behavior in the United States," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-18, January.

  3. Timmermann, Allan & Patton, Andrew, 2011. "Forecast Rationality Tests Based on Multi-Horizon Bounds," CEPR Discussion Papers 8194, C.E.P.R. Discussion Papers.

    Cited by:

    1. Wright, Jonathan H., 2019. "Some observations on forecasting and policy," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1186-1192.
    2. Monica Billio & Roberto Casarin & Francesco Ravazzolo & Herman K. van Dijk, 2012. "Time-varying Combinations of Predictive Densities using Nonlinear Filtering," Tinbergen Institute Discussion Papers 12-118/III, Tinbergen Institute.
    3. Barbara Rossi, 2011. "Advances in Forecasting Under Instability," Working Papers 11-20, Duke University, Department of Economics.
    4. Stan Hurn & Jing Tian & Lina Xu, 2021. "Assessing the Informational Content of Official Australian Bureau of Meteorology Forecasts of Wind Speed," The Economic Record, The Economic Society of Australia, vol. 97(319), pages 525-547, December.
    5. Cepni, Oguzhan & Clements, Michael P., 2024. "How local is the local inflation factor? Evidence from emerging European countries," International Journal of Forecasting, Elsevier, vol. 40(1), pages 160-183.
    6. Clark, Todd & McCracken, Michael, 2013. "Advances in Forecast Evaluation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1107-1201, Elsevier.
    7. Breitung, Jörg & Knüppel, Malte, 2018. "How far can we forecast? Statistical tests of the predictive content," Discussion Papers 07/2018, Deutsche Bundesbank.
    8. Pablo Pincheira Brown & Nicolás Hardy, 2024. "Correlation‐based tests of predictability," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 1835-1858, September.
    9. Pedersen, Michael, 2019. "Anomalies in macroeconomic prediction errors–evidence from Chilean private forecasters," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1100-1107.
    10. Pablo Pincheira, 2012. "Are Forecast Combinations Efficient?," Working Papers Central Bank of Chile 661, Central Bank of Chile.
    11. Qu, Ritong & Timmermann, Allan & Zhu, Yinchu, 2024. "Comparing forecasting performance with panel data," International Journal of Forecasting, Elsevier, vol. 40(3), pages 918-941.
    12. Daniela Bragoli & Michele Modugno, 2016. "A Nowcasting Model for Canada: Do U.S. Variables Matter?," Finance and Economics Discussion Series 2016-036, Board of Governors of the Federal Reserve System (U.S.).
    13. Hajo Holzmann & Matthias Eulert, 2014. "The role of the information set for forecasting - with applications to risk management," Papers 1404.7653, arXiv.org.
    14. Barbara Rossi & Tatevik Sekhposyan, 2014. "Forecast rationality tests in the presence of instabilities, with applications to Federal Reserve and survey forecasts," Economics Working Papers 1426, Department of Economics and Business, Universitat Pompeu Fabra, revised Nov 2014.
    15. Natsuki Arai, 2016. "Evaluating the Efficiency of the FOMC's New Economic Projections," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 48(5), pages 1019-1049, August.
    16. Bańbura, Marta & Giannone, Domenico & Modugno, Michele & Reichlin, Lucrezia, 2013. "Now-Casting and the Real-Time Data Flow," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 195-237, Elsevier.
    17. Giorgio Canarella & Stephen M. Miller & Stephen K. Pollard, 2014. "Unemployment Rate Hysteresis and the Great Recession: Exploring the Metropolitan Evidence," Working Papers 1403, University of Nevada, Las Vegas , Department of Economics.
    18. Lukas Hoesch & Barbara Rossi & Tatevik Sekhposyan, 2023. "Has the Information Channel of Monetary Policy Disappeared? Revisiting the Empirical Evidence," American Economic Journal: Macroeconomics, American Economic Association, vol. 15(3), pages 355-387, July.
    19. Michael P. Clements, 2022. "Forecaster Efficiency, Accuracy, and Disagreement: Evidence Using Individual‐Level Survey Data," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 54(2-3), pages 537-568, March.
    20. Boussios, David & Skorbiansky, Sharon Raszap & MacLachlan, Matthew, 2021. "Evaluating U.S. Department of Agriculture’s Long-Term Forecasts for U.S. Harvested Area," Economic Research Report 327201, United States Department of Agriculture, Economic Research Service.
    21. Jeff Messina & Tara M. Sinclair & Herman O. Stekler, 2014. "What Can We Learn From Revisions To The Greenbook Forecasts?," Working Papers 2014-003, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    22. Thomas Jobert & Lionel Persyn, 2012. "Quelques constats sur les prévisions conjoncturelles de la croissance française," Revue d'économie politique, Dalloz, vol. 122(6), pages 833-849.
    23. Ardia, David & Hoogerheide, Lennart F., 2014. "GARCH models for daily stock returns: Impact of estimation frequency on Value-at-Risk and Expected Shortfall forecasts," Economics Letters, Elsevier, vol. 123(2), pages 187-190.
    24. Arai, Natsuki, 2014. "Using forecast evaluation to improve the accuracy of the Greenbook forecast," International Journal of Forecasting, Elsevier, vol. 30(1), pages 12-19.
    25. Todd E. Clark & Michael W. McCracken & Elmar Mertens, 2020. "Modeling Time-Varying Uncertainty of Multiple-Horizon Forecast Errors," The Review of Economics and Statistics, MIT Press, vol. 102(1), pages 17-33, March.
    26. Robert P. Lieli & Augusto Nieto-Barthaburu, 2023. "Forecasting with Feedback," Papers 2308.15062, arXiv.org, revised Aug 2024.
    27. Goodwin, Thomas & Tian, Jing, 2017. "A state space approach to evaluate multi-horizon forecasts," Working Papers 2017-15, University of Tasmania, Tasmanian School of Business and Economics.
    28. Pincheira, Pablo & Hardy, Nicolas, 2021. "The Mean Squared Prediction Error Paradox," MPRA Paper 107403, University Library of Munich, Germany.
    29. Xavier D'Haultfoeuille & Christophe Gaillac & Arnaud Maurel, 2021. "Rationalizing rational expectations: Characterizations and tests," Quantitative Economics, Econometric Society, vol. 12(3), pages 817-842, July.
    30. Boussios, David & Skoriansky, Sharon Raszap & MacLachlan, Matthew, 2021. "Evaluating U.S. Department of Agriculture’s Long-Term Forecasts for U.S. Harvested Area," USDA Miscellaneous 309619, United States Department of Agriculture.
    31. Wang, Yiyao & Lee, Tae-Hwy, 2014. "Asymmetric loss in the Greenbook and the Survey of Professional Forecasters," International Journal of Forecasting, Elsevier, vol. 30(2), pages 235-245.
    32. Manganelli, Simone, 2016. "Deciding with judgment," Working Paper Series 1947, European Central Bank.
    33. Todd E. Clark & Gergely Ganics & Elmar Mertens, 2022. "What is the Predictive Value of SPF Point and Density Forecasts?," Working Papers 22-37, Federal Reserve Bank of Cleveland.
    34. Faust, Jon & Wright, Jonathan H., 2013. "Forecasting Inflation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 2-56, Elsevier.
    35. Heinisch, Katja, 2024. "Step by step - A quarterly evaluation of EU Commission's GDP forecasts," IWH Discussion Papers 22/2024, Halle Institute for Economic Research (IWH).
    36. Clements, Michael P. & Reade, J. James, 2020. "Forecasting and forecast narratives: The Bank of England Inflation Reports," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1488-1500.
    37. Nathan Goldstein & Ben‐Zion Zilberfarb, 2023. "The closer we get, the better we are?," Economic Inquiry, Western Economic Association International, vol. 61(2), pages 364-376, April.
    38. Jing Tian & Firmin Doko Tchatoka & Thomas Goodwin, 2022. "Are internally consistent forecasts rational?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(7), pages 1338-1355, November.
    39. Han Liu & Yongjing Wang & Haiyan Song & Ying Liu, 2023. "Measuring tourism demand nowcasting performance using a monotonicity test," Tourism Economics, , vol. 29(5), pages 1302-1327, August.
    40. G. Kontogeorgos & K. Lambrias, 2022. "Evaluating the Eurosystem/ECB staff macroeconomic projections: The first 20 years," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 213-229, March.
    41. Timmermann, Allan & Zhu, Yinchu, 2019. "Comparing Forecasting Performance with Panel Data," CEPR Discussion Papers 13746, C.E.P.R. Discussion Papers.
    42. Manganelli, Simone, 2021. "Statistical decision functions with judgment," Working Paper Series 2512, European Central Bank.
    43. Siddhartha S. Bora & Ani L. Katchova & Todd H. Kuethe, 2023. "The accuracy and informativeness of agricultural baselines," American Journal of Agricultural Economics, John Wiley & Sons, vol. 105(4), pages 1116-1148, August.
    44. Roberto Casarin, 2014. "A Note on Tractable State-Space Model for Symmetric Positive-Definite Matrices," Working Papers 2014:23, Department of Economics, University of Venice "Ca' Foscari".
    45. Lennart F. Hoogerheide & Francesco Ravazzolo & Herman K. van Dijk, 2011. "Backtesting Value-at-Risk using Forecasts for Multiple Horizons, a Comment on the Forecast Rationality Tests of A.J. Patton and A. Timmermann," Tinbergen Institute Discussion Papers 11-131/4, Tinbergen Institute.
    46. Barbara Rossi, 2014. "Comment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(4), pages 510-514, October.
    47. Raïsa Basselier & David Antonio Liedo & Geert Langenus, 2018. "Nowcasting Real Economic Activity in the Euro Area: Assessing the Impact of Qualitative Surveys," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 14(1), pages 1-46, April.
    48. Xie, Zixiong & Hsu, Shih-Hsun, 2016. "Time varying biases and the state of the economy," International Journal of Forecasting, Elsevier, vol. 32(3), pages 716-725.
    49. Barbara Rossi, 2011. "Comment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 25-29, August.
    50. Manzan, Sebastiano, 2021. "Are professional forecasters Bayesian?," Journal of Economic Dynamics and Control, Elsevier, vol. 123(C).
    51. Tian, Jing & Goodwin, Thomas, 2018. "An unobserved component modeling approach to evaluate multi-horizon forecasts," Working Papers 2018-04, University of Tasmania, Tasmanian School of Business and Economics.
    52. McNeil, James, 2023. "Monetary policy and the term structure of inflation expectations with information frictions," Journal of Economic Dynamics and Control, Elsevier, vol. 146(C).
    53. Michael Clements, 2016. "Are Macro-Forecasters Essentially The Same? An Analysis of Disagreement, Accuracy and Efficiency," ICMA Centre Discussion Papers in Finance icma-dp2016-08, Henley Business School, University of Reading.
    54. Paulina Ziembińska, 2021. "Quality of Tests of Expectation Formation for Revised Data," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 13(4), pages 405-453, December.
    55. Qu, Ritong & Timmermann, Allan & Zhu, Yinchu, 2023. "Comparing forecasting performance in cross-sections," Journal of Econometrics, Elsevier, vol. 237(2).
    56. Michael Clements & Robert W. Rich & Joseph Tracy, 2024. "An Investigation into the Uncertainty Revision Process of Professional Forecasters," Working Papers 24-19, Federal Reserve Bank of Cleveland.
    57. Pablo Pincheira, 2012. "A Joint Test of Superior Predictive Ability for Chilean Inflation Forecasts," Journal Economía Chilena (The Chilean Economy), Central Bank of Chile, vol. 15(3), pages 04-39, December.
    58. Medel, Carlos A., 2015. "A Critical Review of Posch, J. and F. Rumler (2015), 'Semi-Structural Forecasting of UK Inflation Based on the Hybrid New Keynesian Phillips Curve,' Journal of Forecasting 34(2): 145-62," MPRA Paper 65665, University Library of Munich, Germany.
    59. Jack Fosten & Daniel Gutknecht & Marc-Oliver Pohle, 2023. "Testing Quantile Forecast Optimality," Papers 2302.02747, arXiv.org, revised Oct 2023.
    60. Thomas L. Hogan, 2022. "The calculus of dissent: Bias and diversity in FOMC projections," Public Choice, Springer, vol. 191(1), pages 105-135, April.
    61. Lukasz Gatarek & Lennart Hoogerheide & Koen Hooning & Herman K. van Dijk, 2013. "Censored Posterior and Predictive Likelihood in Left-Tail Prediction for Accurate Value at Risk Estimation," Tinbergen Institute Discussion Papers 13-060/III, Tinbergen Institute, revised 06 Mar 2014.
    62. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    63. Kontogeorgos, Georgios & Lambrias, Kyriacos, 2019. "An analysis of the Eurosystem/ECB projections," Working Paper Series 2291, European Central Bank.
    64. Mr. Romain M Veyrune & Shaoyu Guo, 2019. "Autonomous Factor Forecast Quality: The Case of the Eurosystem," IMF Working Papers 2019/296, International Monetary Fund.
    65. Fabian Kruger & Hendrik Plett, 2022. "Prediction intervals for economic fixed-event forecasts," Papers 2210.13562, arXiv.org, revised Mar 2024.
    66. Boussios, David & Skorbiansky, Sharon Raszap & Maclachlan, Matthew, 2021. "Evaluating U.S. Department of Agriculture’s Long-Term Forecasts for U.S. Harvested Area," USDA Miscellaneous 309616, United States Department of Agriculture.
    67. Arai, Natsuki, 2020. "Investigating the inefficiency of the CBO’s budgetary projections," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1290-1300.

  4. Timmermann, Allan & Ang, Andrew, 2011. "Regime Changes and Financial Markets," CEPR Discussion Papers 8480, C.E.P.R. Discussion Papers.

    Cited by:

    1. Zeng, Songlin & Bec, Frédérique, 2015. "Do stock returns rebound after bear markets? An empirical analysis from five OECD countries," Journal of Empirical Finance, Elsevier, vol. 30(C), pages 50-61.
    2. Veysel Karagol, 2023. "How Vulnerable is the Turkish Stock Market to the Credit Default Swap? Evidence from the Markov Switching GARCH Model," Istanbul Journal of Economics-Istanbul Iktisat Dergisi, Istanbul University, Faculty of Economics, vol. 73(73-1), pages 513-531, June.
    3. Francesco Bianchi, 2015. "The Great Depression and the Great Recession: A View from Financial Markets," NBER Working Papers 21056, National Bureau of Economic Research, Inc.
    4. Trottier, Denis-Alexandre & Lai, Van Son & Godin, Frédéric, 2019. "A characterization of CAT bond performance indices," Finance Research Letters, Elsevier, vol. 28(C), pages 431-437.
    5. Chotipong Charoensom, 2024. "An Estimation of Regime Switching Models with Nonlinear Endogenous Switching," PIER Discussion Papers 217, Puey Ungphakorn Institute for Economic Research.
    6. Aliyu, Shehu Usman Rano, 2020. "What have we learnt from modelling stock returns in Nigeria: Higgledy-piggledy?," MPRA Paper 110382, University Library of Munich, Germany, revised 06 Jun 2021.
    7. Wu, Bo & Li, Lingfei, 2024. "Reinforcement learning for continuous-time mean-variance portfolio selection in a regime-switching market," Journal of Economic Dynamics and Control, Elsevier, vol. 158(C).
    8. Collin-Dufresne, Pierre & Daniel, Kent & Sağlam, Mehmet, 2020. "Liquidity regimes and optimal dynamic asset allocation," Journal of Financial Economics, Elsevier, vol. 136(2), pages 379-406.
    9. Matteo Barigozzi & Daniele Massacci, 2022. "Modelling Large Dimensional Datasets with Markov Switching Factor Models," Papers 2210.09828, arXiv.org, revised Dec 2024.
    10. Mathieu Gatumel & Florian Ielpo, 2011. "The Number of Regimes Across Asset Returns: Identification and Economic Value," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00658540, HAL.
    11. Davide Pettenuzzo & Francesco Ravazzolo, 2014. "Optimal portfolio choice under decision-based model combinations," Working Paper 2014/15, Norges Bank.
    12. Massimo Guidolin & Alexei G. Orlov & Manuela Pedio, 2014. "Understanding the Impact of Monetary Policy Shocks on the Corporate Bond Market in Good and Bad Times: A Markov Switching Model," BAFFI CAREFIN Working Papers 1623, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    13. Frédérique Bec & Annabelle de Gaye, 2019. "Le modèle autorégressif autorégressif à seuil avec effet rebond : Une application aux rendements boursiers français et américains ," Working Papers hal-02014663, HAL.
    14. Lim Hao Shen Keith, 2024. "Covariance Matrix Analysis for Optimal Portfolio Selection," Papers 2407.08748, arXiv.org.
    15. Frydman, Roman & Goldberg, Michael D. & Mangee, Nicholas, 2015. "Knightian uncertainty and stock-price movements: Why the REH present-value model failed empirically," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 9, pages 1-50.
    16. Zhou, Yinggang, 2014. "Modeling the joint dynamics of risk-neutral stock index and bond yield volatilities," Journal of Banking & Finance, Elsevier, vol. 38(C), pages 216-228.
    17. Hiroyuki Kasahara & Katsumi Shimotsu, 2017. "Asymptotic Properties of the Maximum Likelihood Estimator in Regime Switching Econometric Models," CIRJE F-Series CIRJE-F-1049, CIRJE, Faculty of Economics, University of Tokyo.
    18. Peter Nystrup & Henrik Madsen & Erik Lindström, 2018. "Dynamic portfolio optimization across hidden market regimes," Quantitative Finance, Taylor & Francis Journals, vol. 18(1), pages 83-95, January.
    19. Pierre Guérin & Danilo Leiva-Leon, 2017. "Monetary policy, stock market and sectoral comovement," Working Papers 1731, Banco de España.
    20. Ravi Bansal & Shane Miller & Dongho Song & Amir Yaron, 2019. "The Term Structure of Equity Risk Premia," NBER Working Papers 25690, National Bureau of Economic Research, Inc.
    21. Karl Demers‐Bélanger & Van Son Lai, 2020. "Diversification benefits of cat bonds: An in‐depth examination," Financial Markets, Institutions & Instruments, John Wiley & Sons, vol. 29(5), pages 165-228, December.
    22. Matthijs Lof, 2015. "Rational Speculators, Contrarians, and Excess Volatility," Management Science, INFORMS, vol. 61(8), pages 1889-1901, August.
    23. Frédéric Godiny & Van Son Lai & Denis-Alexandre Trottier, 2019. "Option Pricing Under Regime-Switching Models: Novel Approaches Removing Path-Dependence," Working Papers 2019-014, Department of Research, Ipag Business School.
    24. Nardo, M. & Ossola, E. & Papanagiotou, E., 2022. "Financial integration in the EU28 equity markets: Measures and drivers," Journal of Financial Markets, Elsevier, vol. 57(C).
    25. Raphaël Douady & Yao Kuang, 2022. "Crisis risk prediction with concavity from Polymodel," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03512676, HAL.
    26. Chatziantoniou, Ioannis & Filis, George & Floros, Christos, 2017. "Asset prices regime-switching and the role of inflation targeting monetary policy," Global Finance Journal, Elsevier, vol. 32(C), pages 97-112.
    27. Ayben Koy & G l Okay, 2020. "Are Carbon Leader Indexes Related with Carbon Prices under Different Regimes?," International Journal of Energy Economics and Policy, Econjournals, vol. 10(4), pages 115-121.
    28. Zhou, Jian, 2016. "A high-frequency analysis of the interactions between REIT return and volatility," Economic Modelling, Elsevier, vol. 56(C), pages 102-108.
    29. Christian Friedrich & Pierre Guérin, 2016. "The Dynamics of Capital Flow Episodes," Staff Working Papers 16-9, Bank of Canada.
    30. Lidiema, Caspah, 2024. "Monetary-fiscal policy interdependence and pricing dynamics: Empirical estimation of fiscal dominance in Kenya," KBA Centre for Research on Financial Markets and Policy Working Paper Series 83, Kenya Bankers Association (KBA).
    31. Massimo Guidolin & Alexei G. Orlov & Manuela Pedio, 2015. "The Impact of Monetary Policy on Corporate Bonds under Regime Shifts," Working Papers 562, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    32. Felix Haase & Matthias Neuenkirch, 2020. "Predictability of Bull and Bear Markets: A New Look at Forecasting Stock Market Regimes (and Returns) in the US," Research Papers in Economics 2020-01, University of Trier, Department of Economics.
    33. Alexandre Carbonneau & Fr'ed'eric Godin, 2020. "Equal Risk Pricing of Derivatives with Deep Hedging," Papers 2002.08492, arXiv.org, revised Jun 2020.
    34. Flint, Emlyn & Polakow, Daniel, 2023. "Deconstructing the Gerber statistic," Finance Research Letters, Elsevier, vol. 56(C).
    35. Ruxing Xu & Dan Wu & Ronghua Yi, 2016. "Pricing Cdss And Cds Options Under A Regime-Switching Cev Process With Jump To Default," ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, Faculty of Economic Cybernetics, Statistics and Informatics, vol. 50(1), pages 253-271.
    36. Alemany, Nuria & Aragó, Vicent & Salvador, Enrique, 2020. "Lead-lag relationship between spot and futures stock indexes: Intraday data and regime-switching models," International Review of Economics & Finance, Elsevier, vol. 68(C), pages 269-280.
    37. Stutzer, Michael, 2020. "Persistence of averages in financial Markov Switching models: A large deviations approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    38. Xu, Yang & Han, Liyan & Wan, Li & Yin, Libo, 2019. "Dynamic link between oil prices and exchange rates: A non-linear approach," Energy Economics, Elsevier, vol. 84(C).
    39. Lavín, Jaime F. & Valle, Mauricio A. & Magner, Nicolás S., 2024. "Stock market pattern recognition using symbol entropy analysis," The North American Journal of Economics and Finance, Elsevier, vol. 73(C).
    40. Yizhan Shu & Chenyu Yu & John M. Mulvey, 2024. "Downside risk reduction using regime-switching signals: a statistical jump model approach," Journal of Asset Management, Palgrave Macmillan, vol. 25(5), pages 493-507, September.
    41. Philip Ndikum, 2020. "Machine Learning Algorithms for Financial Asset Price Forecasting," Papers 2004.01504, arXiv.org.
    42. Qiang Ji & Bing-Yue Liu & Juncal Cunado & Rangan Gupta, 2017. "Risk Spillover between the US and the Remaining G7 Stock Markets Using Time-Varying Copulas with Markov Switching: Evidence from Over a Century of Data," Working Papers 201759, University of Pretoria, Department of Economics.
    43. Joshua C.C. Chan & Cody Yu-Ling Hsiao & Renée A. Fry-McKibbin, 2013. "A Regime Switching Skew-normal Model for Measuring Financial Crisis and Contagion," CAMA Working Papers 2013-15, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    44. Zhang, Yue-Jun & Yao, Ting & He, Ling-Yun & Ripple, Ronald, 2019. "Volatility forecasting of crude oil market: Can the regime switching GARCH model beat the single-regime GARCH models?," International Review of Economics & Finance, Elsevier, vol. 59(C), pages 302-317.
    45. Zhang, Lei & Li, Yaoyu, 2017. "Regime-switching based vehicle-to-building operation against electricity price spikes," Energy Economics, Elsevier, vol. 66(C), pages 1-8.
    46. Charles Shaw, 2022. "Portfolio Diversification Revisited," Papers 2204.13398, arXiv.org.
    47. Choi, Chi-Young & Hansz, J. Andrew, 2021. "From banking integration to housing market integration - Evidence from the comovement of U.S. Metropolitan House Prices," Journal of Financial Stability, Elsevier, vol. 54(C).
    48. Emmanouil Platanakis & Athanasios Sakkas & Charles Sutcliffe, 2017. "Harmful Diversification: Evidence from Alternative Investments," ICMA Centre Discussion Papers in Finance icma-dp2017-09, Henley Business School, University of Reading.
    49. Zhang, Zhikun & Dai, Min & Wang, Xiangjun, 2023. "Statistical inference for mixed jump processes by Markov switching model with application to identify seismicity levels," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    50. Milad Nozari, 2021. "Information content of the risk-free rate for the pricing kernel bound," Journal of Asset Management, Palgrave Macmillan, vol. 22(4), pages 267-276, July.
    51. Liu, Wei-han, 2018. "Hidden Markov model analysis of extreme behaviors of foreign exchange rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 1007-1019.
    52. Bianchi, Francesco, 2016. "Methods for measuring expectations and uncertainty in Markov-switching models," Journal of Econometrics, Elsevier, vol. 190(1), pages 79-99.
    53. Massacci, Daniele, 2017. "Least squares estimation of large dimensional threshold factor models," Journal of Econometrics, Elsevier, vol. 197(1), pages 101-129.
    54. Bua, Giovanna & Trecroci, Carmine, 2016. "International Equity Markets Interdependence: Bigger Shocks or Contagion in the 21st Century?," MPRA Paper 74771, University Library of Munich, Germany.
    55. Yousefi, Hamed & Najand, Mohammad, 2022. "Geographical diversification using ETFs: Multinational evidence from COVID-19 pandemic," International Review of Financial Analysis, Elsevier, vol. 83(C).
    56. Grillini, Stefano & Ozkan, Aydin & Sharma, Abhijit, 2022. "Static and dynamic liquidity spillovers in the Eurozone: The role of financial contagion and the Covid-19 pandemic," International Review of Financial Analysis, Elsevier, vol. 83(C).
    57. Massimo Guidolin, 2011. "Markov Switching Models in Empirical Finance," Working Papers 415, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    58. Amélie Charles & Olivier Darné & Zakaria Moussa, 2014. "The sensitivity of Fama-French factors to economic uncertainty," Working Papers hal-01015702, HAL.
    59. Yun Liao, 2017. "Machine Learning in Macro-Economic Series Forecasting," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 9(12), pages 71-76, December.
    60. Michael D. Goldberg & Olesia Kozlova & Deniz Ozabaci, 2020. "Forward Rate Bias in Developed and Developing Countries: More Risky Not Less Rational," Econometrics, MDPI, vol. 8(4), pages 1-26, December.
    61. Hammerschmid, Regina & Lohre, Harald, 2018. "Regime shifts and stock return predictability," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 138-160.
    62. Wan, Li & Han, Liyan & Xu, Yang & Matousek, Roman, 2021. "Dynamic linkage between the Chinese and global stock markets: A normal mixture approach," Emerging Markets Review, Elsevier, vol. 49(C).
    63. Hiroyuki Kasahara & Katsumi Shimotsu, 2018. "Testing the Number of Regimes in Markov Regime Switching Models," Papers 1801.06862, arXiv.org, revised Jan 2018.
    64. Carl H. Korkpoe & Peterson Owusu Junior, 2018. "Behaviour of Johannesburg Stock Exchange All Share Index Returns - An Asymmetric GARCH and News Impact Effects Approach," SPOUDAI Journal of Economics and Business, SPOUDAI Journal of Economics and Business, University of Piraeus, vol. 68(1), pages 26-42, January-M.
    65. Roman Frydman & Soeren Johansen & Anders Rahbek & Morten Nyboe Tabor, 2019. "The Knightian Uncertainty Hypothesis: Unforeseeable Change and Muth�s Consistency Constraint in Modeling Aggregate Outcomes," Discussion Papers 19-02, University of Copenhagen. Department of Economics.
    66. Prukumpai, Suthawan, 2015. "Time-varying Industrial Portfolio Betas under the Regime-switching Model:Evidence from the Stock Exchange of Thailand," Asian Journal of Applied Economics, Kasetsart University, Center for Applied Economics Research, vol. 22(2), December.
    67. Khalifa, Ahmed A.A. & Hammoudeh, Shawkat & Otranto, Edoardo, 2014. "Extracting portfolio management strategies from volatility transmission models in regime-changing environments: Evidence from GCC and global markets," Economic Modelling, Elsevier, vol. 41(C), pages 365-374.
    68. Guidolin, Massimo & Hyde, Stuart, 2012. "Can VAR models capture regime shifts in asset returns? A long-horizon strategic asset allocation perspective," Journal of Banking & Finance, Elsevier, vol. 36(3), pages 695-716.
    69. Naeem, Muhammad & Tiwari, Aviral Kumar & Mubashra, Sana & Shahbaz, Muhammad, 2019. "Modeling volatility of precious metals markets by using regime-switching GARCH models," Resources Policy, Elsevier, vol. 64(C).
    70. João F. Caldeira & Rangan Gupta & Hudson S. Torrent, 2020. "Forecasting U.S. Aggregate Stock Market Excess Return: Do Functional Data Analysis Add Economic Value?," Mathematics, MDPI, vol. 8(11), pages 1-16, November.
    71. Fatemi, Ali & Fooladi, Iraj & Zhao, Yonggan & Ma, Zongming, 2024. "On the superior performance of SRI funds," International Review of Economics & Finance, Elsevier, vol. 93(PA), pages 567-581.
    72. Francesco Chincoli & Massimo Guidolin, 2017. "Linear and nonlinear predictability in investment style factors: multivariate evidence," Journal of Asset Management, Palgrave Macmillan, vol. 18(6), pages 476-509, October.
    73. Robert Dixon & Zhichao Zhang & Yang Dai, 2016. "Exchange Rate Flexibility in China: Measurement, Regime Shifts and Driving Forces of Change," Review of International Economics, Wiley Blackwell, vol. 24(5), pages 875-892, November.
    74. Giulia Dal Pra & Massimo Guidolin & Manuela Pedio & Fabiola Vasile, 2016. "Do Regimes in Excess Stock Return Predictability Create Economic Value? An Out-of-Sample Portfolio Analysis," BAFFI CAREFIN Working Papers 1637, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    75. Raeid Saqur, 2024. "What Teaches Robots to Walk, Teaches Them to Trade too -- Regime Adaptive Execution using Informed Data and LLMs," Papers 2406.15508, arXiv.org.
    76. Pincus, Karen V. & Stout, David E. & Sorensen, James E. & Stocks, Kevin D. & Lawson, Raef A., 2017. "Forces for change in higher education and implications for the accounting academy," Journal of Accounting Education, Elsevier, vol. 40(C), pages 1-18.
    77. Nicklas Werge, 2021. "Predicting Risk-adjusted Returns using an Asset Independent Regime-switching Model," Post-Print hal-03313129, HAL.
    78. Fiorentini, Gabriele & Planas, Christophe & Rossi, Alessandro, 2016. "Skewness and kurtosis of multivariate Markov-switching processes," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 153-159.
    79. Mangee, Nicholas, 2024. "Stock price swings and fundamentals: The role of Knightian uncertainty," International Review of Financial Analysis, Elsevier, vol. 91(C).
    80. Jonathan Fletcher & Elizabeth Littlejohn & Andrew Marshall, 2023. "Exploring the performance of US international bond mutual funds," The Financial Review, Eastern Finance Association, vol. 58(4), pages 765-782, November.
    81. Kai Zheng & Weidong Xu & Xili Zhang, 2023. "Multivariate Regime Switching Model Estimation and Asset Allocation," Computational Economics, Springer;Society for Computational Economics, vol. 61(1), pages 165-196, January.
    82. Daniel King & Ferdi Botha, 2014. "Modelling Stock Return Volatility Dynamics in Selected African Markets," Working Papers 410, Economic Research Southern Africa.
    83. Ji, Hongyun & Zhang, Han, 2024. "Application of the LPPL model in the identification and measurement of structural bubbles in the Chinese stock market," The North American Journal of Economics and Finance, Elsevier, vol. 70(C).
    84. Campani, Carlos Heitor & Garcia, René & Lewin, Marcelo, 2021. "Optimal portfolio strategies in the presence of regimes in asset returns," Journal of Banking & Finance, Elsevier, vol. 123(C).
    85. Glen Livingston Jr & Darfiana Nur, 2020. "Bayesian estimation and model selection of a multivariate smooth transition autoregressive model," Environmetrics, John Wiley & Sons, Ltd., vol. 31(6), September.
    86. Haas, Markus, 2016. "A note on optimal portfolios under regime-switching," VfS Annual Conference 2016 (Augsburg): Demographic Change 145493, Verein für Socialpolitik / German Economic Association.
    87. Constandina Koki & Stefanos Leonardos & Georgios Piliouras, 2020. "Exploring the Predictability of Cryptocurrencies via Bayesian Hidden Markov Models," Papers 2011.03741, arXiv.org, revised Dec 2020.
    88. Yang, Lu & Hamori, Shigeyuki, 2014. "Spillover effect of US monetary policy to ASEAN stock markets: Evidence from Indonesia, Singapore, and Thailand," Pacific-Basin Finance Journal, Elsevier, vol. 26(C), pages 145-155.
    89. James D. Hamilton, 2016. "Macroeconomic Regimes and Regime Shifts," NBER Working Papers 21863, National Bureau of Economic Research, Inc.
    90. Alexey Bosov & Andrey Borisov, 2022. "Comparative Study of Markov Chain Filtering Schemas for Stabilization of Stochastic Systems under Incomplete Information," Mathematics, MDPI, vol. 10(18), pages 1-20, September.
    91. Ta‐Hsin Li, 2021. "Quantile‐frequency analysis and spectral measures for diagnostic checks of time series with nonlinear dynamics," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(2), pages 270-290, March.
    92. Elizabeth Fons & Paula Dawson & Jeffrey Yau & Xiao-jun Zeng & John Keane, 2019. "A novel dynamic asset allocation system using Feature Saliency Hidden Markov models for smart beta investing," Papers 1902.10849, arXiv.org.
    93. Élise PAYZAN LE NESTOUR, 2010. "Bayesian Learning in UnstableSettings: Experimental Evidence Based on the Bandit Problem," Swiss Finance Institute Research Paper Series 10-28, Swiss Finance Institute.
    94. Kei Noba & Jos'e-Luis P'erez & Xiang Yu, 2019. "On the bail-out dividend problem for spectrally negative Markov additive models," Papers 1901.03021, arXiv.org, revised Feb 2020.
    95. Roman Frydman & Soren Johansen & Anders Rahbek & Morten Nyboe Tabor, 2021. "Asset Prices Under Knightian Uncertainty," Working Papers Series inetwp172, Institute for New Economic Thinking.
    96. Peter Nystrup & Stephen Boyd & Erik Lindström & Henrik Madsen, 2019. "Multi-period portfolio selection with drawdown control," Annals of Operations Research, Springer, vol. 282(1), pages 245-271, November.
    97. Andrey Borisov & Alexey Bosov & Gregory Miller & Igor Sokolov, 2021. "Partial Diffusion Markov Model of Heterogeneous TCP Link: Optimization with Incomplete Information," Mathematics, MDPI, vol. 9(14), pages 1-31, July.
    98. Chappell, Daniel, 2018. "Regime heteroskedasticity in Bitcoin: A comparison of Markov switching models," MPRA Paper 90682, University Library of Munich, Germany.
    99. Christensen, Timothy M., 2022. "Existence and uniqueness of recursive utilities without boundedness," Journal of Economic Theory, Elsevier, vol. 200(C).
    100. Anita Behme, 2024. "Volatility modeling in a Markovian environment: Two Ornstein-Uhlenbeck-related approaches," Papers 2407.05866, arXiv.org.
    101. Viral V. Acharya & Yakov Amihud & Sreedhar T. Bharath, 2010. "Liquidity Risk of Corporate Bond Returns: A Conditional Approach," NBER Working Papers 16394, National Bureau of Economic Research, Inc.
    102. Ferrer Fernández, María & Henry, Ólan & Pybis, Sam & Stamatogiannis, Michalis P., 2023. "Can we forecast better in periods of low uncertainty? The role of technical indicators," Journal of Empirical Finance, Elsevier, vol. 71(C), pages 1-12.
    103. Maruotti, Antonello & Petrella, Lea & Sposito, Luca, 2021. "Hidden semi-Markov-switching quantile regression for time series," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
    104. Dmitry A. Endovitsky & Viacheslav V. Korotkikh & Denis A. Khripushin, 2021. "Equity Risk and Return across Hidden Market Regimes," Risks, MDPI, vol. 9(11), pages 1-21, October.
    105. Kenwin Maung, 2021. "Estimating high-dimensional Markov-switching VARs," Papers 2107.12552, arXiv.org.
    106. Nicklas Werge, 2021. "Predicting Risk-adjusted Returns using an Asset Independent Regime-switching Model," Papers 2107.05535, arXiv.org.
    107. Antoine Lejay & Paolo Pigato, 2017. "A threshold model for local volatility: evidence of leverage and mean reversion effects on historical data," Papers 1712.08329, arXiv.org, revised Feb 2019.
    108. Pincheira Brown, Pablo & Hardy, Nicolás, 2019. "Forecasting base metal prices with the Chilean exchange rate," Resources Policy, Elsevier, vol. 62(C), pages 256-281.
    109. Aliyu, Shehu Usman Rano & Aminu, Abubakar Wambai, 2018. "Economic regimes and stock market performance in Nigeria: Evidence from regime switching model," MPRA Paper 91430, University Library of Munich, Germany, revised 03 Oct 2018.
    110. Peter Nystrup & Bo William Hansen & Henrik Madsen & Erik Lindström, 2016. "Detecting change points in VIX and S&P 500: A new approach to dynamic asset allocation," Journal of Asset Management, Palgrave Macmillan, vol. 17(5), pages 361-374, September.
    111. Yizhan Shu & Chenyu Yu & John M. Mulvey, 2024. "Dynamic Asset Allocation with Asset-Specific Regime Forecasts," Papers 2406.09578, arXiv.org, revised Aug 2024.
    112. Chan Joshua C.C. & Fry-McKibbin Renée A. & Hsiao Cody Yu-Ling, 2019. "A regime switching skew-normal model of contagion," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 23(1), pages 1-24, February.
    113. Zhao, Dongxu & Li, Kai, 2022. "Bounded rationality, adaptive behaviour, and asset prices," International Review of Financial Analysis, Elsevier, vol. 80(C).
    114. Yanlin Shi, 2023. "Long memory and regime switching in the stochastic volatility modelling," Annals of Operations Research, Springer, vol. 320(2), pages 999-1020, January.
    115. Jonathan Tuck & Shane Barratt & Stephen Boyd, 2021. "Portfolio Construction Using Stratified Models," Papers 2101.04113, arXiv.org, revised Feb 2021.
    116. Yarovaya, Larisa & Matkovskyy, Roman & Jalan, Akanksha, 2021. "The effects of a “black swan” event (COVID-19) on herding behavior in cryptocurrency markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 75(C).
    117. Portella-Carbó, Ferran & Pérez-Montiel, Jose & Ozcelebi, Oguzhan, 2023. "Tourism-led economic growth across the business cycle: Evidence from Europe (1995–2021)," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 1241-1253.
    118. Emilio Barucci & Marco Casna, 2014. "On the Market Selection Hypothesis in a Mean Reverting Environment," Computational Economics, Springer;Society for Computational Economics, vol. 44(1), pages 101-126, June.
    119. Chadwick, Meltem Gülenay & Fazilet, Fatih & Tekatli, Necati, 2015. "Understanding the common dynamics of the emerging market currencies," Economic Modelling, Elsevier, vol. 49(C), pages 120-136.
    120. Koki, Constandina & Leonardos, Stefanos & Piliouras, Georgios, 2022. "Exploring the predictability of cryptocurrencies via Bayesian hidden Markov models," Research in International Business and Finance, Elsevier, vol. 59(C).
    121. Mark J. Flannery & Paul Glasserman & David K.A. Mordecai & Cliff Rossi, 2012. "Forging Best Practices in Risk Management," Working Papers 12-02, Office of Financial Research, US Department of the Treasury.
    122. Geir D. Berentsen & Jan Bulla & Antonello Maruotti & Bård Støve, 2022. "Modelling clusters of corporate defaults: Regime‐switching models significantly reduce the contagion source," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(3), pages 698-722, June.
    123. Glen Livingston & Darfiana Nur, 2020. "Bayesian inference of smooth transition autoregressive (STAR)(k)–GARCH(l, m) models," Statistical Papers, Springer, vol. 61(6), pages 2449-2482, December.
    124. Ta-Hsin Li, 2019. "Quantile-Frequency Analysis and Spectral Divergence Metrics for Diagnostic Checks of Time Series With Nonlinear Dynamics," Papers 1908.02545, arXiv.org.
    125. Chourdakis, Kyriakos & Dendramis, Yiannis & Tzavalis, Elias, 2014. "Are regime-shift sources of risk priced in the market?," Journal of Empirical Finance, Elsevier, vol. 28(C), pages 151-170.
    126. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    127. Ayben Koy, 2017. "Modelling Nonlinear Dynamics of Oil Futures Market," Econometric Research in Finance, SGH Warsaw School of Economics, Collegium of Economic Analysis, vol. 2(1), pages 23-42, June.
    128. Heni Boubaker & Nadia Sghaier, 2015. "On the Dynamic Dependence between US and other Developed Stock Markets: An Extreme-value Time-varying Copula Approach," Bankers, Markets & Investors, ESKA Publishing, issue 136-137, pages 80-93, May-June.
    129. Nyberg, Henri, 2013. "Predicting bear and bull stock markets with dynamic binary time series models," Journal of Banking & Finance, Elsevier, vol. 37(9), pages 3351-3363.
    130. Alexis Flageollet & Hamza Bahaji, 2016. "Monetary Policy and Risk-Based Asset Allocation," Open Economies Review, Springer, vol. 27(5), pages 851-870, November.
    131. Samet G nay, 2015. "Markov Regime Switching Generalized Autoregressive Conditional Heteroskedastic Model and Volatility Modeling for Oil Returns," International Journal of Energy Economics and Policy, Econjournals, vol. 5(4), pages 979-985.
    132. Suthawan Prukumpai, 2015. "Time-varying Industrial Portfolio Betas under the Regime-switching Model: Evidence from the Stock Exchange of Thailand," Applied Economics Journal, Kasetsart University, Faculty of Economics, Center for Applied Economic Research, vol. 22(2), pages 54-76, December.
    133. Hu, Shicheng & Zhang, Weijie & Li, Danping & Wu, Bing, 2023. "Incorporating improved directional change and regime change detection to formulate trading strategies in foreign exchange markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    134. Anastasios G. Malliaris & Mary Malliaris, 2021. "What Microeconomic Fundamentals Drove Global Oil Prices during 1986–2020?," JRFM, MDPI, vol. 14(8), pages 1-13, August.
    135. Focardi, Sergio M. & Fabozzi, Frank J. & Mazza, Davide, 2019. "Modeling local trends with regime shifting models with time-varying probabilities," International Review of Financial Analysis, Elsevier, vol. 66(C).
    136. Ali Nasir & Ambreen Khursheed & Kazim Ali & Faisal Mustafa, 2021. "A Markov Decision Process Model for Optimal Trade of Options Using Statistical Data," Computational Economics, Springer;Society for Computational Economics, vol. 58(2), pages 327-346, August.
    137. Chavez-Demoulin, V. & Embrechts, P. & Sardy, S., 2014. "Extreme-quantile tracking for financial time series," Journal of Econometrics, Elsevier, vol. 181(1), pages 44-52.
    138. Chauvet, Marcelle & Jiang, Cheng, 2023. "Nonlinear relationship between monetary policy and stock returns: Evidence from the U.S," Global Finance Journal, Elsevier, vol. 55(C).
    139. Shi, Yanlin & Ho, Kin-Yip & Liu, Wai-Man, 2016. "Public information arrival and stock return volatility: Evidence from news sentiment and Markov Regime-Switching Approach," International Review of Economics & Finance, Elsevier, vol. 42(C), pages 291-312.
    140. Iulia LUPU & Adina CRISTE & Anca Dana DRAGU & Teodora Daniela ALBU, 2024. "Volatility Transitions in European Stock Markets: A Clustering-Based Approach," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(3), pages 65-80, October.
    141. Ma, Chenchen & Tu, Yundong, 2023. "Shrinkage estimation of multiple threshold factor models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1876-1892.
    142. Gębka, Bartosz & Serwa, Dobromił, 2015. "The elusive nature of motives to trade: Evidence from international stock markets," International Review of Financial Analysis, Elsevier, vol. 39(C), pages 147-157.
    143. Huang, Yan & Kou, Gang & Peng, Yi, 2017. "Nonlinear manifold learning for early warnings in financial markets," European Journal of Operational Research, Elsevier, vol. 258(2), pages 692-702.
    144. Laura Arenas & Ana Maria Gil-Lafuente, 2021. "Regime Switching in High-Tech ETFs: Idiosyncratic Volatility and Return," Mathematics, MDPI, vol. 9(7), pages 1-25, March.
    145. Ho, Kin-Yip & Shi, Yanlin & Zhang, Zhaoyong, 2013. "How does news sentiment impact asset volatility? Evidence from long memory and regime-switching approaches," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 436-456.
    146. David Hallac & Peter Nystrup & Stephen Boyd, 2019. "Greedy Gaussian segmentation of multivariate time series," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(3), pages 727-751, September.
    147. Lim, Bryan & Arık, Sercan Ö. & Loeff, Nicolas & Pfister, Tomas, 2021. "Temporal Fusion Transformers for interpretable multi-horizon time series forecasting," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1748-1764.
    148. Jana Vychytilová, 2014. "Intermarket Technical Research of the U.S. Capital Markets and the Czech Stock Market Performance," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 62(6), pages 1509-1519.
    149. Alexandre Carbonneau & Fr'ed'eric Godin, 2021. "Deep equal risk pricing of financial derivatives with non-translation invariant risk measures," Papers 2107.11340, arXiv.org.
    150. Timotheos Angelidis & Nikolaos Tessaromatis, 2014. "Global portfolio management under state dependent multiple risk premia," Proceedings of Economics and Finance Conferences 0400966, International Institute of Social and Economic Sciences.
    151. Shi, Yanlin & Feng, Lingbing, 2016. "A discussion on the innovation distribution of the Markov regime-switching GARCH model," Economic Modelling, Elsevier, vol. 53(C), pages 278-288.
    152. Monfort, A. & Renne, J-P., 2011. "Credit and liquidity risks in euro area sovereign yield curves," Working papers 352, Banque de France.
    153. Shaw, Charles, 2018. "Regime-Switching And Levy Jump Dynamics In Option-Adjusted Spreads," MPRA Paper 94154, University Library of Munich, Germany, revised 27 May 2019.
    154. Guidolin, Massimo & Pedio, Manuela, 2017. "Identifying and measuring the contagion channels at work in the European financial crises," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 48(C), pages 117-134.
    155. An, Sufang & An, Feng & Gao, Xiangyun & Wang, Anjian, 2023. "Early warning of critical transitions in crude oil price," Energy, Elsevier, vol. 280(C).
    156. Mathieu Gatumel & Florian Ielpo, 2011. "The Number of Regimes Across Asset Returns: Identification and Economic Value," Post-Print halshs-00658540, HAL.
    157. Markus Vogl, 2022. "Quantitative modelling frontiers: a literature review on the evolution in financial and risk modelling after the financial crisis (2008–2019)," SN Business & Economics, Springer, vol. 2(12), pages 1-69, December.
    158. Abhishek Pal Majumder, 2024. "Long time behavior of semi-Markov modulated perpetuity and some related processes," Papers 2410.15824, arXiv.org.
    159. Haas, Markus & Liu, Ji-Chun, 2015. "Theory for a Multivariate Markov--switching GARCH Model with an Application to Stock Markets," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 112855, Verein für Socialpolitik / German Economic Association.
    160. Hasan, Md. Tanvir, 2022. "The sum of all SCARES COVID-19 sentiment and asset return," The Quarterly Review of Economics and Finance, Elsevier, vol. 86(C), pages 332-346.
    161. Nabil Maghrebi & Mark J. Holmes & Kosuke Oya, 2014. "Financial instability and the short-term dynamics of volatility expectations," Applied Financial Economics, Taylor & Francis Journals, vol. 24(6), pages 377-395, March.
    162. Marcelo Lewin & Carlos Heitor Campani, 2023. "Constrained portfolio strategies in a regime-switching economy," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 37(1), pages 27-59, March.
    163. Mustafa, Andy Ali & Lin, Ching-Yang & Kakinaka, Makoto, 2022. "Detecting market pattern changes: A machine learning approach," Finance Research Letters, Elsevier, vol. 47(PA).
    164. Nikolaos Papanikolaou, 2020. "Markov-Switching Model of Family Income Quintile Shares," Atlantic Economic Journal, Springer;International Atlantic Economic Society, vol. 48(2), pages 207-222, June.
    165. Khalifa, Ahmed A.A. & Otranto, Edoardo & Hammoudeh, Shawkat & Ramchander, Sanjay, 2016. "Volatility transmission across currencies and commodities with US uncertainty measures," The North American Journal of Economics and Finance, Elsevier, vol. 37(C), pages 63-83.
    166. Zhang, Xiaoyuan & Zhang, Tianqi, 2022. "Barrier option pricing under a Markov Regime switching diffusion model," The Quarterly Review of Economics and Finance, Elsevier, vol. 86(C), pages 273-280.
    167. Antonello Maruotti & Antonio Punzo, 2021. "Initialization of Hidden Markov and Semi‐Markov Models: A Critical Evaluation of Several Strategies," International Statistical Review, International Statistical Institute, vol. 89(3), pages 447-480, December.
    168. Dichtl, Hubert & Drobetz, Wolfgang & Otto, Tizian, 2023. "Forecasting Stock Market Crashes via Machine Learning," Journal of Financial Stability, Elsevier, vol. 65(C).
    169. Andrea Eross & Andrew Urquhart & Simon Wolfe, 2019. "Investigating risk contagion initiated by endogenous liquidity shocks: evidence from the US and eurozone interbank markets," The European Journal of Finance, Taylor & Francis Journals, vol. 25(1), pages 35-53, January.
    170. Tihana Skrinjaric, 2023. "Leading indicators of financial stress in Croatia: a regime switching approach," Public Sector Economics, Institute of Public Finance, vol. 47(2), pages 205-232.
    171. Timothy M. Christensen, 2020. "Existence and uniqueness of recursive utilities without boundedness," Papers 2008.00963, arXiv.org, revised Aug 2021.
    172. Pedro Braga & Georgios Chionas & Piotr Krysta & Stefanos Leonardos & Georgios Piliouras & Carmine Ventre, 2024. "MEV Sharing with Dynamic Extraction Rates," Papers 2402.15849, arXiv.org, revised Sep 2024.
    173. Razvan Oprisor & Roy Kwon, 2020. "Multi-Period Portfolio Optimization with Investor Views under Regime Switching," JRFM, MDPI, vol. 14(1), pages 1-31, December.
    174. Mittelstaedt, Christian & Baumgärtner, Stefan, 2022. "Attribution of Collective Causal Responsibility to Individual Actors in a Stochastic System," VfS Annual Conference 2022 (Basel): Big Data in Economics 264051, Verein für Socialpolitik / German Economic Association.
    175. Beomsoo Park & Benjamin Van Roy, 2015. "Adaptive Execution: Exploration and Learning of Price Impact," Operations Research, INFORMS, vol. 63(5), pages 1058-1076, October.
    176. Kent Daniel & Ravi Jagannathan & Soohun Kim, 2012. "Tail Risk in Momentum Strategy Returns," NBER Working Papers 18169, National Bureau of Economic Research, Inc.
    177. Wang, Fang, 2023. "Do emerging art market segments have their own price dynamics? Evidence from the Chinese art market," International Review of Economics & Finance, Elsevier, vol. 84(C), pages 318-331.
    178. Yao, Haixiang & Li, Danping & Wu, Huiling, 2022. "Dynamic trading with uncertain exit time and transaction costs in a general Markov market," International Review of Financial Analysis, Elsevier, vol. 84(C).

  5. Kenny, Geoff & Genre, Véronique & Meyler, Aidan & Timmermann, Allan, 2010. "Combining the forecasts in the ECB survey of professional forecasters: can anything beat the simple average?," Working Paper Series 1277, European Central Bank.

    Cited by:

    1. Cristina Conflitti & Christine De Mol & Domenico Giannone, 2012. "Optimal Combination of Survey Forecasts," Working Papers ECARES ECARES 2012-023, ULB -- Universite Libre de Bruxelles.
    2. Driver, Ciaran & Trapani, Lorenzo & Urga, Giovanni, 2013. "On the use of cross-sectional measures of forecast uncertainty," International Journal of Forecasting, Elsevier, vol. 29(3), pages 367-377.
    3. Kajal Lahiri & Huaming Peng & Yongchen Zhao, 2013. "Testing the Value of Probability Forecasts for Calibrated Combining," Discussion Papers 13-02, University at Albany, SUNY, Department of Economics.
    4. Hubrich, Kirstin & Skudelny, Frauke, 2016. "Forecast combination for euro area inflation: a cure in times of crisis?," Working Paper Series 1972, European Central Bank.
    5. Jung, Alexander & El-Shagi, Makram & Giesen, Sebastian, 2013. "Does Central Bank Staff Beat Private Forecasters?," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79925, Verein für Socialpolitik / German Economic Association.
    6. Kurmas Akdogan & Selen Baser & Meltem Gulenay Chadwick & Dilara Ertug & Timur Hulagu & Sevim Kosem & Fethi Ogunc & M. Utku Ozmen & Necati Tekatli, 2012. "Short-Term Inflation Forecasting Models For Turkey and a Forecast Combination Analysis," Working Papers 1209, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
    7. Gianni Amisano & Andreas Beyer & Michele Lenza, 2010. "Enhancing monetary analysis," Research Bulletin, European Central Bank, vol. 11, pages 2-6.
    8. Clements, Michael P., 2012. "Subjective and Ex Post Forecast Uncertainty: US Inflation and Output Growth," Economic Research Papers 270629, University of Warwick - Department of Economics.
    9. Geoff Kenny & Thomas Kostka & Federico Masera, 2015. "Can Macroeconomists Forecast Risk? Event-Based Evidence from the Euro-Area SPF," International Journal of Central Banking, International Journal of Central Banking, vol. 11(4), pages 1-46, December.
    10. Gary Koop & Luca Onorante, 2011. "Estimating Phillips Curves in Turbulent Times using the ECBs Survey of Professional Forecasters," Working Papers 1109, University of Strathclyde Business School, Department of Economics.
    11. Martin Scheicher, 2010. "“Return-free risk”? Market pricing in credit risk markets," Research Bulletin, European Central Bank, vol. 11, pages 7-8.
    12. Luis E. Rojas, 2011. "Professional Forecasters: How to Understand and Exploit Them Through a DSGE Model," Borradores de Economia 664, Banco de la Republica de Colombia.
    13. Schnatz, Bernd & D'Agostino, Antonello, 2012. "Survey-based nowcasting of US growth: a real-time forecast comparison over more than 40 years," Working Paper Series 1455, European Central Bank.
    14. Xiaojie Xu, 2020. "Corn Cash Price Forecasting," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(4), pages 1297-1320, August.
    15. Genre, Véronique & Kenny, Geoff & Meyler, Aidan & Timmermann, Allan, 2013. "Combining expert forecasts: Can anything beat the simple average?," International Journal of Forecasting, Elsevier, vol. 29(1), pages 108-121.
    16. Geoff Kenny, 2010. "Macroeconomic forecasting: can forecast combination help?," Research Bulletin, European Central Bank, vol. 11, pages 9-12.
    17. Oinonen, Sami & Paloviita, Maritta, 2014. "Analysis of aggregated inflation expectations based on the ECB SPF survey," Bank of Finland Research Discussion Papers 29/2014, Bank of Finland.

  6. Timmermann, Allan & Aiolfi, Marco & Catão, Luís, 2010. "Common Factors in Latin America?s Business Cycles," CEPR Discussion Papers 7671, C.E.P.R. Discussion Papers.

    Cited by:

    1. Luis A. V. Catao & Ana Fostel & Sandeep Kapur, 2008. "Persistent Gaps and Default Traps," Birkbeck Working Papers in Economics and Finance 0803, Birkbeck, Department of Economics, Mathematics & Statistics.
    2. Melisso Boschi & Alessandro Girardi, 2008. "The contribution of domestic, regional, and international factors to Latin America’s business cycle," ISAE Working Papers 105, ISTAT - Italian National Institute of Statistics - (Rome, ITALY).
    3. Spinola, Danilo, 2023. "Instability constraints and development traps: an empirical analysis of growth cycles and economic volatility in Latin America," Revista CEPAL, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL), April.
    4. Pontines, Victor, 2017. "The financial cycles in four East Asian economies," Economic Modelling, Elsevier, vol. 65(C), pages 51-66.
    5. Sumru Altuğ & Melike Bildirici, 2010. "Business Cycles around the Globe: A Regime Switching Approach," Working Papers 0032, Yildiz Technical University, Department of Economics, revised Mar 2010.
    6. Nauro F. Campos & Menelaos G. Karanasos & Michail Karoglou & Panagiotis Koutroumpis & Constantin Zopounidis & Apostolos Christopoulos, 2022. "Apocalypse now, apocalypse when? Economic growth and structural breaks in Argentina (1886–2003)," Economics of Transition and Institutional Change, John Wiley & Sons, vol. 30(1), pages 3-32, January.
    7. Luciano Campos & Jesús Ruiz Andújar, 2022. "Common and idiosyncratic components of Latin American business cycles connectedness," Journal of Applied Economics, Taylor & Francis Journals, vol. 25(1), pages 691-722, December.
    8. Rodriguez, Diego & Gonzalez, Andres & Fernandez, Andres, 2015. "Sharing a Ride on the Commodities Roller Coaster: Common Factors in Business Cycles of Emerging Economies," IDB Publications (Working Papers) 7382, Inter-American Development Bank.
    9. Guglielmo Maria Caporale & Alessandro Girardi, 2012. "Business Cycles, International Trade and Capital Flows: Evidence from Latin America," Discussion Papers of DIW Berlin 1254, DIW Berlin, German Institute for Economic Research.
    10. Jean-Pierre Allegret & Alain Sand-Zantman, 2009. "Does a Monetary Union protect again shocks? An assessment of Latin American integration," Post-Print halshs-00371069, HAL.
    11. Mejía-Reyes, Pablo & Rendón-Rojas, Liliana & Vergara-González, Reyna & Aroca, Patricio, 2018. "International synchronization of the Mexican states business cycles: Explaining factors," The North American Journal of Economics and Finance, Elsevier, vol. 44(C), pages 278-288.
    12. Allegret, Jean-Pierre & Sand-Zantman, Alain, 2009. "Does a Monetary Union protect against external shocks?: An assessment of Latin American integration," Journal of Policy Modeling, Elsevier, vol. 31(1), pages 102-118.
    13. Issler, Joao Victor & Notini, Hilton & Rodrigues, Claudia & Soares, Ana Flávia, 2013. "Constructing coincident indices of economic activity for the Latin American economy," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 67(1), April.
    14. Christian Rohe, 2016. "On shock symmetry in South America: New evidence from intra-Brazilian real exchange rates," CQE Working Papers 5316, Center for Quantitative Economics (CQE), University of Muenster.
    15. Delalibera, Bruno Ricardo & Issler, João Victor & Branco, Roberto da Cunha Castello, 2017. "Using common features to investigate common growth cycles for BRICS Countries," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 784, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    16. Alfredo M. Leone & Jorge I. Canales Kriljenko & Rodolfo Maino, 2023. "The Long and Widening Gap: Analyzing Structural Breaks in Argentina’s Economic Decline," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 29(4), pages 243-259, November.
    17. Timmermann, Allan & Aiolfi, Marco & Catão, Luís, 2010. "Common Factors in Latin America?s Business Cycles," CEPR Discussion Papers 7671, C.E.P.R. Discussion Papers.
    18. Gonzalo Hernández & María Alejandra Prieto, 2020. "Terms of trade shocks and taxation in developing countries," Revista Cuadernos de Economia, Universidad Nacional de Colombia, FCE, CID, vol. 39(81), pages 613-634, July.
    19. Andrea Bonilla, 2014. "An Examination of the Convergence in the Output of South American Countries: The Influence of the Region's Integration Projects," Working Papers halshs-01069353, HAL.
    20. Mr. Jeromin Zettelmeyer, 2006. "Growth and Reforms in Latin America: A Survey of Facts and Arguments," IMF Working Papers 2006/210, International Monetary Fund.
    21. Matthias Morys & Martin Ivanov, 2013. "The emergence of a European region: Business cycles in South-East Europe from political independence to World War II," Centre for Historical Economics and Related Research at York (CHERRY) Discussion Papers 13/01, CHERRY, c/o Department of Economics, University of York.
    22. Jean-Pierre Allegret & Alain Sand-Zantman, 2008. "Does a Monetary Union protect again foreign shocks? An assessment of Latin American integration using a Bayesian VAR," Post-Print halshs-00269122, HAL.
    23. Matthias Morys & Martin Ivanov, 2009. "Common factors in South-East Europe’s business cycles 1899 - 1989," SEEMHN papers 1, National Bank of Serbia.
    24. Gannon, Gerard L. & Thuraisamy, Kannan S., 2017. "Sovereign risk and the impact of crisis: Evidence from Latin AmericaAuthor-Name: Batten, Jonathan A," Journal of Banking & Finance, Elsevier, vol. 77(C), pages 328-350.
    25. Campos, Nauro F. & Karanasos, Menelaos G. & Tan, Bin, 2012. "Two to tangle: Financial development, political instability and economic growth in Argentina," Journal of Banking & Finance, Elsevier, vol. 36(1), pages 290-304.
    26. Li, Ziran & Sun, Jiajing & Wang, Shouyang, 2013. "An information diffusion-based model of oil futures price," Energy Economics, Elsevier, vol. 36(C), pages 518-525.
    27. Ibarra-Ramírez Raúl, 2010. "Forecasting Inflation in Mexico Using Factor Models: Do Disaggregated CPI Data Improve Forecast Accuracy?," Working Papers 2010-01, Banco de México.
    28. Sebastian Fossati, 2017. "Output Growth And Structural Reform In Latin America: Have Business Cycles Changed?," Contemporary Economic Policy, Western Economic Association International, vol. 35(1), pages 62-75, January.
    29. Mr. Anoop Singh, 2006. "Macroeconomic Volatility: The Policy Lessons from Latin America," IMF Working Papers 2006/166, International Monetary Fund.
    30. Andrea Bonilla Bolanos, 2014. "An Examination of the Convergence in the Output of South American Countries: The Influence of the Region’s Integration Projects," Working Papers 1424, Groupe d'Analyse et de Théorie Economique Lyon St-Étienne (GATE Lyon St-Étienne), Université de Lyon.
    31. Carlos Barros & Guglielmo Maria Caporale & Luis Gil-Alana, 2014. "Long Memory in Angolan Macroeconomic Series: Mean Reversion versus Explosive Behaviour," African Development Review, African Development Bank, vol. 26(1), pages 59-73.
    32. James N. Blignaut & Jan H. van Heerden, 2015. "Is Water Shedding Next?," Working Papers 50, Economic Research Southern Africa.
    33. Hallin, Marc & Liska, Roman, 2011. "Dynamic factors in the presence of blocks," Journal of Econometrics, Elsevier, vol. 163(1), pages 29-41, July.
    34. Gutiérrez, Mario A., 2007. "Economic growth in Latin America and the Caribbean: growth transitions rather than steady states," Macroeconomía del Desarrollo 5425, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    35. Andrea Bonilla BOLAÑOS, 2017. "Are South American Countries Really Converging?: The Influence of the Region's Integration Projects," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(3), pages 130-149, September.

  7. Marco Aiolfi & Carlos Capistrán & Allan Timmermann, 2010. "Forecast Combinations," CREATES Research Papers 2010-21, Department of Economics and Business Economics, Aarhus University.

    Cited by:

    1. Maurin, Laurent & Drechsel, Katja, 2008. "Flow of conjunctural information and forecast of euro area economic activity," Working Paper Series 925, European Central Bank.
    2. von der Gracht, Heiko A. & Hommel, Ulrich & Prokesch, Tobias & Wohlenberg, Holger, 2016. "Testing weighting approaches for forecasting in a Group Wisdom Support System environment," Journal of Business Research, Elsevier, vol. 69(10), pages 4081-4094.
    3. Kakuho Furukawa & Ryohei Hisano & Yukio Minoura & Tomoyuki Yagi, 2022. "A Nowcasting Model of Industrial Production using Alternative Data and Machine Learning Approaches," Bank of Japan Working Paper Series 22-E-16, Bank of Japan.
    4. Li, Li & Kang, Yanfei & Li, Feng, 2023. "Bayesian forecast combination using time-varying features," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1287-1302.
    5. Barbara Rossi, 2011. "Advances in Forecasting Under Instability," Working Papers 11-20, Duke University, Department of Economics.
    6. Nucera, Federico & Schwaab, Bernd & Koopman, Siem Jan & Lucas, André, 2016. "The information in systemic risk rankings," Journal of Empirical Finance, Elsevier, vol. 38(PA), pages 461-475.
    7. Yannick Viossat & Andriy Zapechelnyuk, 2013. "No-regret Dynamics and Fictitious Play," Post-Print hal-00713871, HAL.
    8. Carlo Altavilla & Matteo Ciccarelli, 2006. "Inflation Forecasts, Monetary Policy and Unemployment Dynamics: Evidence from the US and the Euro Area," Discussion Papers 7_2006, D.E.S. (Department of Economic Studies), University of Naples "Parthenope", Italy.
    9. Tu, Yundong & Yi, Yanping, 2017. "Forecasting cointegrated nonstationary time series with time-varying variance," Journal of Econometrics, Elsevier, vol. 196(1), pages 83-98.
    10. Yin, Anwen, 2015. "Forecasting and model averaging with structural breaks," ISU General Staff Papers 201501010800005727, Iowa State University, Department of Economics.
    11. Panopoulou, Ekaterini & Vrontos, Spyridon, 2015. "Hedge fund return predictability; To combine forecasts or combine information?," Journal of Banking & Finance, Elsevier, vol. 56(C), pages 103-122.
    12. Narayan Kundan Kishor, 2021. "Forecasting real‐time economic activity using house prices and credit conditions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(2), pages 213-227, March.
    13. Menkhoff, Lukas & Sakha, Sahra, 2017. "Estimating risky behavior with multiple-item risk measures," Journal of Economic Psychology, Elsevier, vol. 59(C), pages 59-86.
    14. Hsiao, Cheng & Wan, Shui Ki, 2014. "Is there an optimal forecast combination?," Journal of Econometrics, Elsevier, vol. 178(P2), pages 294-309.
    15. Ghysels, Eric & Ozkan, Nazire, 2015. "Real-time forecasting of the US federal government budget: A simple mixed frequency data regression approach," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1009-1020.
    16. Krüger Fabian & Pohlmeier Winfried & Mokinski Frieder, 2011. "Combining Survey Forecasts and Time Series Models: The Case of the Euribor," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(1), pages 63-81, February.
    17. Christiane Baumeister & Pierre Guérin, 2020. "A Comparison of Monthly Global Indicators for Forecasting Growth," CESifo Working Paper Series 8656, CESifo.
    18. Massimiliano Marcellino, 2007. "Pooling‐Based Data Interpolation and Backdating," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(1), pages 53-71, January.
    19. Bjørnland, Hilde C. & Ravazzolo, Francesco & Thorsrud, Leif Anders, 2017. "Forecasting GDP with global components: This time is different," International Journal of Forecasting, Elsevier, vol. 33(1), pages 153-173.
    20. Wilson, Kevin J., 2017. "An investigation of dependence in expert judgement studies with multiple experts," International Journal of Forecasting, Elsevier, vol. 33(1), pages 325-336.
    21. Henzel, Steffen R. & Mayr, Johannes, 2013. "The mechanics of VAR forecast pooling—A DSGE model based Monte Carlo study," The North American Journal of Economics and Finance, Elsevier, vol. 24(C), pages 1-24.
    22. Ali B. Barlas & Seda Guler Mert & Berk Orkun Isa & Alvaro Ortiz & Tomasa Rodrigo & Baris Soybilgen & Ege Yazgan, 2024. "Big data financial transactions and GDP nowcasting: The case of Turkey," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 227-248, March.
    23. Jiahan Li & Ilias Tsiakas, 2016. "Equity Premium Prediction: The Role of Economic and Statistical Constraints," Working Paper series 16-25, Rimini Centre for Economic Analysis.
    24. Florian Eckert & Rob J Hyndman & Anastasios Panagiotelis, 2019. "Forecasting Swiss Exports Using Bayesian Forecast Reconciliation," Monash Econometrics and Business Statistics Working Papers 14/19, Monash University, Department of Econometrics and Business Statistics.
    25. Ercio Muñoz & Miguel Ricaurte & Mariel Siravegna, 2012. "Combinación de Proyecciones para el Precio del Petróleo: Aplicación y Evaluación de Metodologías," Working Papers Central Bank of Chile 660, Central Bank of Chile.
    26. Schrimpf, Andreas, 2008. "International Stock Return Predictability Under Model Uncertainty," ZEW Discussion Papers 08-048, ZEW - Leibniz Centre for European Economic Research.
    27. George Papadopoulos & Savas Papadopoulos & Thomas Sager, 2016. "Credit risk stress testing for EU15 banks: a model combination approach," Working Papers 203, Bank of Greece.
    28. Benavides, Guillermo & Capistrán, Carlos, 2012. "Forecasting exchange rate volatility: The superior performance of conditional combinations of time series and option implied forecasts," Journal of Empirical Finance, Elsevier, vol. 19(5), pages 627-639.
    29. Mr. Emil Stavrev, 2006. "Measures of Underlying Inflation in the Euro Area: Assessment and Role for Informing Monetary Policy," IMF Working Papers 2006/197, International Monetary Fund.
    30. Dan Zhu & Qingwei Wang & John Goddard, 2022. "A new hedging hypothesis regarding prediction interval formation in stock price forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(4), pages 697-717, July.
    31. Nowotarski, Jakub & Raviv, Eran & Trück, Stefan & Weron, Rafał, 2014. "An empirical comparison of alternative schemes for combining electricity spot price forecasts," Energy Economics, Elsevier, vol. 46(C), pages 395-412.
    32. Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
    33. Wolters, Maik Hendrik, 2012. "Evaluating point and density forecasts of DSGE models," MPRA Paper 36147, University Library of Munich, Germany.
    34. Tian, Jing & Anderson, Heather M., 2014. "Forecast combinations under structural break uncertainty," International Journal of Forecasting, Elsevier, vol. 30(1), pages 161-175.
    35. Hansen, Bruce E., 2010. "Averaging estimators for autoregressions with a near unit root," Journal of Econometrics, Elsevier, vol. 158(1), pages 142-155, September.
    36. Herwartz, Helmut, 2017. "Stock return prediction under GARCH — An empirical assessment," International Journal of Forecasting, Elsevier, vol. 33(3), pages 569-580.
    37. Franch, Fabio, 2021. "Political preferences nowcasting with factor analysis and internet data: The 2012 and 2016 US presidential elections," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    38. Cakici, Nusret & Fieberg, Christian & Metko, Daniel & Zaremba, Adam, 2023. "Machine learning goes global: Cross-sectional return predictability in international stock markets," Journal of Economic Dynamics and Control, Elsevier, vol. 155(C).
    39. Davide Pettenuzzo & Francesco Ravazzolo, 2014. "Optimal portfolio choice under decision-based model combinations," Working Paper 2014/15, Norges Bank.
    40. Konstantin Kholodilin, 2014. "Business confidence and forecasting of housing prices and rents in large German cities," ERSA conference papers ersa14p9, European Regional Science Association.
    41. Francesco Ravazzolo & Shaun P. Vahey, 2010. "Forecast densities for economic aggregates from disaggregate ensembles," Working Paper 2010/02, Norges Bank.
    42. Fernandez-Perez, Adrian & Fuertes, Ana-Maria & Miffre, Joëlle, 2019. "A comprehensive appraisal of style-integration methods," Journal of Banking & Finance, Elsevier, vol. 105(C), pages 134-150.
    43. Karlsson, Sune, 2012. "Forecasting with Bayesian Vector Autoregressions," Working Papers 2012:12, Örebro University, School of Business.
    44. Barrow, Devon K. & Kourentzes, Nikolaos, 2016. "Distributions of forecasting errors of forecast combinations: Implications for inventory management," International Journal of Production Economics, Elsevier, vol. 177(C), pages 24-33.
    45. Pedersen, Michael, 2019. "Anomalies in macroeconomic prediction errors–evidence from Chilean private forecasters," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1100-1107.
    46. Smith, Aaron & Naik, Prasad A. & Tsai, Chih-Ling, 2006. "Markov-switching model selection using Kullback-Leibler divergence," Journal of Econometrics, Elsevier, vol. 134(2), pages 553-577, October.
    47. Salinas, David & Flunkert, Valentin & Gasthaus, Jan & Januschowski, Tim, 2020. "DeepAR: Probabilistic forecasting with autoregressive recurrent networks," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1181-1191.
    48. M. Hashem Pesaran & Til Schuermann & L. Vanessa Smith, 2008. "Forecasting economic and financial variables with global VARs," Staff Reports 317, Federal Reserve Bank of New York.
    49. Yu-chin Chen & Kwok Ping Tsang & Wen Jen Tsay, 2010. "Home Bias in Currency Forecasts," Working Papers 272010, Hong Kong Institute for Monetary Research.
    50. Colino, Evelyn V. & Irwin, Scott H. & Garcia, Philip, 2009. "Do Composite Procedures Really Improve the Accuracy of Outlook Forecasts?," 2009 Conference, April 20-21, 2009, St. Louis, Missouri 53052, NCCC-134 Conference on Applied Commodity Price Analysis, Forecasting, and Market Risk Management.
    51. Wang, Cindy S.H. & Fan, Rui & Xie, Yiqiang, 2023. "Market systemic risk, predictability and macroeconomics news," Finance Research Letters, Elsevier, vol. 56(C).
    52. , 2019. "The Contribution of Jump Signs and Activity to Forecasting Stock Price Volatility," Working Papers 1902, Federal Reserve Bank of Dallas, revised 17 Dec 2022.
    53. Čapek, Jan & Crespo Cuaresma, Jesús & Hauzenberger, Niko & Reichel, Vlastimil, 2023. "Macroeconomic forecasting in the euro area using predictive combinations of DSGE models," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1820-1838.
    54. John Geweke & Gianni Amisano, 2008. "Optimal Prediction Pools," Working Paper series 22_08, Rimini Centre for Economic Analysis.
    55. Marcellino, Massimiliano & Foroni, Claudia & Stevanovic, Dalibor, 2020. "Forecasting the Covid-19 recession and recovery: Lessons from the financial crisis," CEPR Discussion Papers 15114, C.E.P.R. Discussion Papers.
    56. Barbara Rossi & Tatevik Sekhposyan, 2013. "Evaluating predictive densities of U.S. output growth and inflation in a large macroeconomic data set," Economics Working Papers 1370, Department of Economics and Business, Universitat Pompeu Fabra.
    57. Kilian, Lutz & Baumeister, Christiane & Lee, Thomas K, 2014. "Are there Gains from Pooling Real-Time Oil Price Forecasts?," CEPR Discussion Papers 10075, C.E.P.R. Discussion Papers.
    58. Scott A. Brave & Charles S. Gascon & William Kluender & Thomas Walstrum, 2019. "Predicting Benchmarked US State Employment Data in Real Time," Working Papers 2019-037, Federal Reserve Bank of St. Louis, revised 11 Mar 2021.
    59. Hampel, Katharina & Kunz, Marcus & Schanne, Norbert & Wapler, Rüdiger & Weyh, Antje, 2007. "Regional employment forecasts with spatial interdependencies," IAB-Discussion Paper 200702, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
    60. Makridakis, Spyros & Hyndman, Rob J. & Petropoulos, Fotios, 2020. "Forecasting in social settings: The state of the art," International Journal of Forecasting, Elsevier, vol. 36(1), pages 15-28.
    61. João F. Caldeira & Guilherme V. Moura & Francisco J. Nogales & André A. P. Santos, 2017. "Combining Multivariate Volatility Forecasts: An Economic-Based Approach," Journal of Financial Econometrics, Oxford University Press, vol. 15(2), pages 247-285.
    62. Bec, Frédérique & Mogliani, Matteo, 2015. "Nowcasting French GDP in real-time with surveys and “blocked” regressions: Combining forecasts or pooling information?," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1021-1042.
    63. Fuertes, Ana-Maria & Olmo, Jose, 2013. "Optimally harnessing inter-day and intra-day information for daily value-at-risk prediction," International Journal of Forecasting, Elsevier, vol. 29(1), pages 28-42.
    64. Wagner Piazza Gaglianone & Luiz Renato Lima, 2014. "Constructing Optimal Density Forecasts From Point Forecast Combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(5), pages 736-757, August.
    65. Matteo Iacopini & Francesco Ravazzolo & Luca Rossini, 2020. "Proper scoring rules for evaluating asymmetry in density forecasting," Working Papers No 06/2020, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    66. Álvarez, Luis J. & Sánchez, Isabel, 2019. "Inflation projections for monetary policy decision making," Journal of Policy Modeling, Elsevier, vol. 41(4), pages 568-585.
    67. Michiel De Pooter & Francesco Ravazzolo & Dick van Dijk, 2010. "Term structure forecasting using macro factors and forecast combination," International Finance Discussion Papers 993, Board of Governors of the Federal Reserve System (U.S.).
    68. Ravazzolo, Francesco & Vespignani, Joaquin, 2015. "A new monthly indicator of global real economic activity," Working Papers 2015-07, University of Tasmania, Tasmanian School of Business and Economics.
    69. Canova, Fabio & Matthes, Christian, 2018. "A composite likelihood approach for dynamic structural models," CEPR Discussion Papers 13245, C.E.P.R. Discussion Papers.
    70. Luis F. Melo Velandia & Rubén A. Loaiza Maya & Mauricio Villamizar-Villegas, 2014. "Bayesian Combination for Inflation Forecasts: The Effects of a Prior Based on Central Banks’ Estimates," Borradores de Economia 853, Banco de la Republica de Colombia.
    71. Boneva, Lena & Fawcett, Nicholas & Masolo, Riccardo M. & Waldron, Matt, 2019. "Forecasting the UK economy: Alternative forecasting methodologies and the role of off-model information," International Journal of Forecasting, Elsevier, vol. 35(1), pages 100-120.
    72. Cristina Conflitti & Christine De Mol & Domenico Giannone, 2012. "Optimal Combination of Survey Forecasts," Working Papers ECARES ECARES 2012-023, ULB -- Universite Libre de Bruxelles.
    73. Laura Carabotta & Peter Claeys, 2015. "Combine to compete: improving fiscal forecast accuracy over time," UB School of Economics Working Papers 2015/320, University of Barcelona School of Economics.
    74. Carlos Capistrán & Allan Timmermann, 2008. "Forecast Combination With Entry and Exit of Experts," CREATES Research Papers 2008-55, Department of Economics and Business Economics, Aarhus University.
    75. Carriero, Andrea & Marcellino, Massimiliano, 2007. "A comparison of methods for the construction of composite coincident and leading indexes for the UK," International Journal of Forecasting, Elsevier, vol. 23(2), pages 219-236.
    76. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    77. Tae-Hwy Lee & Ekaterina Seregina, 2020. "Learning from Forecast Errors: A New Approach to Forecast Combinations," Papers 2011.02077, arXiv.org, revised May 2021.
    78. Rusnák, Marek, 2016. "Nowcasting Czech GDP in real time," Economic Modelling, Elsevier, vol. 54(C), pages 26-39.
    79. Fernando M. Duarte & Carlo Rosa, 2015. "The equity risk premium: a review of models," Economic Policy Review, Federal Reserve Bank of New York, issue 2, pages 39-57.
    80. Barbara Rossi, 2005. "Are Exchange Rates Really Random Walks? Some Evidence Robust to Parameter Instability," International Finance 0503006, University Library of Munich, Germany.
    81. Robin C. Sickles & Jiaqi Hao & Chenjun Shang, 2014. "Panel data and productivity measurement: an analysis of Asian productivity trends," Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 12(3), pages 211-231, August.
    82. Costantini, Mauro & Gunter, Ulrich & Kunst, Robert M., 2012. "Forecast Combination Based on Multiple Encompassing Tests in a Macroeconomic DSGE-VAR System," Economics Series 292, Institute for Advanced Studies.
    83. Xue Gong & Weiguo Zhang & Yuan Zhao & Xin Ye, 2023. "Forecasting stock volatility with a large set of predictors: A new forecast combination method," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1622-1647, November.
    84. Yi-Ting Chen & Chu-An Liu, 2021. "Model Averaging for Asymptotically Optimal Combined Forecasts," IEAS Working Paper : academic research 21-A002, Institute of Economics, Academia Sinica, Taipei, Taiwan.
    85. Smith, Simon C., 2021. "International stock return predictability," International Review of Financial Analysis, Elsevier, vol. 78(C).
    86. Sun, Yuying & Hong, Yongmiao & Wang, Shouyang & Zhang, Xinyu, 2023. "Penalized time-varying model averaging," Journal of Econometrics, Elsevier, vol. 235(2), pages 1355-1377.
    87. Blanc, Sebastian M. & Setzer, Thomas, 2016. "When to choose the simple average in forecast combination," Journal of Business Research, Elsevier, vol. 69(10), pages 3951-3962.
    88. Michael Cai & Marco Del Negro & Marc Giannoni & Abhi Gupta & Pearl Li & Erica Moszkowski, 2018. "DSGE forecasts of the lost recovery," Staff Reports 844, Federal Reserve Bank of New York.
    89. Shi, Chunpei & Wei, Yu & Li, Xiafei & Liu, Yuntong, 2023. "Combination forecasts of China's oil futures returns based on multiple uncertainties and their connectedness with oil," Energy Economics, Elsevier, vol. 126(C).
    90. Andrawis, Robert R. & Atiya, Amir F. & El-Shishiny, Hisham, 2011. "Forecast combinations of computational intelligence and linear models for the NN5 time series forecasting competition," International Journal of Forecasting, Elsevier, vol. 27(3), pages 672-688, July.
    91. Jari Hännikäinen, 2016. "Selection of an Estimation Window in the Presence of Data Revisions and Recent Structural Breaks," Working Papers 1692, Tampere University, Faculty of Management and Business, Economics.
    92. Zhemkov, Michael, 2021. "Nowcasting Russian GDP using forecast combination approach," International Economics, Elsevier, vol. 168(C), pages 10-24.
    93. Lennart Hoogerheide & Richard Kleijn & Francesco Ravazzolo & Herman K. Van Dijk & Marno Verbeek, 2010. "Forecast accuracy and economic gains from Bayesian model averaging using time-varying weights," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 251-269.
    94. Felix Haase & Matthias Neuenkirch, 2020. "Predictability of Bull and Bear Markets: A New Look at Forecasting Stock Market Regimes (and Returns) in the US," Research Papers in Economics 2020-01, University of Trier, Department of Economics.
    95. Bakalli, Gaetan & Guerrier, Stéphane & Scaillet, Olivier, 2023. "A penalized two-pass regression to predict stock returns with time-varying risk premia," Journal of Econometrics, Elsevier, vol. 237(2).
    96. Takashi Nakazawa, 2022. "Constructing GDP Nowcasting Models Using Alternative Data," Bank of Japan Working Paper Series 22-E-9, Bank of Japan.
    97. Sermpinis, Georgios & Stasinakis, Charalampos & Hassanniakalager, Arman, 2017. "Reverse adaptive krill herd locally weighted support vector regression for forecasting and trading exchange traded funds," European Journal of Operational Research, Elsevier, vol. 263(2), pages 540-558.
    98. Rodrigues, Bruno Dore & Stevenson, Maxwell J., 2013. "Takeover prediction using forecast combinations," International Journal of Forecasting, Elsevier, vol. 29(4), pages 628-641.
    99. Andrade, P. & Fourel, V. & Ghysels, E. & Idier, I., 2013. "The financial content of inflation risks in the euro area," Working papers 437, Banque de France.
    100. Travis J. Berge, 2015. "Predicting Recessions with Leading Indicators: Model Averaging and Selection over the Business Cycle," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(6), pages 455-471, September.
    101. Bartosz Uniejewski & Katarzyna Maciejowska, 2022. "LASSO Principal Component Averaging -- a fully automated approach for point forecast pooling," Papers 2207.04794, arXiv.org.
    102. Cheng, Xu & Hansen, Bruce E., 2015. "Forecasting with factor-augmented regression: A frequentist model averaging approach," Journal of Econometrics, Elsevier, vol. 186(2), pages 280-293.
    103. Ma, Feng & Lu, Fei & Tao, Ying, 2022. "Geopolitical risk and excess stock returns predictability: New evidence from a century of data," Finance Research Letters, Elsevier, vol. 50(C).
    104. Faias, José Afonso, 2023. "Predicting the equity risk premium using the smooth cross-sectional tail risk: The importance of correlation," Journal of Financial Markets, Elsevier, vol. 63(C).
    105. Lycheva, Maria & Mironenkov, Alexey & Kurbatskii, Alexey & Fantazzini, Dean, 2022. "Forecasting oil prices with penalized regressions, variance risk premia and Google data," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 68, pages 28-49.
    106. Philip Hans Franses & Michael McAleer & Rianne Legerstee, 2010. "Evaluating Macroeconomic Forecasts: A Review of Some Recent Developments," CIRJE F-Series CIRJE-F-729, CIRJE, Faculty of Economics, University of Tokyo.
    107. Yi, Yongsheng & Ma, Feng & Zhang, Yaojie & Huang, Dengshi, 2019. "Forecasting stock returns with cycle-decomposed predictors," International Review of Financial Analysis, Elsevier, vol. 64(C), pages 250-261.
    108. Lars Lien Ankile & Kjartan Krange, 2022. "Deep Learning and Linear Programming for Automated Ensemble Forecasting and Interpretation," Papers 2201.00426, arXiv.org, revised Nov 2022.
    109. Eran Raviv & Kees E. Bouwman & Dick van Dijk, 2013. "Forecasting Day-Ahead Electricity Prices: Utilizing Hourly Prices," Tinbergen Institute Discussion Papers 13-068/III, Tinbergen Institute.
    110. Diebold, Francis X. & Shin, Minchul, 2019. "Machine learning for regularized survey forecast combination: Partially-egalitarian LASSO and its derivatives," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1679-1691.
    111. Götz, T.B. & Hecq, A.W. & Urbain, J.R.Y.J., 2014. "Combining distributions of real-time forecasts: An application to U.S. growth," Research Memorandum 027, Maastricht University, Graduate School of Business and Economics (GSBE).
    112. Laurent Ferrara & Clément Marsilli & Juan-Pablo Ortega, 2013. "Forecasting US growth during the Great Recession: Is the financial volatility the missing ingredient?," Working Papers hal-04141198, HAL.
    113. Todd E. Clark & Michael W. McCracken, 2010. "Averaging forecasts from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 5-29.
    114. Jon Ellingsen & Vegard H. Larsen & Leif Anders Thorsrud, 2020. "News media vs. FRED-MD for macroeconomic forecasting," Working Papers No 08/2020, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    115. Schrimpf, Andreas & Wang, Qingwei, 2010. "A reappraisal of the leading indicator properties of the yield curve under structural instability," International Journal of Forecasting, Elsevier, vol. 26(4), pages 836-857, October.
    116. Nikodinoska, Dragana & Käso, Mathias & Müsgens, Felix, 2022. "Solar and wind power generation forecasts using elastic net in time-varying forecast combinations," Applied Energy, Elsevier, vol. 306(PA).
    117. Coroneo, Laura & Iacone, Fabrizio & Paccagnini, Alessia & Santos Monteiro, Paulo, 2023. "Testing the predictive accuracy of COVID-19 forecasts," International Journal of Forecasting, Elsevier, vol. 39(2), pages 606-622.
    118. Leland E. Farmer & Lawrence Schmidt & Allan Timmermann, 2023. "Pockets of Predictability," Journal of Finance, American Finance Association, vol. 78(3), pages 1279-1341, June.
    119. Foroni, Claudia & Marcellino, Massimiliano, 2014. "A comparison of mixed frequency approaches for nowcasting Euro area macroeconomic aggregates," International Journal of Forecasting, Elsevier, vol. 30(3), pages 554-568.
    120. Zhang, Yue-Jun & Wang, Jin-Li, 2019. "Do high-frequency stock market data help forecast crude oil prices? Evidence from the MIDAS models," Energy Economics, Elsevier, vol. 78(C), pages 192-201.
    121. John Cotter & Emmanuel Eyiah-Donkor & Valerio Potì, 2023. "Commodity futures return predictability and intertemporal asset pricing," Post-Print hal-04192933, HAL.
    122. Clements, Michael P & Galvão, Ana Beatriz, 2006. "Macroeconomic Forecasting with Mixed Frequency Data : Forecasting US output growth and inflation," The Warwick Economics Research Paper Series (TWERPS) 773, University of Warwick, Department of Economics.
    123. Petropoulos, Fotios & Spiliotis, Evangelos & Panagiotelis, Anastasios, 2023. "Model combinations through revised base rates," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1477-1492.
    124. Degiannakis, Stavros & Filis, George & Hassani, Hossein, 2015. "Forecasting implied volatility indices worldwide: A new approach," MPRA Paper 72084, University Library of Munich, Germany.
    125. Emilio Zanetti Chini, 2018. "Forecasting dynamically asymmetric fluctuations of the U.S. business cycle," CREATES Research Papers 2018-13, Department of Economics and Business Economics, Aarhus University.
    126. Svec, Jiri & Katrak, Xerxis, 2017. "Forecasting volatility with interacting multiple models," Finance Research Letters, Elsevier, vol. 20(C), pages 245-252.
    127. Anthony Garratt & Timo Henckel & Shaun P. Vahey, 2019. "Empirically-transformed linear opinion pools," CAMA Working Papers 2019-47, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    128. Sainan Jin & Valentina Corradi & Norman Swanson, 2015. "Robust Forecast Comparison," Departmental Working Papers 201502, Rutgers University, Department of Economics.
    129. Christian Grimme & Robert Lehmann & Marvin Noeller, 2019. "Forecasting Imports with Information from Abroad," ifo Working Paper Series 294, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    130. Han Hong & Bruce Preston, 2008. "Bayesian Averaging, Prediction and Nonnested Model Selection," NBER Working Papers 14284, National Bureau of Economic Research, Inc.
    131. Roman S. Leukhin, 2019. "Short-Term Fiscal Projections Using Forecast Combination Approach," Finansovyj žhurnal — Financial Journal, Financial Research Institute, Moscow 125375, Russia, issue 3, pages 9-21, June.
    132. Kolasa, Marcin & Rubaszek, Michał, 2014. "Forecasting with DSGE models with financial frictions," Dynare Working Papers 40, CEPREMAP.
    133. Dellas, Harris & Gibson, Heather D. & Hall, Stephen G. & Tavlas, George S., 2018. "The macroeconomic and fiscal implications of inflation forecast errors," Journal of Economic Dynamics and Control, Elsevier, vol. 93(C), pages 203-217.
    134. Viviano, Davide & Bradic, Jelena, 2023. "Synthetic Learner: Model-free inference on treatments over time," Journal of Econometrics, Elsevier, vol. 234(2), pages 691-713.
    135. Anders Bredahl Kock & Timo Teräsvirta, 2010. "Forecasting with nonlinear time series models," CREATES Research Papers 2010-01, Department of Economics and Business Economics, Aarhus University.
    136. Francis X. Diebold & Minchul Shin & Boyuan Zhang, 2021. "On the Aggregation of Probability Assessments: Regularized Mixtures of Predictive Densities for Eurozone Inflation and Real Interest Rates," Working Papers 21-06, Federal Reserve Bank of Philadelphia.
    137. Sancetta, Alessio, 2013. "Weak conditions for shrinking multivariate nonparametric density estimators," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 285-300.
    138. Lavancier, F. & Rochet, P., 2016. "A general procedure to combine estimators," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 175-192.
    139. Liao, Cunfei & Luo, Qianlin & Tang, Guohao, 2021. "Aggregate liquidity premium and cross-sectional returns: Evidence from China," Economic Modelling, Elsevier, vol. 104(C).
    140. Wei, Xiaoqiao & Yang, Yuhong, 2012. "Robust forecast combinations," Journal of Econometrics, Elsevier, vol. 166(2), pages 224-236.
    141. Claudia FORONI & Massimiliano MARCELLINO, 2012. "A Comparison of Mixed Frequency Approaches for Modelling Euro Area Macroeconomic Variables," Economics Working Papers ECO2012/07, European University Institute.
    142. Anne Sofie Jore & James Mitchell & Shaun Vahey, 2008. "Combining Forecast Densities from VARs with Uncertain Instabilities," Reserve Bank of New Zealand Discussion Paper Series DP2008/18, Reserve Bank of New Zealand.
    143. Koo, Bonsoo & Anderson, Heather M. & Seo, Myung Hwan & Yao, Wenying, 2020. "High-dimensional predictive regression in the presence of cointegration," Journal of Econometrics, Elsevier, vol. 219(2), pages 456-477.
    144. Zhu, Min & Chen, Rui & Du, Ke & Wang, You-Gan, 2018. "Dividend growth and equity premium predictability," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 125-137.
    145. Sánchez, Ismael, 2008. "Adaptive combination of forecasts with application to wind energy," International Journal of Forecasting, Elsevier, vol. 24(4), pages 679-693.
    146. Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    147. Michael P. Clements & Ana Beatriz Galvão, 2009. "Forecasting US output growth using leading indicators: an appraisal using MIDAS models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(7), pages 1187-1206, November.
    148. David Bolder & Yuliya Romanyuk, 2008. "Combining Canadian Interest-Rate Forecasts," Staff Working Papers 08-34, Bank of Canada.
    149. Andrada-Félix, Julián & Fernández-Rodríguez, Fernando & Fuertes, Ana-Maria, 2016. "Combining nearest neighbor predictions and model-based predictions of realized variance: Does it pay?," International Journal of Forecasting, Elsevier, vol. 32(3), pages 695-715.
    150. Pablo Montero-Manso & George Athanasopoulos & Rob J Hyndman & Thiyanga S Talagala, 2018. "FFORMA: Feature-based forecast model averaging," Monash Econometrics and Business Statistics Working Papers 19/18, Monash University, Department of Econometrics and Business Statistics.
    151. Aiolfi Marco & Capistrán Carlos & Timmermann Allan, 2010. "Forecast Combinations," Working Papers 2010-04, Banco de México.
    152. Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
    153. Davide De Gaetano, 2016. "Forecast Combinations For Realized Volatility In Presence Of Structural Breaks," Departmental Working Papers of Economics - University 'Roma Tre' 0208, Department of Economics - University Roma Tre.
    154. Knut Are Aastveit & Karsten R. Gerdrup & Anne Sofie Jore & Leif Anders Thorsrud, 2011. "Nowcasting GDP in real-time: A density combination approach," Working Paper 2011/11, Norges Bank.
    155. Garratt, Anthony & Mitchell, James & Vahey, Shaun P., 2014. "Measuring output gap nowcast uncertainty," International Journal of Forecasting, Elsevier, vol. 30(2), pages 268-279.
    156. Zhu, Min, 2013. "Return distribution predictability and its implications for portfolio selection," International Review of Economics & Finance, Elsevier, vol. 27(C), pages 209-223.
    157. Emmanuel Paroissien, 2020. "Forecasting bulk prices of Bordeaux wines using leading indicators," Post-Print hal-02408202, HAL.
    158. Markiewicz, Agnieszka & Pick, Andreas, 2014. "Adaptive learning and survey data," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PB), pages 685-707.
    159. Lyócsa, Štefan & Molnár, Peter & Todorova, Neda, 2017. "Volatility forecasting of non-ferrous metal futures: Covariances, covariates or combinations?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 51(C), pages 228-247.
    160. Marcus Cobb, 2009. "Forecasting Chilean Inflation From Disaggregate Components," Working Papers Central Bank of Chile 545, Central Bank of Chile.
    161. Lv, Wendai & Qi, Jipeng, 2022. "Stock market return predictability: A combination forecast perspective," International Review of Financial Analysis, Elsevier, vol. 84(C).
    162. Yin, Anwen, 2020. "Equity premium prediction and optimal portfolio decision with Bagging," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    163. Andrew B. Martinez & Jennifer L. Castle & David F. Hendry, 2021. "Smooth Robust Multi-Horizon Forecasts," Economics Papers 2021-W01, Economics Group, Nuffield College, University of Oxford.
    164. Baumann, Ursel & Darracq Pariès, Matthieu & Westermann, Thomas & Riggi, Marianna & Bobeica, Elena & Meyler, Aidan & Böninghausen, Benjamin & Fritzer, Friedrich & Trezzi, Riccardo & Jonckheere, Jana & , 2021. "Inflation expectations and their role in Eurosystem forecasting," Occasional Paper Series 264, European Central Bank.
    165. Groen, Jan J.J. & Kapetanios, George, 2016. "Revisiting useful approaches to data-rich macroeconomic forecasting," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 221-239.
    166. Fabio Canova & Christian Matthes, 2021. "Dealing with misspecification in structural macroeconometric models," Quantitative Economics, Econometric Society, vol. 12(2), pages 313-350, May.
    167. Raffaella Giacomini & Barbara Rossi, 2013. "Forecasting in macroeconomics," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 17, pages 381-408, Edward Elgar Publishing.
    168. Katarzyna Maciejowska & Bartosz Uniejewski & Tomasz Serafin, 2020. "PCA Forecast Averaging—Predicting Day-Ahead and Intraday Electricity Prices," Energies, MDPI, vol. 13(14), pages 1-19, July.
    169. Kurmas Akdogan & Selen Baser & Meltem Gulenay Chadwick & Dilara Ertug & Timur Hulagu & Sevim Kosem & Fethi Ogunc & M. Utku Ozmen & Necati Tekatli, 2012. "Short-Term Inflation Forecasting Models For Turkey and a Forecast Combination Analysis," Working Papers 1209, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
    170. Colino, Evelyn V. & Irwin, Scott H. & Garcia, Philip, 2008. "How Much Can Outlook Forecasts be Improved? An Application to the U.S. Hog Market," 2008 Conference, April 21-22, 2008, St. Louis, Missouri 37620, NCCC-134 Conference on Applied Commodity Price Analysis, Forecasting, and Market Risk Management.
    171. an de Meulen, Philipp, 2015. "Das RWI-Kurzfristprognosemodell," RWI Konjunkturberichte, RWI - Leibniz-Institut für Wirtschaftsforschung, vol. 66(2), pages 25-46.
    172. Lyócsa, Štefan & Plíhal, Tomáš & Výrost, Tomáš, 2021. "FX market volatility modelling: Can we use low-frequency data?," Finance Research Letters, Elsevier, vol. 40(C).
    173. Lessmann, Stefan & Sung, Ming-Chien & Johnson, Johnnie E.V. & Ma, Tiejun, 2012. "A new methodology for generating and combining statistical forecasting models to enhance competitive event prediction," European Journal of Operational Research, Elsevier, vol. 218(1), pages 163-174.
    174. Alexopoulos, Thomas A., 2017. "The growing importance of natural gas as a predictor for retail electricity prices in US," Energy, Elsevier, vol. 137(C), pages 219-233.
    175. Afees A. Salisu & Ibrahim D. Raheem & Umar B. Ndako, 2017. "A sectoral analysis of asymmetric nexus between oil and stock," Working Papers 033, Centre for Econometric and Allied Research, University of Ibadan.
    176. Korbinian Dress & Stefan Lessmann & Hans-Jorg von Mettenheim, 2017. "Residual Value Forecasting Using Asymmetric Cost Functions," Papers 1707.02736, arXiv.org.
    177. Halbleib, Roxana & Pohlmeier, Winfried, 2012. "Improving the value at risk forecasts: Theory and evidence from the financial crisis," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1212-1228.
    178. Cheng, Gang & Yang, Yuhong, 2015. "Forecast combination with outlier protection," International Journal of Forecasting, Elsevier, vol. 31(2), pages 223-237.
    179. Patton, Andrew J. & Sheppard, Kevin, 2009. "Optimal combinations of realised volatility estimators," International Journal of Forecasting, Elsevier, vol. 25(2), pages 218-238.
    180. Dantas, Tiago Mendes & Cyrino Oliveira, Fernando Luiz, 2018. "Improving time series forecasting: An approach combining bootstrap aggregation, clusters and exponential smoothing," International Journal of Forecasting, Elsevier, vol. 34(4), pages 748-761.
    181. Ma, Feng & Liu, Jing & Wahab, M.I.M. & Zhang, Yaojie, 2018. "Forecasting the aggregate oil price volatility in a data-rich environment," Economic Modelling, Elsevier, vol. 72(C), pages 320-332.
    182. George Athanasopoulos & Rob J Hyndman & Nikolaos Kourentzes & Fotios Petropoulos, 2015. "Forecasting with Temporal Hierarchies," Monash Econometrics and Business Statistics Working Papers 16/15, Monash University, Department of Econometrics and Business Statistics.
    183. Samuels, Jon D. & Sekkel, Rodrigo M., 2017. "Model Confidence Sets and forecast combination," International Journal of Forecasting, Elsevier, vol. 33(1), pages 48-60.
    184. Faust, Jon & Wright, Jonathan H., 2013. "Forecasting Inflation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 2-56, Elsevier.
    185. Nystrup, Peter & Lindström, Erik & Møller, Jan K. & Madsen, Henrik, 2021. "Dimensionality reduction in forecasting with temporal hierarchies," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1127-1146.
    186. Li, Jiahan & Chen, Weiye, 2014. "Forecasting macroeconomic time series: LASSO-based approaches and their forecast combinations with dynamic factor models," International Journal of Forecasting, Elsevier, vol. 30(4), pages 996-1015.
    187. Chauvet, Marcelle & Potter, Simon, 2013. "Forecasting Output," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 141-194, Elsevier.
    188. Yae, James & Tian, George Zhe, 2022. "Out-of-sample forecasting of cryptocurrency returns: A comprehensive comparison of predictors and algorithms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    189. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    190. Caldeira, João F. & Moura, Guilherme V. & Santos, André A.P., 2016. "Predicting the yield curve using forecast combinations," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 79-98.
    191. Bayer, Sebastian, 2018. "Combining Value-at-Risk forecasts using penalized quantile regressions," Econometrics and Statistics, Elsevier, vol. 8(C), pages 56-77.
    192. Massimiliano Giacalone, 2022. "Optimal forecasting accuracy using Lp-norm combination," METRON, Springer;Sapienza Università di Roma, vol. 80(2), pages 187-230, August.
    193. Marcos Bujosa & Antonio García‐Ferrer & Aránzazu de Juan & Antonio Martín‐Arroyo, 2020. "Evaluating early warning and coincident indicators of business cycles using smooth trends," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(1), pages 1-17, January.
    194. Dress, Korbinian & Lessmann, Stefan & von Mettenheim, Hans-Jörg, 2018. "Residual value forecasting using asymmetric cost functions," International Journal of Forecasting, Elsevier, vol. 34(4), pages 551-565.
    195. Kim, Hyun Hak & Swanson, Norman R., 2014. "Forecasting financial and macroeconomic variables using data reduction methods: New empirical evidence," Journal of Econometrics, Elsevier, vol. 178(P2), pages 352-367.
    196. Magnus, Jan & Vasnev, Andrey, 2021. "On the uncertainty of a combined forecast: The critical role of correlation," Working Papers BAWP-2022-01, University of Sydney Business School, Discipline of Business Analytics.
    197. Dimitriadis, Timo & Schnaitmann, Julie, 2021. "Forecast encompassing tests for the expected shortfall," International Journal of Forecasting, Elsevier, vol. 37(2), pages 604-621.
    198. Massimo Guidolin & Carrie Fangzhou Na, 2007. "The economic and statistical value of forecast combinations under regime switching: an application to predictable U.S. returns," Working Papers 2006-059, Federal Reserve Bank of St. Louis.
    199. Aristidou, Chrystalleni & Lee, Kevin & Shields, Kalvinder, 2022. "Fundamentals, regimes and exchange rate forecasts: Insights from a meta exchange rate model," Journal of International Money and Finance, Elsevier, vol. 123(C).
    200. Costantini, Mauro & Gunter, Ulrich & Kunst, Robert M., 2014. "Forecast combinations in a DSGE-VAR lab," Economics Series 309, Institute for Advanced Studies.
    201. Stefania D'Amico & Thomas B. King, 2015. "What Does Anticipated Monetary Policy Do?," Working Paper Series WP-2015-10, Federal Reserve Bank of Chicago.
    202. Andreini, Paolo & Hasenzagl, Thomas & Reichlin, Lucrezia & Senftleben-König, Charlotte & Strohsal, Till, 2023. "Nowcasting German GDP: Foreign factors, financial markets, and model averaging," International Journal of Forecasting, Elsevier, vol. 39(1), pages 298-313.
    203. Di Fonzo, Tommaso & Girolimetto, Daniele, 2024. "Forecast combination-based forecast reconciliation: Insights and extensions," International Journal of Forecasting, Elsevier, vol. 40(2), pages 490-514.
    204. Kuang, P. & Schröder, M. & Wang, Q., 2014. "Illusory profitability of technical analysis in emerging foreign exchange markets," International Journal of Forecasting, Elsevier, vol. 30(2), pages 192-205.
    205. Huck, Nicolas, 2009. "Pairs selection and outranking: An application to the S&P 100 index," European Journal of Operational Research, Elsevier, vol. 196(2), pages 819-825, July.
    206. Ng, Serena, 2013. "Variable Selection in Predictive Regressions," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 752-789, Elsevier.
    207. Fuentes, Julieta & Poncela, Pilar & Rodríguez, Julio, 2014. "Selecting and combining experts from survey forecasts," DES - Working Papers. Statistics and Econometrics. WS ws140905, Universidad Carlos III de Madrid. Departamento de Estadística.
    208. Chan, Felix & Pauwels, Laurent L., 2018. "Some theoretical results on forecast combinations," International Journal of Forecasting, Elsevier, vol. 34(1), pages 64-74.
    209. Lu, Xinjie & Ma, Feng & Xu, Jin & Zhang, Zehui, 2022. "Oil futures volatility predictability: New evidence based on machine learning models11All the authors contribute to the paper equally," International Review of Financial Analysis, Elsevier, vol. 83(C).
    210. Macias, Paweł & Stelmasiak, Damian & Szafranek, Karol, 2023. "Nowcasting food inflation with a massive amount of online prices," International Journal of Forecasting, Elsevier, vol. 39(2), pages 809-826.
    211. Enilov, Martin & Mensi, Walid & Stankov, Petar, 2023. "Does safe haven exist? Tail risks of commodity markets during COVID-19 pandemic," Journal of Commodity Markets, Elsevier, vol. 29(C).
    212. Mehmet Pinar & Thanasis Stengos & M. Ege Yazgan, 2012. "Is there an Optimal Forecast Combination? A Stochastic Dominance Approach to Forecast Combination Puzzle," Working Paper series 17_12, Rimini Centre for Economic Analysis.
    213. Hollstein, Fabian & Prokopczuk, Marcel & Wese Simen, Chardin, 2017. "How to Estimate Beta?," Hannover Economic Papers (HEP) dp-617, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    214. Peter Christoffersen & Kris Jacobs & Bo Young Chang, 2011. "Forecasting with Option Implied Information," CREATES Research Papers 2011-46, Department of Economics and Business Economics, Aarhus University.
    215. Filipa Fernandes & Charalampos Stasinakis & Zivile Zekaite, 2019. "Forecasting government bond spreads with heuristic models: evidence from the Eurozone periphery," Annals of Operations Research, Springer, vol. 282(1), pages 87-118, November.
    216. Ma, Feng & Wahab, M.I.M. & Zhang, Yaojie, 2019. "Forecasting the U.S. stock volatility: An aligned jump index from G7 stock markets," Pacific-Basin Finance Journal, Elsevier, vol. 54(C), pages 132-146.
    217. Wan, Runqing & Fulop, Andras & Li, Junye, 2022. "Real-time Bayesian learning and bond return predictability," Journal of Econometrics, Elsevier, vol. 230(1), pages 114-130.
    218. Hollstein, Fabian & Prokopczuk, Marcel & Wese Simen, Chardin, 2019. "Estimating beta: Forecast adjustments and the impact of stock characteristics for a broad cross-section," Journal of Financial Markets, Elsevier, vol. 44(C), pages 91-118.
    219. Lima, Luiz Renato Regis de Oliveira & Issler, João Victor, 2007. "A panel data approach to economic forecasting: the bias-corrected average forecast," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 650, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    220. Leif Anders Thorsrud, 2016. "Nowcasting using news topics. Big Data versus big bank," Working Paper 2016/20, Norges Bank.
    221. Jiang, Fuwei & Lee, Joshua & Martin, Xiumin & Zhou, Guofu, 2019. "Manager sentiment and stock returns," Journal of Financial Economics, Elsevier, vol. 132(1), pages 126-149.
    222. Davide De Gaetano, 2017. "Forecasting With Garch Models Under Structural Breaks: An Approach Based On Combinations Across Estimation Windows," Departmental Working Papers of Economics - University 'Roma Tre' 0219, Department of Economics - University Roma Tre.
    223. Yin, Libo & Yang, Qingyuan, 2016. "Predicting the oil prices: Do technical indicators help?," Energy Economics, Elsevier, vol. 56(C), pages 338-350.
    224. David Happersberger & Harald Lohre & Ingmar Nolte, 2020. "Estimating portfolio risk for tail risk protection strategies," European Financial Management, European Financial Management Association, vol. 26(4), pages 1107-1146, September.
    225. Karsten R. Gerdrup & Anne Sofie Jore & Christie Smith & Leif Anders Thorsrud, 2009. "Evaluating ensemble density combination - forecasting GDP and inflation," Working Paper 2009/19, Norges Bank.
    226. Galvão, Ana Beatriz & Garratt, Anthony & Mitchell, James, 2021. "Does judgment improve macroeconomic density forecasts?," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1247-1260.
    227. Grant, Andrew & Johnstone, David, 2010. "Finding profitable forecast combinations using probability scoring rules," International Journal of Forecasting, Elsevier, vol. 26(3), pages 498-510, July.
    228. Anthony Garratt & James Mitchell & Shaun P. Vahey & Elizabeth C. Wakerly, 2010. "Real-time Inflation Forecast Densities from Ensemble Phillips Curves," CAMA Working Papers 2010-34, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    229. Chikamatsu, Kyosuke & Hirakata, Naohisa & Kido, Yosuke & Otaka, Kazuki, 2021. "Mixed-frequency approaches to nowcasting GDP: An application to Japan," Japan and the World Economy, Elsevier, vol. 57(C).
    230. Lyócsa, Štefan & Todorova, Neda & Výrost, Tomáš, 2021. "Predicting risk in energy markets: Low-frequency data still matter," Applied Energy, Elsevier, vol. 282(PA).
    231. Soybilgen, Barış & Yazgan, Ege, 2018. "Evaluating nowcasts of bridge equations with advanced combination schemes for the Turkish unemployment rate," Economic Modelling, Elsevier, vol. 72(C), pages 99-108.
    232. Elena Andreou & Eric Ghysels & Constantinos Kourouyiannis, 2012. "Robust volatility forecasts in the presence of structural breaks," University of Cyprus Working Papers in Economics 08-2012, University of Cyprus Department of Economics.
    233. Issler, João Victor & Rodrigues, Claudia & Burjack, Rafael, 2014. "Using common features to understand the behavior of metal-commodity prices and forecast them at different horizons," Journal of International Money and Finance, Elsevier, vol. 42(C), pages 310-335.
    234. Laurynas Narusevicius & Tomas Ramanauskas & Laura Gudauskaitė & Tomas Reichenbachas, 2019. "Lithuanian house price index: modelling and forecasting," Bank of Lithuania Occasional Paper Series 28, Bank of Lithuania.
    235. Elliott, Graham & Gargano, Antonio & Timmermann, Allan, 2015. "Complete subset regressions with large-dimensional sets of predictors," Journal of Economic Dynamics and Control, Elsevier, vol. 54(C), pages 86-110.
    236. Terasvirta, Timo, 2006. "Forecasting economic variables with nonlinear models," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 8, pages 413-457, Elsevier.
    237. Eraslan, Sercan & Schröder, Maximilian, 2019. "Nowcasting GDP with a large factor model space," Discussion Papers 41/2019, Deutsche Bundesbank.
    238. Lin, Hai & Tao, Xinyuan & Wu, Chunchi, 2022. "Forecasting earnings with combination of analyst forecasts," Journal of Empirical Finance, Elsevier, vol. 68(C), pages 133-159.
    239. Boudoukh, Jacob & Israel, Ronen & Richardson, Matthew, 2022. "Biases in long-horizon predictive regressions," Journal of Financial Economics, Elsevier, vol. 145(3), pages 937-969.
    240. Dahlquist, Magnus & Hasseltoft, Henrik, 2020. "Economic momentum and currency returns," Journal of Financial Economics, Elsevier, vol. 136(1), pages 152-167.
    241. Zhentao Shi & Liangjun Su & Tian Xie, 2020. "L2-Relaxation: With Applications to Forecast Combination and Portfolio Analysis," Papers 2010.09477, arXiv.org, revised Aug 2022.
    242. Dbouk, Wassim & Jamali, Ibrahim, 2018. "Predicting daily oil prices: Linear and non-linear models," Research in International Business and Finance, Elsevier, vol. 46(C), pages 149-165.
    243. Abdollahi, Hooman & Ebrahimi, Seyed Babak, 2020. "A new hybrid model for forecasting Brent crude oil price," Energy, Elsevier, vol. 200(C).
    244. Till Weigt & Bernd Wilfling, 2018. "An approach to increasing forecast-combination accuracy through VAR error modeling," CQE Working Papers 6818, Center for Quantitative Economics (CQE), University of Muenster.
    245. Joseph P & Romano & Azeem M. Shaikh & Michael Wolf, 2005. "Formalized Data Snooping Based on Generalized Error Rates," IEW - Working Papers 259, Institute for Empirical Research in Economics - University of Zurich.
    246. Magnus, Jan R. & Vasnev, Andrey L., 2015. "Interpretation and use of sensitivity in econometrics, illustrated with forecast combinations," International Journal of Forecasting, Elsevier, vol. 31(3), pages 769-781.
    247. Barrow, Devon K., 2016. "Forecasting intraday call arrivals using the seasonal moving average method," Journal of Business Research, Elsevier, vol. 69(12), pages 6088-6096.
    248. Timmermann, Allan, 2008. "Elusive return predictability," International Journal of Forecasting, Elsevier, vol. 24(1), pages 1-18.
    249. Mihaela Bratu (Simionescu), 2012. "Improving the accuracy of consensus forecasts for the EURO area," Review of Applied Socio-Economic Research, Pro Global Science Association, vol. 4(2), pages 11-15, Decembre.
    250. Prasad S Bhattacharya & Dimitrios D Thomakos, 2011. "Improving forecasting performance by window and model averaging," CAMA Working Papers 2011-05, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    251. David Hendry & Michael P. Clements, 2010. "Forecasting from Mis-specified Models in the Presence of Unanticipated Location Shifts," Economics Series Working Papers 484, University of Oxford, Department of Economics.
    252. Clements, Michael P. & Harvey, David I., 2011. "Combining probability forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 208-223, April.
    253. Li, Xiaodan & Gong, Xue & Ge, Futing & Huang, Jingjing, 2024. "Forecasting stock volatility using pseudo-out-of-sample information," International Review of Economics & Finance, Elsevier, vol. 90(C), pages 123-135.
    254. Kang, Yanfei & Spiliotis, Evangelos & Petropoulos, Fotios & Athiniotis, Nikolaos & Li, Feng & Assimakopoulos, Vassilios, 2021. "Déjà vu: A data-centric forecasting approach through time series cross-similarity," Journal of Business Research, Elsevier, vol. 132(C), pages 719-731.
    255. Christopher Gibbs, 2015. "Forecast Combination, Non-linear Dynamics, and the Macroeconomy," Discussion Papers 2015-05, School of Economics, The University of New South Wales.
    256. Zhao, Albert Bo & Cheng, Tingting, 2022. "Stock return prediction: Stacking a variety of models," Journal of Empirical Finance, Elsevier, vol. 67(C), pages 288-317.
    257. Andrea Monticini & Francesco Ravazzolo, 2014. "Forecasting the intraday market price of money," DISCE - Working Papers del Dipartimento di Economia e Finanza def010, Università Cattolica del Sacro Cuore, Dipartimenti e Istituti di Scienze Economiche (DISCE).
    258. Till Weigt & Bernd Wilfling, 2016. "A new combination approach to reducing forecast errors with an application to volatility forecasting," CQE Working Papers 4616, Center for Quantitative Economics (CQE), University of Muenster.
    259. Darvas, Zsolt & Schepp, Zoltán, 2024. "Exchange rates and fundamentals: Forecasting with long maturity forward rates," Journal of International Money and Finance, Elsevier, vol. 143(C).
    260. Wang, Chengyang & Nishiyama, Yoshihiko, 2015. "Volatility forecast of stock indices by model averaging using high-frequency data," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 324-337.
    261. Schumacher, Christian & Marcellino, Massimiliano & Kuzin, Vladimir, 2009. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the Euro Area," CEPR Discussion Papers 7445, C.E.P.R. Discussion Papers.
    262. Cakici, Nusret & Shahzad, Syed Jawad Hussain & Będowska-Sójka, Barbara & Zaremba, Adam, 2024. "Machine learning and the cross-section of cryptocurrency returns," International Review of Financial Analysis, Elsevier, vol. 94(C).
    263. Carlos Trucíos & James W. Taylor, 2023. "A comparison of methods for forecasting value at risk and expected shortfall of cryptocurrencies," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 989-1007, July.
    264. Jiang, Yu & Guo, Yongji & Zhang, Yihao, 2017. "Forecasting China's GDP growth using dynamic factors and mixed-frequency data," Economic Modelling, Elsevier, vol. 66(C), pages 132-138.
    265. Park, Jin Suk & Newaz, Mohammad Khaleq, 2021. "Liquidity and short-run predictability: Evidence from international stock markets," Global Finance Journal, Elsevier, vol. 50(C).
    266. Nicoletta Pashourtidou & Christos Papamichael & Charalampos Karagiannakis, 2018. "Forecasting economic activity in sectors of the Cypriot economy," Cyprus Economic Policy Review, University of Cyprus, Economics Research Centre, vol. 12(2), pages 24-66, December.
    267. David G. McMillan & Mark E. Wohar, 2010. "Stock return predictability and dividend-price ratio: a nonlinear approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 15(4), pages 351-365.
    268. Lyócsa, Štefan & Molnár, Peter, 2018. "Exploiting dependence: Day-ahead volatility forecasting for crude oil and natural gas exchange-traded funds," Energy, Elsevier, vol. 155(C), pages 462-473.
    269. Antonios K. Alexandridis & Ekaterini Panopoulou & Ioannis Souropanis, 2024. "Forecasting exchange rates: An iterated combination constrained predictor approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(4), pages 983-1017, July.
    270. Rafal Weron, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," HSC Research Reports HSC/14/07, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    271. Andrew Ang & Geert Bekaert & Min Wei, 2005. "Do Macro Variables, Asset Markets or Surveys Forecast Inflation Better?," NBER Working Papers 11538, National Bureau of Economic Research, Inc.
    272. Likun Lei & Yaojie Zhang & Yu Wei & Yi Zhang, 2021. "Forecasting the volatility of Chinese stock market: An international volatility index," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 1336-1350, January.
    273. Ilias Tsiakas & Jiahan Li & Haibin Zhang, 2020. "Equity Premium Prediction and the State of the Economy," Working Paper series 20-16, Rimini Centre for Economic Analysis.
    274. Nikolay Robinzonov & Klaus Wohlrabe, 2010. "Freedom of Choice in Macroeconomic Forecasting ," CESifo Economic Studies, CESifo Group, vol. 56(2), pages 192-220, June.
    275. Hasumi, Ryo & Iiboshi, Hirokuni & Matsumae, Tatsuyoshi & Nakamura, Daisuke, 2019. "Does a financial accelerator improve forecasts during financial crises? Evidence from Japan with prediction-pooling methods," Journal of Asian Economics, Elsevier, vol. 60(C), pages 45-68.
    276. Götz, Thomas B. & Hecq, Alain & Urbain, Jean-Pierre, 2016. "Combining forecasts from successive data vintages: An application to U.S. growth," International Journal of Forecasting, Elsevier, vol. 32(1), pages 61-74.
    277. Jeronymo Marcondes Pinto & Jennifer L. Castle, 2022. "Machine Learning Dynamic Switching Approach to Forecasting in the Presence of Structural Breaks," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 18(2), pages 129-157, July.
    278. Marijn A. Bolhuis & Brett Rayner, 2020. "Deus ex Machina? A Framework for Macro Forecasting with Machine Learning," IMF Working Papers 2020/045, International Monetary Fund.
    279. Theodosiou, Marina, 2011. "Forecasting monthly and quarterly time series using STL decomposition," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1178-1195, October.
    280. David E. Rapach & Jack K. Strauss, 2007. "Forecasting real housing price growth in the Eighth District states," Regional Economic Development, Federal Reserve Bank of St. Louis, issue Nov, pages 33-42.
    281. Kourentzes, Nikolaos & Barrow, Devon & Petropoulos, Fotios, 2019. "Another look at forecast selection and combination: Evidence from forecast pooling," International Journal of Production Economics, Elsevier, vol. 209(C), pages 226-235.
    282. Rapach, David E. & Strauss, Jack K., 2009. "Differences in housing price forecastability across US states," International Journal of Forecasting, Elsevier, vol. 25(2), pages 351-372.
    283. Vitor Azevedo & Georg Sebastian Kaiser & Sebastian Mueller, 2023. "Stock market anomalies and machine learning across the globe," Journal of Asset Management, Palgrave Macmillan, vol. 24(5), pages 419-441, September.
    284. Norman R. Swanson & Weiqi Xiong & Xiye Yang, 2020. "Predicting interest rates using shrinkage methods, real‐time diffusion indexes, and model combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(5), pages 587-613, August.
    285. Baltagi, Badi H., 2013. "Panel Data Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 995-1024, Elsevier.
    286. Lin, Yu & Liao, Qidong & Lin, Zixiao & Tan, Bin & Yu, Yuanyuan, 2022. "A novel hybrid model integrating modified ensemble empirical mode decomposition and LSTM neural network for multi-step precious metal prices prediction," Resources Policy, Elsevier, vol. 78(C).
    287. Dr. James Mitchell, 2009. "Measuring Output Gap Uncertainty," National Institute of Economic and Social Research (NIESR) Discussion Papers 342, National Institute of Economic and Social Research.
    288. Gunter, Ulrich & Önder, Irem, 2016. "Forecasting city arrivals with Google Analytics," Annals of Tourism Research, Elsevier, vol. 61(C), pages 199-212.
    289. Klaus Wohlrabe, 2009. "Makroökonomische Prognosen mit gemischten Frequenzen," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 62(21), pages 22-33, November.
    290. Chiang, I-Hsuan Ethan & Liao, Yin & Zhou, Qing, 2021. "Modeling the cross-section of stock returns using sensible models in a model pool," Journal of Empirical Finance, Elsevier, vol. 60(C), pages 56-73.
    291. Santiago Etchegaray Alvarez, 2022. "Proyecciones macroeconómicas con datos en frecuencias mixtas. Modelos ADL-MIDAS, U-MIDAS y TF-MIDAS con aplicaciones para Uruguay," Documentos de trabajo 2022004, Banco Central del Uruguay.
    292. Matsypura, Dmytro & Thompson, Ryan & Vasnev, Andrey L., 2018. "Optimal selection of expert forecasts with integer programming," Omega, Elsevier, vol. 78(C), pages 165-175.
    293. Stein, Tobias, 2024. "Forecasting the equity premium with frequency-decomposed technical indicators," International Journal of Forecasting, Elsevier, vol. 40(1), pages 6-28.
    294. Niko Hauzenberger & Florian Huber & Karin Klieber, 2020. "Real-time Inflation Forecasting Using Non-linear Dimension Reduction Techniques," Papers 2012.08155, arXiv.org, revised Dec 2021.
    295. Yang, Dazhi & van der Meer, Dennis, 2021. "Post-processing in solar forecasting: Ten overarching thinking tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    296. Anwen Yin, 2024. "Predictive model averaging with parameter instability and heteroskedasticity," Bulletin of Economic Research, Wiley Blackwell, vol. 76(2), pages 418-442, April.
    297. Hasumi, Ryo & Iiboshi, Hirokuni & Matsumae, Tatsuyoshi & Nakamura, Daisuke, 2018. "Does a financial accelerator improve forecasts during financial crises?: Evidence from Japan with Prediction Pool Methods," MPRA Paper 85523, University Library of Munich, Germany.
    298. Kevin J. Lansing, 2019. "Endogenous Forecast Switching Near the Zero Lower Bound," Working Paper Series 2017-24, Federal Reserve Bank of San Francisco.
    299. Rapach, David E. & Strauss, Jack K., 2012. "Forecasting US state-level employment growth: An amalgamation approach," International Journal of Forecasting, Elsevier, vol. 28(2), pages 315-327.
    300. Iason Kynigakis & Ekaterini Panopoulou, 2022. "Does model complexity add value to asset allocation? Evidence from machine learning forecasting models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 603-639, April.
    301. Wang, Yudong & Liu, Li & Wu, Chongfeng, 2017. "Forecasting the real prices of crude oil using forecast combinations over time-varying parameter models," Energy Economics, Elsevier, vol. 66(C), pages 337-348.
    302. Hsiao, Cheng & Wan, Shui Ki, 2011. "Comparison of forecasting methods with an application to predicting excess equity premium," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(7), pages 1235-1246.
    303. Manzan, Sebastiano & Zerom, Dawit, 2009. "Are Macroeconomic Variables Useful for Forecasting the Distribution of U.S. Inflation?," MPRA Paper 14387, University Library of Munich, Germany.
    304. Khoo, Zhi De & Ng, Kok Haur & Koh, You Beng & Ng, Kooi Huat, 2024. "Forecasting volatility of stock indices: Improved GARCH-type models through combined weighted volatility measure and weighted volatility indicators," The North American Journal of Economics and Finance, Elsevier, vol. 71(C).
    305. Chiang, Wen-Chyuan & Russell, Robert A. & Urban, Timothy L., 2011. "Forecasting ridership for a metropolitan transit authority," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(7), pages 696-705, August.
    306. Wei, Wei & Zhu, Dan, 2022. "Generic improvements to least squares monte carlo methods with applications to optimal stopping problems," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1132-1144.
    307. Fabian Krüger & Ingmar Nolte, 2011. "Disagreement, Uncertainty and the True Predictive Density," Working Paper Series of the Department of Economics, University of Konstanz 2011-43, Department of Economics, University of Konstanz.
    308. Paolo Libenzio Brignoli & Alessandro Varacca & Cornelis Gardebroek & Paolo Sckokai, 2024. "Machine learning to predict grains futures prices," Agricultural Economics, International Association of Agricultural Economists, vol. 55(3), pages 479-497, May.
    309. Rodríguez-Vargas, Adolfo, 2020. "Forecasting Costa Rican inflation with machine learning methods," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 1(1).
    310. Reichlin, Lucrezia & Andreini, Paolo & Hasenzagl, Thomas & Senftleben-König, Charlotte & Strohsal, Till, 2020. "Nowcasting German GDP," CEPR Discussion Papers 14323, C.E.P.R. Discussion Papers.
    311. Kjetil Martinsen & Francesco Ravazzolo & Fredrik Wulfsberg, 2011. "Forecasting macroeconomic variables using disaggregate survey data," Working Paper 2011/04, Norges Bank.
    312. Szafranek, Karol, 2019. "Bagged neural networks for forecasting Polish (low) inflation," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1042-1059.
    313. Timmermann, Allan & Guidolin, Massimo, 2007. "Forecasts of US Short-term Interest Rates: A Flexible Forecast Combination Approach," CEPR Discussion Papers 6188, C.E.P.R. Discussion Papers.
    314. Jardet, C. & Monfort, A. & Pegoraro, F., 2009. "No-arbitrage Near-Cointegrated VAR(p) Term Structure Models, Term Premia and GDP Growth," Working papers 234, Banque de France.
    315. Garratt, Anthony & Mise, Emi, 2014. "Forecasting exchange rates using panel model and model averaging," Economic Modelling, Elsevier, vol. 37(C), pages 32-40.
    316. Pincheira-Brown, Pablo & Bentancor, Andrea & Hardy, Nicolás & Jarsun, Nabil, 2022. "Forecasting fuel prices with the Chilean exchange rate: Going beyond the commodity currency hypothesis," Energy Economics, Elsevier, vol. 106(C).
    317. Valentina Corradi & Sainan Jin & Norman R. Swanson, 2023. "Robust forecast superiority testing with an application to assessing pools of expert forecasters," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(4), pages 596-622, June.
    318. Salisu, Afees A. & Vo, Xuan Vinh, 2020. "Predicting stock returns in the presence of COVID-19 pandemic: The role of health news," International Review of Financial Analysis, Elsevier, vol. 71(C).
    319. Ding, Lili & Zhao, Zhongchao & Wang, Lei, 2022. "Probability density forecasts for natural gas demand in China: Do mixed-frequency dynamic factors matter?," Applied Energy, Elsevier, vol. 312(C).
    320. Maciejowska, Katarzyna & Nowotarski, Jakub & Weron, Rafał, 2016. "Probabilistic forecasting of electricity spot prices using Factor Quantile Regression Averaging," International Journal of Forecasting, Elsevier, vol. 32(3), pages 957-965.
    321. Chao, Shih-Wei, 2016. "Do economic variables improve bond return volatility forecasts?," International Review of Economics & Finance, Elsevier, vol. 46(C), pages 10-26.
    322. Robert Lehmann & Klaus Wohlrabe, 2013. "Sektorale Prognosen und deren Machbarkeit auf regionaler Ebene – Das Beispiel Sachsen," ifo Dresden berichtet, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 20(04), pages 22-29, August.
    323. Pauwels, Laurent L. & Vasnev, Andrey L., 2016. "A note on the estimation of optimal weights for density forecast combinations," International Journal of Forecasting, Elsevier, vol. 32(2), pages 391-397.
    324. De Rezende, Rafael B., 2016. "The interest rate effects of government bond purchases away from the lower bound," Working Paper Series 324, Sveriges Riksbank (Central Bank of Sweden).
    325. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    326. Raval, Devesh & Rosenbaum, Ted & Wilson, Nathan E., 2021. "How do machine learning algorithms perform in predicting hospital choices? evidence from changing environments," Journal of Health Economics, Elsevier, vol. 78(C).
    327. Ren, Yu & Liang, Xuanxuan & Wang, Qin, 2021. "Short-term exchange rate forecasting: A panel combination approach," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 73(C).
    328. Ma, Feng & Li, Yu & Liu, Li & Zhang, Yaojie, 2018. "Are low-frequency data really uninformative? A forecasting combination perspective," The North American Journal of Economics and Finance, Elsevier, vol. 44(C), pages 92-108.
    329. Heather Anderson & Howard Chan & Robert Faff & Yew Kee Ho, 2012. "Reported earnings and analyst forecasts as competing sources of information: A new approach," Australian Journal of Management, Australian School of Business, vol. 37(3), pages 333-359, December.
    330. Niu, Zibo & Wang, Chenlu & Zhang, Hongwei, 2023. "Forecasting stock market volatility with various geopolitical risks categories: New evidence from machine learning models," International Review of Financial Analysis, Elsevier, vol. 89(C).
    331. Lyócsa, Štefan & Molnár, Peter & Výrost, Tomáš, 2021. "Stock market volatility forecasting: Do we need high-frequency data?," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1092-1110.
    332. Lof, Matthijs & Nyberg, Henri, 2017. "Noncausality and the commodity currency hypothesis," Energy Economics, Elsevier, vol. 65(C), pages 424-433.
    333. Konstantin A. Kholodilin & Boriss Siliverstovs, 2017. "Think national, forecast local: a case study of 71 German urban housing markets," Applied Economics, Taylor & Francis Journals, vol. 49(42), pages 4271-4297, September.
    334. Greenaway-McGrevy, Ryan, 2022. "Forecast combination for VARs in large N and T panels," International Journal of Forecasting, Elsevier, vol. 38(1), pages 142-164.
    335. Chen, Guojin & Liu, Yanzhen & Zhang, Yu, 2021. "Systemic risk measures and distribution forecasting of macroeconomic shocks," International Review of Economics & Finance, Elsevier, vol. 75(C), pages 178-196.
    336. Jose Torres-Pruñonosa & Pablo García-Estévez & Josep Maria Raya & Camilo Prado-Román, 2022. "How on Earth Did Spanish Banking Sell the Housing Stock?," SAGE Open, , vol. 12(1), pages 21582440221, March.
    337. Öztunç Kaymak, Öznur & Kaymak, Yiğit, 2022. "Prediction of crude oil prices in COVID-19 outbreak using real data," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    338. Daniel Detzer & Christian R. Proaño & Katja Rietzler & Sven Schreiber & Thomas Theobald & Sabine Stephan, 2012. "Verfahren der konjunkturellen Wendepunktbestimmung unter Berücksichtigung der Echtzeit-Problematik," IMK Studies 27-2012, IMK at the Hans Boeckler Foundation, Macroeconomic Policy Institute.
    339. Proaño, Christian R. & Theobald, Thomas, 2014. "Predicting recessions with a composite real-time dynamic probit model," International Journal of Forecasting, Elsevier, vol. 30(4), pages 898-917.
    340. Silvia Figini & Roberto Savona & Marika Vezzoli, 2016. "Corporate Default Prediction Model Averaging: A Normative Linear Pooling Approach," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 23(1-2), pages 6-20, January.
    341. Panopoulou, Ekaterini & Souropanis, Ioannis, 2019. "The role of technical indicators in exchange rate forecasting," Journal of Empirical Finance, Elsevier, vol. 53(C), pages 197-221.
    342. Kawakami, Kei, 2013. "Conditional forecast selection from many forecasts: An application to the Yen/Dollar exchange rate," Journal of the Japanese and International Economies, Elsevier, vol. 28(C), pages 1-18.
    343. Christian Kascha & Francesco Ravazzolo, 2008. "Combining inflation density forecasts," Working Paper 2008/22, Norges Bank.
    344. Zhang, Hongwei & Zhao, Xinyi & Gao, Wang & Niu, Zibo, 2023. "The role of higher moments in predicting China's oil futures volatility: Evidence from machine learning models," Journal of Commodity Markets, Elsevier, vol. 32(C).
    345. Xiaojie Xu, 2020. "Corn Cash Price Forecasting," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(4), pages 1297-1320, August.
    346. Genre, Véronique & Kenny, Geoff & Meyler, Aidan & Timmermann, Allan, 2013. "Combining expert forecasts: Can anything beat the simple average?," International Journal of Forecasting, Elsevier, vol. 29(1), pages 108-121.
    347. Kajal Lahiri & Liu Yang, 2015. "A Non-linear Forecast Combination Procedure for Binary Outcomes," CESifo Working Paper Series 5175, CESifo.
    348. Fang, Debin & Hao, Peng & Hao, Jian, 2019. "Study of the influence mechanism of China's electricity consumption based on multi-period ST-LMDI model," Energy, Elsevier, vol. 170(C), pages 730-743.
    349. Stavroula P. Fameliti & Vasiliki D. Skintzi, 2020. "Predictive ability and economic gains from volatility forecast combinations," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 200-219, March.
    350. Costa, Alexandre Bonnet R. & Ferreira, Pedro Cavalcanti G. & Gaglianone, Wagner P. & Guillén, Osmani Teixeira C. & Issler, João Victor & Lin, Yihao, 2021. "Machine learning and oil price point and density forecasting," Energy Economics, Elsevier, vol. 102(C).
    351. Amendola, Alessandra & Storti, Giuseppe, 2008. "A GMM procedure for combining volatility forecasts," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3047-3060, February.
    352. Lee, Tae-Hwy & Yang, Yang, 2006. "Bagging binary and quantile predictors for time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 465-497.
    353. Andrawis, Robert R. & Atiya, Amir F. & El-Shishiny, Hisham, 2011. "Combination of long term and short term forecasts, with application to tourism demand forecasting," International Journal of Forecasting, Elsevier, vol. 27(3), pages 870-886, July.
    354. Bordignon, Silvano & Bunn, Derek W. & Lisi, Francesco & Nan, Fany, 2013. "Combining day-ahead forecasts for British electricity prices," Energy Economics, Elsevier, vol. 35(C), pages 88-103.
    355. Li, Gang & Wu, Doris Chenguang & Zhou, Menglin & Liu, Anyu, 2019. "The combination of interval forecasts in tourism," Annals of Tourism Research, Elsevier, vol. 75(C), pages 363-378.
    356. Sancetta, Alessio, 2009. "Nearest neighbor conditional estimation for Harris recurrent Markov chains," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2224-2236, November.
    357. Jesús Molina‐Muñoz & Andrés Mora‐Valencia & Javier Perote, 2024. "Predicting carbon and oil price returns using hybrid models based on machine and deep learning," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(2), June.
    358. Dominik Wolff & Ulrich Neugebauer, 2019. "Tree-based machine learning approaches for equity market predictions," Journal of Asset Management, Palgrave Macmillan, vol. 20(4), pages 273-288, July.
    359. Mamdouh Abdelmoula M. ABDELSALAM, 2017. "Improving Phillips Curve’s Inflation Forecasts under Misspecification," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(3), pages 54-76, September.
    360. Allan Timmermann, 2018. "Forecasting Methods in Finance," Annual Review of Financial Economics, Annual Reviews, vol. 10(1), pages 449-479, November.
    361. Catherine L. Kling & Raymond W. Arritt & Gray Calhoun & David A. Keiser, 2017. "Integrated Assessment Models of the Food, Energy, and Water Nexus: A Review and an Outline of Research Needs," Annual Review of Resource Economics, Annual Reviews, vol. 9(1), pages 143-163, October.
    362. Shahid IQBAL & Maqbool H. SIAL, 2016. "Projections of Inflation Dynamics for Pakistan: GMDH Approach," Journal of Economics and Political Economy, KSP Journals, vol. 3(3), pages 536-559, September.
    363. Møller, Jan Kloppenborg & Nystrup, Peter & Madsen, Henrik, 2024. "Likelihood-based inference in temporal hierarchies," International Journal of Forecasting, Elsevier, vol. 40(2), pages 515-531.
    364. Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
    365. Jon D. Samuels & Rodrigo Sekkel, 2013. "Forecasting with Many Models: Model Confidence Sets and Forecast Combination," Staff Working Papers 13-11, Bank of Canada.
    366. Dichtl, Hubert & Drobetz, Wolfgang & Neuhierl, Andreas & Wendt, Viktoria-Sophie, 2021. "Data snooping in equity premium prediction," International Journal of Forecasting, Elsevier, vol. 37(1), pages 72-94.
    367. Godahewa, Rakshitha & Bergmeir, Christoph & Webb, Geoffrey I. & Montero-Manso, Pablo, 2023. "An accurate and fully-automated ensemble model for weekly time series forecasting," International Journal of Forecasting, Elsevier, vol. 39(2), pages 641-658.
    368. Altavilla, Carlo & Ciccarelli, Matteo, 2010. "Evaluating the effect of monetary policy on unemployment with alternative inflation forecasts," Economic Modelling, Elsevier, vol. 27(1), pages 237-253, January.
    369. Hubert Dichtl & Wolfgang Drobetz & Viktoria‐Sophie Wendt, 2021. "How to build a factor portfolio: Does the allocation strategy matter?," European Financial Management, European Financial Management Association, vol. 27(1), pages 20-58, January.
    370. Yu, Dan & Chen, Chuang & Wang, Yudong & Zhang, Yaojie, 2023. "Hedging pressure momentum and the predictability of oil futures returns," Economic Modelling, Elsevier, vol. 121(C).
    371. Abdollahi, Hooman, 2020. "A novel hybrid model for forecasting crude oil price based on time series decomposition," Applied Energy, Elsevier, vol. 267(C).
    372. Todd E. Clark & Taisuke Nakata, 2006. "The trend growth rate of employment : past, present, and future," Economic Review, Federal Reserve Bank of Kansas City, vol. 91(Q I), pages 43-85.
    373. Emil Stavrev, 2010. "Measures of underlying inflation in the euro area: assessment and role for informing monetary policy," Empirical Economics, Springer, vol. 38(1), pages 217-239, February.
    374. Bonnier, Jean-Baptiste, 2022. "Forecasting crude oil volatility with exogenous predictors: As good as it GETS?," Energy Economics, Elsevier, vol. 111(C).
    375. Schumacher, Christian, 2016. "A comparison of MIDAS and bridge equations," International Journal of Forecasting, Elsevier, vol. 32(2), pages 257-270.
    376. Hansen, Bruce E., 2008. "Least-squares forecast averaging," Journal of Econometrics, Elsevier, vol. 146(2), pages 342-350, October.
    377. Barrow, Devon K. & Crone, Sven F., 2016. "Cross-validation aggregation for combining autoregressive neural network forecasts," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1120-1137.
    378. Rossi, Barbara & Gürkaynak, Refet & Kısacıkoğlu, Burçin, 2013. "Do DSGE Models Forecast More Accurately Out-of-Sample than VAR Models?," CEPR Discussion Papers 9576, C.E.P.R. Discussion Papers.
    379. Adam Elbourne & Henk Kranendonk & Rob Luginbuhl & Bert Smid & Martin Vromans, 2008. "Evaluating CPB's published GDP growth forecasts; a comparison with individual and pooled VAR based forecasts," CPB Document 172, CPB Netherlands Bureau for Economic Policy Analysis.
    380. Aparicio, Diego & Bertolotto, Manuel I., 2020. "Forecasting inflation with online prices," International Journal of Forecasting, Elsevier, vol. 36(2), pages 232-247.
    381. Wichard, Jörg D., 2011. "Forecasting the NN5 time series with hybrid models," International Journal of Forecasting, Elsevier, vol. 27(3), pages 700-707, July.
    382. Daouia, Abdelaati & Girard, Stéphane & Stupfler, Gilles, 2021. "ExpectHill estimation, extreme risk and heavy tails," Journal of Econometrics, Elsevier, vol. 221(1), pages 97-117.
    383. Ma, Yao & Yang, Baochen & Su, Yunpeng, 2020. "Technical trading index, return predictability and idiosyncratic volatility," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 879-900.
    384. Jamali, Ibrahim & Yamani, Ehab, 2019. "Out-of-sample exchange rate predictability in emerging markets: Fundamentals versus technical analysis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 61(C), pages 241-263.
    385. Kuzin, Vladimir N. & Marcellino, Massimiliano & Schumacher, Christian, 2009. "MIDAS versus mixed-frequency VAR: nowcasting GDP in the euro area," Discussion Paper Series 1: Economic Studies 2009,07, Deutsche Bundesbank.
    386. Dean Croushore, 2012. "Forecast bias in two dimensions," Working Papers 12-9, Federal Reserve Bank of Philadelphia.
    387. Liu, Xiuli & Moreno, Blanca & García, Ana Salomé, 2016. "A grey neural network and input-output combined forecasting model. Primary energy consumption forecasts in Spanish economic sectors," Energy, Elsevier, vol. 115(P1), pages 1042-1054.
    388. Ding, Lili & Zhao, Zhongchao & Han, Meng, 2021. "Probability density forecasts for steam coal prices in China: The role of high-frequency factors," Energy, Elsevier, vol. 220(C).
    389. Borup, Daniel & Rapach, David E. & Schütte, Erik Christian Montes, 2023. "Mixed-frequency machine learning: Nowcasting and backcasting weekly initial claims with daily internet search volume data," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1122-1144.
    390. Li Liu & Yudong Wang, 2021. "Forecasting aggregate market volatility: The role of good and bad uncertainties," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(1), pages 40-61, January.
    391. Sancetta, Alessio, 2007. "Online forecast combinations of distributions: Worst case bounds," Journal of Econometrics, Elsevier, vol. 141(2), pages 621-651, December.
    392. Fei, Tianlun & Liu, Xiaoquan & Wen, Conghua, 2019. "Cross-sectional return dispersion and volatility prediction," Pacific-Basin Finance Journal, Elsevier, vol. 58(C).
    393. Federico Bassetti & Roberto Casarin & Francesco Ravazzolo, 2019. "Density Forecasting," BEMPS - Bozen Economics & Management Paper Series BEMPS59, Faculty of Economics and Management at the Free University of Bozen.
    394. Huurman, Christian & Ravazzolo, Francesco & Zhou, Chen, 2012. "The power of weather," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3793-3807.

  8. Blake, David & Tonks, Ian & Timmermann, Allan & Wermers, Russ, 2010. "Decentralized Investment Management: Evidence from the Pension Fund Industry," CEPR Discussion Papers 7679, C.E.P.R. Discussion Papers.

    Cited by:

    1. Campbell R. Harvey & Yan Liu, 2022. "Luck versus Skill in the Cross Section of Mutual Fund Returns: Reexamining the Evidence," Journal of Finance, American Finance Association, vol. 77(3), pages 1921-1966, June.
    2. Sebastian Bunnenberg & Martin Rohleder & Hendrik Scholz & Marco Wilkens, 2019. "Jensen's alpha and the market‐timing puzzle," Review of Financial Economics, John Wiley & Sons, vol. 37(2), pages 234-255, April.
    3. Michael A.S. Joyce & Zhuoshi Liu & Ian Tonks, 2017. "Institutional Investors and the QE Portfolio Balance Channel," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 49(6), pages 1225-1246, September.
    4. Platanakis, Emmanouil & Sutcliffe, Charles & Ye, Xiaoxia, 2021. "Horses for courses: Mean-variance for asset allocation and 1/N for stock selection," European Journal of Operational Research, Elsevier, vol. 288(1), pages 302-317.
    5. Cai, Biqing & Cheng, Tingting & Yan, Cheng, 2018. "Time-varying skills (versus luck) in U.S. active mutual funds and hedge funds," Journal of Empirical Finance, Elsevier, vol. 49(C), pages 81-106.
    6. Rossi, Alberto G. & Blake, David & Timmermann, Allan & Tonks, Ian & Wermers, Russ, 2018. "Network centrality and delegated investment performance," Journal of Financial Economics, Elsevier, vol. 128(1), pages 183-206.
    7. Joyce, Michael & Liu, Zhuoshi & Tonks, Ian, 2014. "Institutional investor portfolio allocation, quantitative easing and the global financial crisis," Bank of England working papers 510, Bank of England.
    8. Blake, David & Caulfield, Tristan & Ioannidis, Christos & Tonks, Ian, 2014. "Improved inference in the evaluation of mutual fund performance using panel bootstrap methods," Journal of Econometrics, Elsevier, vol. 183(2), pages 202-210.
    9. Andonov, Aleksandar & Eichholtz, Piet & Kok, Nils, 2015. "Intermediated investment management in private markets: Evidence from pension fund investments in real estate," Journal of Financial Markets, Elsevier, vol. 22(C), pages 73-103.
    10. Campbell R. Harvey & Yan Liu, 2020. "False (and Missed) Discoveries in Financial Economics," Journal of Finance, American Finance Association, vol. 75(5), pages 2503-2553, October.
    11. Anthropelos, Michail & Kardaras, Constantinos, 2024. "Price impact under heterogeneous beliefs and restricted participation," Journal of Economic Theory, Elsevier, vol. 215(C).
    12. Cheng, Tingting & Yan, Cheng & Yan, Yayi, 2021. "Improved inference for fund alphas using high-dimensional cross-sectional tests," Journal of Empirical Finance, Elsevier, vol. 61(C), pages 57-81.
    13. Manuel Ammann & Christian Ehmann, 2017. "Is Governance Related to Investment Performance and Asset Allocation? Empirical Evidence from Swiss Pension Funds," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 153(3), pages 293-339, July.
    14. Rossi, Alberto G. & Blake, David & Timmermann, Allan & Tonks, Ian & Wermers, Russ, 2015. "Network centrality and pension fund performance," CFR Working Papers 15-16, University of Cologne, Centre for Financial Research (CFR).
    15. Lejeune, Miguel A. & Shen, Siqian, 2016. "Multi-objective probabilistically constrained programs with variable risk: Models for multi-portfolio financial optimization," European Journal of Operational Research, Elsevier, vol. 252(2), pages 522-539.
    16. Ran Ji & Miguel A. Lejeune, 2018. "Risk-budgeting multi-portfolio optimization with portfolio and marginal risk constraints," Annals of Operations Research, Springer, vol. 262(2), pages 547-578, March.
    17. D’Arcangelis, Anna Maria & Levantesi, Susanna & Rotundo, Giulia, 2021. "A complex networks approach to pension funds," Journal of Business Research, Elsevier, vol. 129(C), pages 687-702.
    18. Doyle, Joanne & Eades, Kenneth & Marshall, Brooks, 2021. "Estimating the effect of active management and private equity for defined benefit pension funds," The Quarterly Review of Economics and Finance, Elsevier, vol. 79(C), pages 161-169.
    19. Zambrana, Rafael & Zapatero, Fernando, 2021. "A tale of two types: Generalists vs. specialists in asset management," Journal of Financial Economics, Elsevier, vol. 142(2), pages 844-861.
    20. Broeders, Dirk W.G.A. & van Oord, Arco & Rijsbergen, David R., 2016. "Scale economies in pension fund investments: A dissection of investment costs across asset classes," Journal of International Money and Finance, Elsevier, vol. 67(C), pages 147-171.
    21. Blake, David & Sarno, Lucio & Zinna, Gabriele, 2017. "The market for lemmings: The herding behavior of pension funds," Journal of Financial Markets, Elsevier, vol. 36(C), pages 17-39.
    22. Minho Lee & Roy H. Kwon & Chi-Guhn Lee & Hassan Anis, 2018. "Decentralized strategic asset allocation with global constraints," Journal of Asset Management, Palgrave Macmillan, vol. 19(1), pages 13-26, January.
    23. Matteo Bonetti, 2021. "Pension Fund Equity Performance: Herding Does Not Pay Off," Working Papers 729, DNB.
    24. Donnelly, Catherine & Guillén, Montserrat & Nielsen, Jens Perch, 2014. "Bringing cost transparency to the life annuity market," Insurance: Mathematics and Economics, Elsevier, vol. 56(C), pages 14-27.
    25. Xu, Ruihui & Zhang, Xuliang & Gozgor, Giray & Lau, Chi Keung Marco & Yan, Cheng, 2023. "Investor flow-chasing and price–performance puzzle: Evidence from global infrastructure funds," Research in International Business and Finance, Elsevier, vol. 65(C).
    26. Timmermann, Allan & Lunde, Asger & Groenborg, Niels & Wermers, Russ, 2017. "Picking Funds with Confidence," CEPR Discussion Papers 11896, C.E.P.R. Discussion Papers.
    27. Qu, Ritong & Timmermann, Allan & Zhu, Yinchu, 2023. "Comparing forecasting performance in cross-sections," Journal of Econometrics, Elsevier, vol. 237(2).
    28. Boubaker, Sabri & Gounopoulos, Dimitrios & Nguyen, Duc Khuong & Paltalidis, Nikos, 2017. "Assessing the effects of unconventional monetary policy and low interest rates on pension fund risk incentives," Journal of Banking & Finance, Elsevier, vol. 77(C), pages 35-52.
    29. Aleksandar Andonov, 2024. "Delegated Investment Management in Alternative Assets," The Review of Corporate Finance Studies, Society for Financial Studies, vol. 13(1), pages 264-301.
    30. Yue Xu, 2021. "Spillovers of Senior Mutual Fund Managers’ Capital Raising Ability," CREATES Research Papers 2022-03, Department of Economics and Business Economics, Aarhus University.
    31. Gordon Cookson & Tim Jenkinson & Howard Jones & Jose Vicente Martinez, 2022. "Virtual Reality? Investment Consultants’ Claims About Their Own Performance," Management Science, INFORMS, vol. 68(11), pages 8301-8318, November.
    32. Cheng, Tingting & Yan, Cheng, 2017. "Evaluating the size of the bootstrap method for fund performance evaluation," Economics Letters, Elsevier, vol. 156(C), pages 36-41.
    33. Campbell R. Harvey & Yan Liu, 2020. "False (and Missed) Discoveries in Financial Economics," Papers 2006.04269, arXiv.org.
    34. Andreas G. F. Hoepner & Lisa Schopohl, 2018. "On the Price of Morals in Markets: An Empirical Study of the Swedish AP-Funds and the Norwegian Government Pension Fund," Journal of Business Ethics, Springer, vol. 151(3), pages 665-692, September.
    35. Sabri Boubaker & Dimitrios Gounopoulos & Duc Khuong Nguyen & Nikos Paltalidis, 2016. "Assessing the Effects of Unconventional Monetary Policy on Pension Funds Risk Incentives," Working Papers 2016-005, Department of Research, Ipag Business School.
    36. Jansen, Kristy, 2021. "Essays on institutional investors, portfolio choice, and asset prices," Other publications TiSEM fd998408-d282-4e0f-b542-4, Tilburg University, School of Economics and Management.
    37. Broeders, Dirk W.G.A. & van Oord, Arco & Rijsbergen, David R., 2019. "Does it pay to pay performance fees? Empirical evidence from Dutch pension funds," Journal of International Money and Finance, Elsevier, vol. 93(C), pages 299-312.
    38. Ishita Sen, 2023. "Regulatory Limits to Risk Management," The Review of Financial Studies, Society for Financial Studies, vol. 36(6), pages 2175-2223.
    39. Huazhu Zhang & Cheng Yan, 2018. "A skeptical appraisal of the bootstrap approach in fund performance evaluation," Financial Markets, Institutions & Instruments, John Wiley & Sons, vol. 27(2), pages 49-86, May.
    40. Gabriele Zinna, 2014. "Price pressures in the UK index-linked market: an empirical investigation," Temi di discussione (Economic working papers) 968, Bank of Italy, Economic Research and International Relations Area.

  9. Timmermann, Allan & Aiolfi, Marco & Rodriguez, Marius, 2010. "Understanding Analysts' Earnings Expectations: Biases, Nonlinearities and Predictability," CEPR Discussion Papers 7656, C.E.P.R. Discussion Papers.

    Cited by:

    1. Baghestani, Hamid & Khallaf, Ashraf, 2012. "Predictions of growth in U.S. corporate profits: Asymmetric vs. symmetric loss," International Review of Economics & Finance, Elsevier, vol. 22(1), pages 222-229.

  10. Pesaran, M.H. & Pick, A. & Timmermann, A., 2009. "Variable Selection and Inference for Multi-period Forecasting Problems," Cambridge Working Papers in Economics 0901, Faculty of Economics, University of Cambridge.

    Cited by:

    1. Lobanov, Mikhail (Лобанов, Михаил) & Zvezdvanovic-Lobanova, Jelena (Звезданович-Лобанова, Елена), 2017. "Specifics of Agricultural Policy in the Countries of Central-Eastern and South-Eastern Europe in 1990–2010s [Особенности Аграрной Политики В Странах Центрально- И Юго-Восточной Европы В 1990-2010-Х," Ekonomicheskaya Politika / Economic Policy, Russian Presidential Academy of National Economy and Public Administration, vol. 3, pages 150-173, June.

  11. Carlos Capistrán & Allan Timmermann, 2008. "Disagreement and Biases in Inflation Expectations," CREATES Research Papers 2008-56, Department of Economics and Business Economics, Aarhus University.

    Cited by:

    1. Bernd Hayo & Florian Neumeier, 2018. "Households’ Inflation Perceptions and Expectations: Survey Evidence from New Zealand," ifo Working Paper Series 255, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    2. Ivana Komunjer & Michael T. Owyang, 2012. "Multivariate Forecast Evaluation and Rationality Testing," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1066-1080, November.
    3. Capistrán, Carlos & López-Moctezuma, Gabriel, 2014. "Forecast revisions of Mexican inflation and GDP growth," International Journal of Forecasting, Elsevier, vol. 30(2), pages 177-191.
    4. Philip Hans Franses, 2021. "Modeling Judgment in Macroeconomic Forecasts," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 401-417, December.
    5. Chia-Lin Chang & Bert de Bruijn & Philip Hans Franses & Michael McAleer, 2013. "Analyzing Fixed-event Forecast Revisions," Documentos de Trabajo del ICAE 2013-14, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico, revised Apr 2013.
    6. Carlos Capistrán-Carmona, 2005. "Bias in Federal Reserve Inflation Forecasts: Is the Federal Reserve Irrational or Just Cautious?," Computing in Economics and Finance 2005 127, Society for Computational Economics.
    7. Aretz, Kevin & Bartram, Söhnke M. & Pope, Peter F., 2011. "Asymmetric Loss Functions and the Rationality of Expected Stock Returns," MPRA Paper 47343, University Library of Munich, Germany.
    8. Jonathan Benchimol & Makram El-Shagi & Yossi Saadon, 2020. "Do Expert Experience and Characteristics Affect Inflation Forecasts?," Bank of Israel Working Papers 2020.11, Bank of Israel.
    9. Ahrens, Steffen & Lustenhouwer, Joep & Tettamanzi, Michele, 2017. "The Stabilizing Role of Forward Guidance: A Macro Experiment," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168063, Verein für Socialpolitik / German Economic Association.
    10. Boonlert Jitmaneeroj & Michael Lamla, 2018. "The Implications of Central Bank Transparency for Uncertainty and Disagreement," KOF Working papers 18-445, KOF Swiss Economic Institute, ETH Zurich.
    11. Mankiw, N. Gregory & Reis, Ricardo, 2002. "Sticky Information Versus Sticky Prices: A Proposal to Replace the New Keynesian Phillips Curve," Scholarly Articles 3415324, Harvard University Department of Economics.
    12. Carlos Capistrán & Manuel Ramos‐Francia, 2010. "Does Inflation Targeting Affect the Dispersion of Inflation Expectations?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 42(1), pages 113-134, February.
    13. Drakos, Konstantinos & Konstantinou, Panagiotis Th. & Thoma, Foteini-Anna, 2020. "Inflation uncertainty and inflation expectations: Micro-level evidence from the eurozone," The Journal of Economic Asymmetries, Elsevier, vol. 21(C).
    14. Pedersen, Michael, 2015. "What affects the predictions of private forecasters? The role of central bank forecasts in Chile," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1043-1055.
    15. Olivier Coibion & Yuriy Gorodnichenko & Rupal Kamdar, 2017. "The Formation of Expectations, Inflation and the Phillips Curve," NBER Working Papers 23304, National Bureau of Economic Research, Inc.
    16. Ehrmann, Michael, 2021. "Point targets, tolerance bands or target ranges? Inflation target types and the anchoring of inflation expectations," Journal of International Economics, Elsevier, vol. 132(C).
    17. Jaroslav Borovicka, 2016. "Identifying ambiguity shocks in business cycle models using survey data," 2016 Meeting Papers 1615, Society for Economic Dynamics.
    18. Conrad, Christian & Lahiri, Kajal, 2023. "Heterogeneous expectations among professional forecasters," ZEW Discussion Papers 23-062, ZEW - Leibniz Centre for European Economic Research.
    19. James M. Nason & Gregor W. Smith, 2013. "Measuring The Slowly Evolving Trend In Us Inflation With Professional Forecasts," Working Paper 1316, Economics Department, Queen's University.
    20. Magdalena Grothe & Aidan Meyler, 2018. "Inflation Forecasts: Are Market-Based and Survey-Based Measures Informative?," International Journal of Financial Research, International Journal of Financial Research, Sciedu Press, vol. 9(1), pages 171-188, January.
    21. Valentina Corradi & Norman Swanson, 2013. "A Survey of Recent Advances in Forecast Accuracy Comparison Testing, with an Extension to Stochastic Dominance," Departmental Working Papers 201309, Rutgers University, Department of Economics.
    22. Gross, Marco, 2009. "Nonparametric Hybrid Phillips Curves Based on Subjective Expectations: Estimates for the Euro Area," Working Paper Series 1119, European Central Bank.
    23. Klaus Adam & Dmitry Matveev & Stefan Nagel, 2018. "Do Survey Expectations of Stock Returns Reflect Risk-Adjustments?," NBER Working Papers 25122, National Bureau of Economic Research, Inc.
    24. Michael Clements, 2017. "Do forecasters target first or later releases of national accounts data?," ICMA Centre Discussion Papers in Finance icma-dp2017-03, Henley Business School, University of Reading.
    25. Paul Hubert, 2014. "FOMC Forecasts as a Focal Point for Private Expectations," Post-Print hal-03399408, HAL.
    26. Michael P. Clements, 2018. "Do Macroforecasters Herd?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(2-3), pages 265-292, March.
    27. Oleksiy Kryvtsov & Luba Petersen, 2019. "Central Bank Communication That Works: Lessons from Lab Experiments," Staff Working Papers 19-21, Bank of Canada.
    28. Goldfayn-Frank, Olga & Wohlfart, Johannes, 2020. "Expectation formation in a new environment: Evidence from the German reunification," Journal of Monetary Economics, Elsevier, vol. 115(C), pages 301-320.
    29. Hubert, Paul & Maule, Becky, 2016. "Policy and macro signals as inputs to inflation expectation formation," Bank of England working papers 581, Bank of England.
    30. Pierre L. Siklos, 2018. "What has publishing inflation forecasts accomplished? Central banks and their competitors," CAMA Working Papers 2018-07, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    31. Michael P. Clements, 2022. "Forecaster Efficiency, Accuracy, and Disagreement: Evidence Using Individual‐Level Survey Data," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 54(2-3), pages 537-568, March.
    32. Robert G Murphy & Adam Rohde, 2018. "Rational Bias in Inflation Expectations," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 44(1), pages 153-171, January.
    33. Yoshiyuki Nakazono, 2016. "Inflation expectations and monetary policy under disagreements," Bank of Japan Working Paper Series 16-E-1, Bank of Japan.
    34. Golden, Brian & Monks, Allen, 2009. "Measuring Inflation Expectations in the Euro Area," Quarterly Bulletin Articles, Central Bank of Ireland, pages 67-84, January.
    35. Andrey Duván Rincón-Torres & Andrés Felipe Salas-Avila & Juan Manuel Julio-Román, 2023. "Inflation Expectations: Rationality, Disagreement and the Role of the Loss Function in Colombia," Borradores de Economia 1262, Banco de la Republica de Colombia.
    36. Lahiri, Kajal & Sheng, Xuguang, 2010. "Learning and heterogeneity in GDP and inflation forecasts," International Journal of Forecasting, Elsevier, vol. 26(2), pages 265-292, April.
    37. Carrera, César, 2012. "Estimating Information Rigidity using Firms’ Survey Data," Working Papers 2012-004, Banco Central de Reserva del Perú.
    38. Andrea Fracasso & Rocco Probo, 2017. "When did inflation expectations in the Euro area de-anchor?," Applied Economics Letters, Taylor & Francis Journals, vol. 24(20), pages 1481-1485, November.
    39. Hubert Paul, 2017. "Qualitative and quantitative central bank communication and inflation expectations," The B.E. Journal of Macroeconomics, De Gruyter, vol. 17(1), pages 1-41, January.
    40. Juan Camilo Galvis-Ciro & Juan Camilo Anzoátegui-Zapata & Cristina Isabel Ramos-Barroso, 2022. "The Effect of Communication and Credibility on Fiscal Disagreement: Empirical Evidence from Colombia," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 18(3), pages 215-238, November.
    41. Kim, Insu & Kim, Young Se, 2019. "Inattentive agents and inflation forecast error dynamics: A Bayesian DSGE approach," Journal of Macroeconomics, Elsevier, vol. 62(C).
    42. Chini, Emilio Zanetti, 2023. "Can we estimate macroforecasters’ mis-behavior?," Journal of Economic Dynamics and Control, Elsevier, vol. 149(C).
    43. Volha Audzei, 2022. "Confidence Cycles and Liquidity Hoarding," International Journal of Central Banking, International Journal of Central Banking, vol. 18(3), pages 281-320, September.
    44. Franses, Ph.H.B.F. & Welz, M., 2020. "Does More Expert Adjustment Associate with Less Accurate Professional Forecasts?," Econometric Institute Research Papers EI-1687, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    45. Reitz, Stefan & Stadtmann, Georg & Taylor, Mark P., 2010. "The effects of Japanese interventions on FX-forecast heterogeneity," Economics Letters, Elsevier, vol. 108(1), pages 62-64, July.
    46. Ehrmann, Michael & Eijffinger, Sylvester & Fratzscher, Marcel, 2010. "The role of central bank transparency for guiding private sector forecasts," Working Paper Series 1146, European Central Bank.
    47. Lena Dräger & Michael J. Lamla, 2024. "Consumers' macroeconomic expectations," Journal of Economic Surveys, Wiley Blackwell, vol. 38(2), pages 427-451, April.
    48. Michael Ehrmann, 2015. "Targeting Inflation from Below: How Do Inflation Expectations Behave?," International Journal of Central Banking, International Journal of Central Banking, vol. 11(4), pages 213-249, September.
    49. Wändi Bruine de Bruin & Michael F. Bryan & Simon M. Potter & Giorgio Topa & Wilbert Van der Klaauw, 2008. "Rethinking the measurement of household inflation expectations: preliminary findings," Staff Reports 359, Federal Reserve Bank of New York.
    50. Tomasz Łyziak & Xuguang Sheng, 2018. "Disagreement in consumer inflation expectations," NBP Working Papers 278, Narodowy Bank Polski.
    51. William A. Branch, 2014. "Nowcasting and the Taylor Rule," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 46(5), pages 1035-1055, August.
    52. Hommes, Cars, 2011. "The heterogeneous expectations hypothesis: Some evidence from the lab," Journal of Economic Dynamics and Control, Elsevier, vol. 35(1), pages 1-24, January.
    53. Sun, Yuying & Wang, Shouyang & Zhang, Xun, 2018. "How efficient are China's macroeconomic forecasts? Evidences from a new forecasting evaluation approach," Economic Modelling, Elsevier, vol. 68(C), pages 506-513.
    54. Wilbert van der Klaauw & Wandi Bruine de Bruin & Giorgio Topa & Basit Zafar & Olivier Armantier, 2012. "Inflation Expectations and Behavior: Do Survey Respondents Act on their Beliefs?," 2012 Meeting Papers 121, Society for Economic Dynamics.
    55. Junichi Kikuchi & Yoshiyuki Nakazono, 2023. "The Formation of Inflation Expectations: Microdata Evidence from Japan," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 55(6), pages 1609-1632, September.
    56. Menz, Jan-Oliver & Poppitz, Philipp, 2013. "Household`s Disagreement on Inflation Expectations and Socioeconomic Media Exposure in Germany," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 80006, Verein für Socialpolitik / German Economic Association.
    57. Sebastiano Manzan, 2011. "Differential Interpretation in the Survey of Professional Forecasters," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 43(5), pages 993-1017, August.
    58. Ehrmann, Michael & Hubert, Paul, 2023. "Information acquisition ahead of monetary policy announcements," Working Paper Series 2770, European Central Bank.
    59. Wang, Yiyao & Lee, Tae-Hwy, 2014. "Asymmetric loss in the Greenbook and the Survey of Professional Forecasters," International Journal of Forecasting, Elsevier, vol. 30(2), pages 235-245.
    60. James M. Nason & Gregor W. Smith, 2013. "Reverse Kalman filtering U.S. inflation with sticky professional forecasts," Working Papers 13-34, Federal Reserve Bank of Philadelphia.
    61. Taro Ikeda, 2013. "Asymmetric forecasting and commitment policy in a robust control problem," Discussion Papers 1306, Graduate School of Economics, Kobe University.
    62. Luis Gil-Alana & Antonio Moreno & Fernando Pérez de Gracia, 2011. "Exploring Survey-Based Inflation Forecasts," Faculty Working Papers 05/11, School of Economics and Business Administration, University of Navarra.
    63. David A. Comerford, 2024. "Response Bias in Survey Measures of Expectations: Evidence from the Survey of Consumer Expectations’ Inflation Module," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 56(4), pages 933-953, June.
    64. Monique Reid & Pierre Siklos, 2024. "Firm level expectations and macroeconomic conditions underpinnings and disagreement," Working Papers 11058, South African Reserve Bank.
    65. Michael J. Lamla & Thomas Maag, 2012. "The Role of Media for Inflation Forecast Disagreement of Households and Professional Forecasters," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(7), pages 1325-1350, October.
    66. Croushore Dean, 2010. "An Evaluation of Inflation Forecasts from Surveys Using Real-Time Data," The B.E. Journal of Macroeconomics, De Gruyter, vol. 10(1), pages 1-32, May.
    67. Maxime Phillot & Dr. Rina Rosenblatt-Wisch, 2018. "Inflation Expectations: The Effect of Question Ordering on Forecast Inconsistencies," Working Papers 2018-11, Swiss National Bank.
    68. Cooper, Michael & Gulen, Huseyin & Ion, Mihai, 2024. "The use of asset growth in empirical asset pricing models," Journal of Financial Economics, Elsevier, vol. 151(C).
    69. Montes, Gabriel Caldas & Nicolay, Rodolfo Tomás da Fonseca & Acar, Tatiana, 2019. "Do fiscal communication and clarity of fiscal announcements affect public debt uncertainty? Evidence from Brazil," Journal of Economics and Business, Elsevier, vol. 103(C), pages 38-60.
    70. Michael P. Clements, 2020. "Do Survey Joiners and Leavers Differ from Regular Participants? The US SPF GDP Growth and Inflation Forecasts," ICMA Centre Discussion Papers in Finance icma-dp2020-01, Henley Business School, University of Reading.
    71. Dovern, Jonas & Weisser, Johannes, 2008. "Are they really rational? Assessing professional macro-economic forecasts from the G7-countries," Kiel Working Papers 1447, Kiel Institute for the World Economy (IfW Kiel).
    72. Gilberto Tadeu Lima & Mark Setterfield, Jaylson Jair da Silveira, 2013. "Inflation Targeting and Macroeconomic Stability with Heterogeneous Inflation Expectations," Working Papers, Department of Economics 2013_11, University of São Paulo (FEA-USP), revised 25 Nov 2016.
    73. Rianne Legerstee & Philip Hans Franses, 2010. "Does Disagreement amongst Forecasters have Predictive Value?," Tinbergen Institute Discussion Papers 10-088/4, Tinbergen Institute.
    74. Clements, Michael P. & Reade, J. James, 2020. "Forecasting and forecast narratives: The Bank of England Inflation Reports," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1488-1500.
    75. Henning Fischer & Marta García-Bárzana & Peter Tillmann & Peter Winker, 2014. "Evaluating FOMC forecast ranges: an interval data approach," Empirical Economics, Springer, vol. 47(1), pages 365-388, August.
    76. Pierre L. Siklos, 2016. "Forecast Disagreement and the Inflation Outlook: New International Evidence," IMES Discussion Paper Series 16-E-03, Institute for Monetary and Economic Studies, Bank of Japan.
    77. Byeongdeuk Jang & Young Se Kim, 2017. "Driving Forces of Inflation Expectations," Korean Economic Review, Korean Economic Association, vol. 33, pages 207-237.
    78. Conrad, Christian, 2017. "When does information on forecast variance improve the performance of a combined forecast?," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168200, Verein für Socialpolitik / German Economic Association.
    79. Fabiana Gomez & David Pacini, 2015. "Counting Biased Forecasters: An Application of Multiple Testing Techniques," Bristol Economics Discussion Papers 15/661, School of Economics, University of Bristol, UK.
    80. Carola Binder & Wesley Janson & Randal Verbrugge, 2023. "Out of Bounds: Do SPF Respondents Have Anchored Inflation Expectations?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 55(2-3), pages 559-576, March.
    81. Nathan Goldstein & Ben‐Zion Zilberfarb, 2023. "The closer we get, the better we are?," Economic Inquiry, Western Economic Association International, vol. 61(2), pages 364-376, April.
    82. Volker Wieland, 2012. "Model comparison and robustness: a proposal for policy analysis after the financial crisis," Chapters, in: Robert M. Solow & Jean-Philippe Touffut (ed.), What’s Right with Macroeconomics?, chapter 2, pages 33-67, Edward Elgar Publishing.
    83. Boris Radovanov & Aleksandra Marcikic, 2011. "Uncertainty And Disagreement In Inflation Forecasting," Economic Thought and Practice, Department of Economics and Business, University of Dubrovnik, vol. 20(1), pages 3-18, june.
    84. Taro Ikeda, 2017. "Asymmetric Preferences and the Stability Problem for Optimal Monetary Policy Rules," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 49(8), pages 1831-1838, December.
    85. Michael B. Devereux & Gregor W. Smith & James Yetman, 2009. "Consumption and Real Exchange Rates in Professional Forecasts," NBER Working Papers 14795, National Bureau of Economic Research, Inc.
    86. Gaurav Kumar Singh & Tathagata Bandyopadhyay, 2024. "Determinants of disagreement: Learning from inflation expectations survey of households," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 326-343, March.
    87. Bodo Herzog, 2015. "Anchoring of expectations: The role of credible targets in a game experiment," Journal of Economic and Financial Studies (JEFS), LAR Center Press, vol. 3(6), pages 1-15, December.
    88. Young Se Kim & Byeongdeuk Jang, 2015. "Dispersion of Inflation Expectations: Stylized Facts, Puzzles, and Macroeconomic Implications," Korean Economic Review, Korean Economic Association, vol. 31, pages 89-119.
    89. Patrick Hirsch & Lars P. Feld & Ekkehard A. Köhler, 2023. "Breaking Monetary Policy News: The Role of Mass Media Coverage of ECB Announcements for Public Inflation Expectations," CESifo Working Paper Series 10285, CESifo.
    90. Philip Hans Franses & Max Welz, 2022. "Evaluating heterogeneous forecasts for vintages of macroeconomic variables," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(4), pages 829-839, July.
    91. Fernandes, Cecilia Melo, 2021. "ECB communication as a stabilization and coordination device: evidence from ex-ante inflation uncertainty," Working Paper Series 2582, European Central Bank.
    92. Conrad, Christian & Hartmann, Matthias, 2014. "Cross-sectional evidence on the relation between monetary policy, macroeconomic conditions and low-frequency inflation uncertainty," Working Papers 0574, University of Heidelberg, Department of Economics.
    93. Hartwell, Christopher A & Szybisz, Martin Andres, 2021. "Corralling Expectations: The Role of Institutions in (Hyper)Inflation," MPRA Paper 105612, University Library of Munich, Germany.
    94. Li, You & Tay, Anthony, 2021. "The role of macroeconomic and policy uncertainty in density forecast dispersion," Journal of Macroeconomics, Elsevier, vol. 67(C).
    95. Pierre L. Siklos, 2012. "Sources of Disagreement in Inflation Forecasts: An International Empirical Investigation," CAMA Working Papers 2012-42, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    96. Paul Hubert, 2014. "Disentangling qualitative and quantitative central bank influence," SciencePo Working papers Main hal-01098464, HAL.
    97. Bovi, Maurizio, 2013. "Are the representative agent’s beliefs based on efficient econometric models?," Journal of Economic Dynamics and Control, Elsevier, vol. 37(3), pages 633-648.
    98. Constantin Burgi, 2016. "What Do We Lose When We Average Expectations?," Working Papers 2016-013, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    99. Imane El Ouadghiri & Remzi Uctum, 2020. "Macroeconomic expectations and time varying heterogeneity: Evidence from individual survey data," Post-Print hal-03319091, HAL.
    100. Jia, Pengfei & Shen, Haopeng & Zheng, Shikun, 2023. "Monetary policy rules and opinionated markets," Economics Letters, Elsevier, vol. 223(C).
    101. Bovi, Maurizio, 2019. "A Time-Varying Expectations Formation Mechanism," MPRA Paper 97624, University Library of Munich, Germany.
    102. Klein, Tony, 2021. "Agree to Disagree? Predictions of U.S. Nonfarm Payroll Changes between 2008 and 2020 and the Impact of the COVID19 Labor Shock," QBS Working Paper Series 2021/07, Queen's University Belfast, Queen's Business School.
    103. Acedański, Jan, 2017. "Heterogeneous expectations and the distribution of wealth," Journal of Macroeconomics, Elsevier, vol. 53(C), pages 162-175.
    104. Bürgi, Constantin, 2017. "Bias, rationality and asymmetric loss functions," Economics Letters, Elsevier, vol. 154(C), pages 113-116.
    105. Doina Chichernea & Kershen Huang & Alex Petkevich, 2019. "Does maturity matter? The case of treasury futures volume," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(10), pages 1301-1321, October.
    106. Taro Ikeda, 2012. "Three Essays on Robustness and Asymmetries in Central Bank Forecasting," Discussion Papers 1216, Graduate School of Economics, Kobe University.
    107. Chen, Ji & Yang, Xinglin & Liu, Xiliang, 2022. "Learning, disagreement and inflation forecasting," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).
    108. Montes, Gabriel Caldas & Luna, Paulo Henrique, 2018. "Discretionary fiscal policy and disagreement in expectations about fiscal variables empirical evidence from Brazil," Economic Modelling, Elsevier, vol. 73(C), pages 100-116.
    109. Franses, Ph.H.B.F., 2019. "Professional Forecasters and January," Econometric Institute Research Papers EI2019-25, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    110. Boskabadi, Elahe, 2022. "Economic policy uncertainty and forecast bias in the survey of professional forecasters," MPRA Paper 115081, University Library of Munich, Germany.
    111. Paul Hubert, 2010. "Monetary policy, imperfect information and the expectations channel [Politique monétaire,information imparfaite et canal des anticipations]," SciencePo Working papers Main tel-04095385, HAL.
    112. Clements, Michael P., 2006. "Internal consistency of survey respondentsíforecasts: Evidence based on the Survey of Professional Forecasters," Economic Research Papers 269742, University of Warwick - Department of Economics.
    113. Alexandros Botsis & Christoph Gortz & Plutarchos Sakellaris, 2023. "Quantifying Qualitative Survey Data: New Insights on the (Ir)Rationality of Firms' Forecasts," Discussion Papers 23-06, Department of Economics, University of Birmingham.
    114. G. C. Montes & L. V. Oliveira & A. Curi & R. T. F. Nicolay, 2016. "Effects of transparency, monetary policy signalling and clarity of central bank communication on disagreement about inflation expectations," Applied Economics, Taylor & Francis Journals, vol. 48(7), pages 590-607, February.
    115. Ikeda, Taro, 2014. "Asymmetric preferences in real-time learning and the Taylor rule," Economics Letters, Elsevier, vol. 124(3), pages 487-489.
    116. Ruttachai Seelajaroen & Pornanong Budsaratragoon & Boonlert Jitmaneeroj, 2020. "Do monetary policy transparency and central bank communication reduce interest rate disagreement?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(3), pages 368-393, April.
    117. Tae-Hwy Lee & Yiyao Wang, 2019. "Evaluation of the Survey of Professional Forecasters in the Greenbook’s Loss Function," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(2), pages 345-360, June.
    118. Katharina Allinger & Fabio Rumler, 2023. "Inflation Expectations in CESEE: The Role of Sentiment and Experiences (Katharina Allinger, Fabio Rumler)," Working Papers 247, Oesterreichische Nationalbank (Austrian Central Bank).
    119. Ehrmann, M. & Eijffinger, S.C.W. & Fratzcher, M., 2010. "The Role of Central Bank Transparency for Guiding Private Sector Forecasts," Other publications TiSEM 25125044-98fc-44b3-8698-3, Tilburg University, School of Economics and Management.
    120. Félix, Luiz & Kräussl, Roman & Stork, Philip, 2018. "Predictable biases in macroeconomic forecasts and their impact across asset classes," CFS Working Paper Series 596, Center for Financial Studies (CFS).
    121. Jaylson Jair da Silveira & Gilberto Tadeu Lima, 2014. "Heterogeneity in Inflation Expectations and Macroeconomic Stability under Satisficing Learning," Working Papers, Department of Economics 2014_28, University of São Paulo (FEA-USP).
    122. Jonas Dovern & Johannes Weisser, 2009. "Accuracy, Unbiasedness and Efficiency of Professional Macroeconomic Forecasts: An empirical Comparison for the G7," Jena Economics Research Papers 2009-091, Friedrich-Schiller-University Jena.
    123. Chen, Heng & Li, Xu & Pei, Guangyu & Xin, Qian, 2024. "Heterogeneous overreaction in expectation formation: Evidence and theory," Journal of Economic Theory, Elsevier, vol. 218(C).
    124. Maurizio Bovi & Roy Cerqueti, 2016. "Forecasting macroeconomic fundamentals in economic crises," Annals of Operations Research, Springer, vol. 247(2), pages 451-469, December.
    125. Wieland, Volker & Wolters, Maik H., 2010. "The diversity of forecasts from macroeconomic models of the U.S. economy," CFS Working Paper Series 2010/08, Center for Financial Studies (CFS).
    126. Pierdzioch, Christian & Rülke, Jan-Christoph & Stadtmann, Georg, 2013. "A note on forecasting the prices of gold and silver: Asymmetric loss and forecast rationality," The Quarterly Review of Economics and Finance, Elsevier, vol. 53(3), pages 294-301.
    127. Gbaguidi, David, 2012. "La courbe de Phillips : temps d’arbitrage et/ou arbitrage de temps," L'Actualité Economique, Société Canadienne de Science Economique, vol. 88(1), pages 87-119, mars.
    128. Luiz Félix & Roman Kräussl & Philip Stork, 2021. "Strategic bias and popularity effect in the prediction of economic surprises," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(6), pages 1095-1117, September.
    129. Ryan Banerjee & Aaron Mehrotra, 2021. "Disagreeing during Deflations," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 53(7), pages 1867-1885, October.
    130. Marco Gross & Willi Semmler, 2019. "Mind the Output Gap: The Disconnect of Growth and Inflation during Recessions and Convex Phillips Curves in the Euro Area," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 81(4), pages 817-848, August.
    131. Sheng, Xuguang (Simon), 2015. "Evaluating the economic forecasts of FOMC members," International Journal of Forecasting, Elsevier, vol. 31(1), pages 165-175.
    132. Patton, Andrew J. & Timmermann, Allan, 2010. "Why do forecasters disagree? Lessons from the term structure of cross-sectional dispersion," Journal of Monetary Economics, Elsevier, vol. 57(7), pages 803-820, October.
    133. Conrad, Christian & Lahiri, Kajal, 2024. "Heterogeneous Expectations among Professional Forecasters," Working Papers 0754, University of Heidelberg, Department of Economics.
    134. Maurizio Bovi, 2014. "Shocks and the Expectations Formation Process. A Tale of Two Expectations," Natural Field Experiments 00390, The Field Experiments Website.
    135. Philip Hans Franses, 2020. "Correcting the January optimism effect," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(6), pages 927-933, September.
    136. Gabriel Caldas Montes & Paulo Henrique Lourenço Luna, 2022. "Do fiscal opacity, fiscal impulse, and fiscal credibility affect disagreement about economic growth forecasts? Empirical evidence from Brazil considering the period of political instability and presid," Review of Development Economics, Wiley Blackwell, vol. 26(4), pages 2356-2393, November.
    137. Man-Keung Tang & Mr. Xiangrong Yu, 2011. "Communication of Central Bank Thinking and Inflation Dynamics," IMF Working Papers 2011/209, International Monetary Fund.
    138. Anmol Bhandari & Jaroslav Borovicka & Paul Ho, 2019. "Survey Data and Subjective Beliefs in Business Cycle Models," Working Paper 19-14, Federal Reserve Bank of Richmond.
    139. Rülke, Jan-Christoph & Silgoner, Maria & Wörz, Julia, 2016. "Herding behavior of business cycle forecasters," International Journal of Forecasting, Elsevier, vol. 32(1), pages 23-33.
    140. Klein, Tony, 2022. "Agree to disagree? Predictions of U.S. nonfarm payroll changes between 2008 and 2020 and the impact of the COVID19 labor shock," Journal of Economic Behavior & Organization, Elsevier, vol. 194(C), pages 264-286.
    141. Gabriele Galati & Peter Heemeijer & Richhild Moessner, 2011. "How do inflation expectations form? New insights from a high-frequency survey," BIS Working Papers 349, Bank for International Settlements.
    142. Lahiri, Kajal & Sheng, Xuguang, 2008. "Evolution of forecast disagreement in a Bayesian learning model," Journal of Econometrics, Elsevier, vol. 144(2), pages 325-340, June.
    143. Fildes, Robert, 2015. "Forecasters and rationality—A comment on Fritsche et al., Forecasting the Brazilian Real and Mexican Peso: Asymmetric loss, forecast rationality and forecaster herding," International Journal of Forecasting, Elsevier, vol. 31(1), pages 140-143.
    144. Sinha, Rajesh Kumar, 2021. "Macro disagreement and analyst forecast properties," Journal of Contemporary Accounting and Economics, Elsevier, vol. 17(1).

  12. Davide Pettenuzzo & Allan G. Timmermann & Rossen I. Valkanov, 2008. "Return Predictability under Equilibrium Constraints on the Equity Premium," Working Papers 37, Brandeis University, Department of Economics and International Business School.

    Cited by:

    1. Rangan Gupta & Mampho P. Modise & Josine Uwilingiye, 2011. "Out-of-Sample Equity Premium Predictability in South Africa: Evidence from a Large Number of Predictors," Working Papers 201122, University of Pretoria, Department of Economics.

  13. Carlos Capistrán & Allan Timmermann, 2008. "Forecast Combination With Entry and Exit of Experts," CREATES Research Papers 2008-55, Department of Economics and Business Economics, Aarhus University.

    Cited by:

    1. von der Gracht, Heiko A. & Hommel, Ulrich & Prokesch, Tobias & Wohlenberg, Holger, 2016. "Testing weighting approaches for forecasting in a Group Wisdom Support System environment," Journal of Business Research, Elsevier, vol. 69(10), pages 4081-4094.
    2. Kakuho Furukawa & Ryohei Hisano & Yukio Minoura & Tomoyuki Yagi, 2022. "A Nowcasting Model of Industrial Production using Alternative Data and Machine Learning Approaches," Bank of Japan Working Paper Series 22-E-16, Bank of Japan.
    3. Li, Li & Kang, Yanfei & Li, Feng, 2023. "Bayesian forecast combination using time-varying features," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1287-1302.
    4. Barbara Rossi, 2011. "Advances in Forecasting Under Instability," Working Papers 11-20, Duke University, Department of Economics.
    5. Kajal Lahiri & Huaming Peng & Xuguang Simon Sheng, 2021. "Measuring Uncertainty of a Combined Forecast and Some Tests for Forecaster Heterogeneity," Working Papers 2021-005, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    6. Constantin Bürgi, 2023. "How to Deal With Missing Observations in Surveys of Professional Forecasters," CESifo Working Paper Series 10203, CESifo.
    7. Yin, Anwen, 2015. "Forecasting and model averaging with structural breaks," ISU General Staff Papers 201501010800005727, Iowa State University, Department of Economics.
    8. Tu, Yundong & Yi, Yanping, 2017. "Forecasting cointegrated nonstationary time series with time-varying variance," Journal of Econometrics, Elsevier, vol. 196(1), pages 83-98.
    9. Capistrán, Carlos & López-Moctezuma, Gabriel, 2014. "Forecast revisions of Mexican inflation and GDP growth," International Journal of Forecasting, Elsevier, vol. 30(2), pages 177-191.
    10. Panopoulou, Ekaterini & Vrontos, Spyridon, 2015. "Hedge fund return predictability; To combine forecasts or combine information?," Journal of Banking & Finance, Elsevier, vol. 56(C), pages 103-122.
    11. Narayan Kundan Kishor, 2021. "Forecasting real‐time economic activity using house prices and credit conditions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(2), pages 213-227, March.
    12. Menkhoff, Lukas & Sakha, Sahra, 2017. "Estimating risky behavior with multiple-item risk measures," Journal of Economic Psychology, Elsevier, vol. 59(C), pages 59-86.
    13. Hsiao, Cheng & Wan, Shui Ki, 2014. "Is there an optimal forecast combination?," Journal of Econometrics, Elsevier, vol. 178(P2), pages 294-309.
    14. Ghysels, Eric & Ozkan, Nazire, 2015. "Real-time forecasting of the US federal government budget: A simple mixed frequency data regression approach," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1009-1020.
    15. Jonathan Benchimol & Makram El-Shagi & Yossi Saadon, 2020. "Do Expert Experience and Characteristics Affect Inflation Forecasts?," Bank of Israel Working Papers 2020.11, Bank of Israel.
    16. Christiane Baumeister & Pierre Guérin, 2020. "A Comparison of Monthly Global Indicators for Forecasting Growth," CESifo Working Paper Series 8656, CESifo.
    17. Bjørnland, Hilde C. & Ravazzolo, Francesco & Thorsrud, Leif Anders, 2017. "Forecasting GDP with global components: This time is different," International Journal of Forecasting, Elsevier, vol. 33(1), pages 153-173.
    18. Wilson, Kevin J., 2017. "An investigation of dependence in expert judgement studies with multiple experts," International Journal of Forecasting, Elsevier, vol. 33(1), pages 325-336.
    19. Ali B. Barlas & Seda Guler Mert & Berk Orkun Isa & Alvaro Ortiz & Tomasa Rodrigo & Baris Soybilgen & Ege Yazgan, 2024. "Big data financial transactions and GDP nowcasting: The case of Turkey," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 227-248, March.
    20. Jiahan Li & Ilias Tsiakas, 2016. "Equity Premium Prediction: The Role of Economic and Statistical Constraints," Working Paper series 16-25, Rimini Centre for Economic Analysis.
    21. Florian Eckert & Rob J Hyndman & Anastasios Panagiotelis, 2019. "Forecasting Swiss Exports Using Bayesian Forecast Reconciliation," Monash Econometrics and Business Statistics Working Papers 14/19, Monash University, Department of Econometrics and Business Statistics.
    22. George Papadopoulos & Savas Papadopoulos & Thomas Sager, 2016. "Credit risk stress testing for EU15 banks: a model combination approach," Working Papers 203, Bank of Greece.
    23. Alberto Caruso & Laura Coroneo, 2023. "Does Real‐Time Macroeconomic Information Help to Predict Interest Rates?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 55(8), pages 2027-2059, December.
    24. Mihaela Simionescu (Bratu), 2014. "The Performance of Predictions Based on the Dobrescu Macromodel for the Romanian Economy," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(3), pages 179-195, October.
    25. Frank A. G. den Butter & Pieter W. Jansen, 2013. "Beating the random walk: a performance assessment of long-term interest rate forecasts," Applied Financial Economics, Taylor & Francis Journals, vol. 23(9), pages 749-765, May.
    26. Dan Zhu & Qingwei Wang & John Goddard, 2022. "A new hedging hypothesis regarding prediction interval formation in stock price forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(4), pages 697-717, July.
    27. Nowotarski, Jakub & Raviv, Eran & Trück, Stefan & Weron, Rafał, 2014. "An empirical comparison of alternative schemes for combining electricity spot price forecasts," Energy Economics, Elsevier, vol. 46(C), pages 395-412.
    28. Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
    29. Herwartz, Helmut, 2017. "Stock return prediction under GARCH — An empirical assessment," International Journal of Forecasting, Elsevier, vol. 33(3), pages 569-580.
    30. Franch, Fabio, 2021. "Political preferences nowcasting with factor analysis and internet data: The 2012 and 2016 US presidential elections," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    31. Cakici, Nusret & Fieberg, Christian & Metko, Daniel & Zaremba, Adam, 2023. "Machine learning goes global: Cross-sectional return predictability in international stock markets," Journal of Economic Dynamics and Control, Elsevier, vol. 155(C).
    32. Davide Pettenuzzo & Francesco Ravazzolo, 2014. "Optimal portfolio choice under decision-based model combinations," Working Paper 2014/15, Norges Bank.
    33. Konstantin Kholodilin, 2014. "Business confidence and forecasting of housing prices and rents in large German cities," ERSA conference papers ersa14p9, European Regional Science Association.
    34. Francesco Ravazzolo & Shaun P. Vahey, 2010. "Forecast densities for economic aggregates from disaggregate ensembles," Working Paper 2010/02, Norges Bank.
    35. Fernandez-Perez, Adrian & Fuertes, Ana-Maria & Miffre, Joëlle, 2019. "A comprehensive appraisal of style-integration methods," Journal of Banking & Finance, Elsevier, vol. 105(C), pages 134-150.
    36. Karlsson, Sune, 2012. "Forecasting with Bayesian Vector Autoregressions," Working Papers 2012:12, Örebro University, School of Business.
    37. Barrow, Devon K. & Kourentzes, Nikolaos, 2016. "Distributions of forecasting errors of forecast combinations: Implications for inventory management," International Journal of Production Economics, Elsevier, vol. 177(C), pages 24-33.
    38. Pedersen, Michael, 2019. "Anomalies in macroeconomic prediction errors–evidence from Chilean private forecasters," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1100-1107.
    39. Salinas, David & Flunkert, Valentin & Gasthaus, Jan & Januschowski, Tim, 2020. "DeepAR: Probabilistic forecasting with autoregressive recurrent networks," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1181-1191.
    40. Wang, Cindy S.H. & Fan, Rui & Xie, Yiqiang, 2023. "Market systemic risk, predictability and macroeconomics news," Finance Research Letters, Elsevier, vol. 56(C).
    41. , 2019. "The Contribution of Jump Signs and Activity to Forecasting Stock Price Volatility," Working Papers 1902, Federal Reserve Bank of Dallas, revised 17 Dec 2022.
    42. Čapek, Jan & Crespo Cuaresma, Jesús & Hauzenberger, Niko & Reichel, Vlastimil, 2023. "Macroeconomic forecasting in the euro area using predictive combinations of DSGE models," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1820-1838.
    43. Marcellino, Massimiliano & Foroni, Claudia & Stevanovic, Dalibor, 2020. "Forecasting the Covid-19 recession and recovery: Lessons from the financial crisis," CEPR Discussion Papers 15114, C.E.P.R. Discussion Papers.
    44. Fiechter, Chad & Kuethe, Todd & Zhang, Wendong, 2023. "Information Rigidities and Farmland Value Expectations," ISU General Staff Papers 202306131414240000, Iowa State University, Department of Economics.
    45. Barbara Rossi & Tatevik Sekhposyan, 2013. "Evaluating predictive densities of U.S. output growth and inflation in a large macroeconomic data set," Economics Working Papers 1370, Department of Economics and Business, Universitat Pompeu Fabra.
    46. Kilian, Lutz & Baumeister, Christiane & Lee, Thomas K, 2014. "Are there Gains from Pooling Real-Time Oil Price Forecasts?," CEPR Discussion Papers 10075, C.E.P.R. Discussion Papers.
    47. Scott A. Brave & Charles S. Gascon & William Kluender & Thomas Walstrum, 2019. "Predicting Benchmarked US State Employment Data in Real Time," Working Papers 2019-037, Federal Reserve Bank of St. Louis, revised 11 Mar 2021.
    48. Makridakis, Spyros & Hyndman, Rob J. & Petropoulos, Fotios, 2020. "Forecasting in social settings: The state of the art," International Journal of Forecasting, Elsevier, vol. 36(1), pages 15-28.
    49. João F. Caldeira & Guilherme V. Moura & Francisco J. Nogales & André A. P. Santos, 2017. "Combining Multivariate Volatility Forecasts: An Economic-Based Approach," Journal of Financial Econometrics, Oxford University Press, vol. 15(2), pages 247-285.
    50. Bec, Frédérique & Mogliani, Matteo, 2015. "Nowcasting French GDP in real-time with surveys and “blocked” regressions: Combining forecasts or pooling information?," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1021-1042.
    51. Matteo Iacopini & Francesco Ravazzolo & Luca Rossini, 2020. "Proper scoring rules for evaluating asymmetry in density forecasting," Working Papers No 06/2020, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    52. Pablo Pincheira, 2012. "Are Forecast Combinations Efficient?," Working Papers Central Bank of Chile 661, Central Bank of Chile.
    53. Álvarez, Luis J. & Sánchez, Isabel, 2019. "Inflation projections for monetary policy decision making," Journal of Policy Modeling, Elsevier, vol. 41(4), pages 568-585.
    54. Michiel De Pooter & Francesco Ravazzolo & Dick van Dijk, 2010. "Term structure forecasting using macro factors and forecast combination," International Finance Discussion Papers 993, Board of Governors of the Federal Reserve System (U.S.).
    55. Verena Monschang & Bernd Wilfling, 2022. "A procedure for upgrading linear-convex combination forecasts with an application to volatility prediction," CQE Working Papers 9722, Center for Quantitative Economics (CQE), University of Muenster.
    56. Ravazzolo, Francesco & Vespignani, Joaquin, 2015. "A new monthly indicator of global real economic activity," Working Papers 2015-07, University of Tasmania, Tasmanian School of Business and Economics.
    57. Luis F. Melo Velandia & Rubén A. Loaiza Maya & Mauricio Villamizar-Villegas, 2014. "Bayesian Combination for Inflation Forecasts: The Effects of a Prior Based on Central Banks’ Estimates," Borradores de Economia 853, Banco de la Republica de Colombia.
    58. Cristina Conflitti & Christine De Mol & Domenico Giannone, 2012. "Optimal Combination of Survey Forecasts," Working Papers ECARES ECARES 2012-023, ULB -- Universite Libre de Bruxelles.
    59. Laura Carabotta & Peter Claeys, 2015. "Combine to compete: improving fiscal forecast accuracy over time," UB School of Economics Working Papers 2015/320, University of Barcelona School of Economics.
    60. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    61. Tae-Hwy Lee & Ekaterina Seregina, 2020. "Learning from Forecast Errors: A New Approach to Forecast Combinations," Papers 2011.02077, arXiv.org, revised May 2021.
    62. Fernando M. Duarte & Carlo Rosa, 2015. "The equity risk premium: a review of models," Economic Policy Review, Federal Reserve Bank of New York, issue 2, pages 39-57.
    63. Robin C. Sickles & Jiaqi Hao & Chenjun Shang, 2014. "Panel data and productivity measurement: an analysis of Asian productivity trends," Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 12(3), pages 211-231, August.
    64. Xue Gong & Weiguo Zhang & Yuan Zhao & Xin Ye, 2023. "Forecasting stock volatility with a large set of predictors: A new forecast combination method," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1622-1647, November.
    65. Yi-Ting Chen & Chu-An Liu, 2021. "Model Averaging for Asymptotically Optimal Combined Forecasts," IEAS Working Paper : academic research 21-A002, Institute of Economics, Academia Sinica, Taipei, Taiwan.
    66. Smith, Simon C., 2021. "International stock return predictability," International Review of Financial Analysis, Elsevier, vol. 78(C).
    67. Sun, Yuying & Hong, Yongmiao & Wang, Shouyang & Zhang, Xinyu, 2023. "Penalized time-varying model averaging," Journal of Econometrics, Elsevier, vol. 235(2), pages 1355-1377.
    68. Buchen, Teresa & Wohlrabe, Klaus, 2011. "Forecasting with many predictors: Is boosting a viable alternative?," Economics Letters, Elsevier, vol. 113(1), pages 16-18, October.
    69. Blanc, Sebastian M. & Setzer, Thomas, 2016. "When to choose the simple average in forecast combination," Journal of Business Research, Elsevier, vol. 69(10), pages 3951-3962.
    70. Michael Cai & Marco Del Negro & Marc Giannoni & Abhi Gupta & Pearl Li & Erica Moszkowski, 2018. "DSGE forecasts of the lost recovery," Staff Reports 844, Federal Reserve Bank of New York.
    71. Shi, Chunpei & Wei, Yu & Li, Xiafei & Liu, Yuntong, 2023. "Combination forecasts of China's oil futures returns based on multiple uncertainties and their connectedness with oil," Energy Economics, Elsevier, vol. 126(C).
    72. Post, Thierry & Karabatı, Selçuk & Arvanitis, Stelios, 2019. "Robust optimization of forecast combinations," International Journal of Forecasting, Elsevier, vol. 35(3), pages 910-926.
    73. Jari Hännikäinen, 2016. "Selection of an Estimation Window in the Presence of Data Revisions and Recent Structural Breaks," Working Papers 1692, Tampere University, Faculty of Management and Business, Economics.
    74. Zhemkov, Michael, 2021. "Nowcasting Russian GDP using forecast combination approach," International Economics, Elsevier, vol. 168(C), pages 10-24.
    75. Lennart Hoogerheide & Richard Kleijn & Francesco Ravazzolo & Herman K. Van Dijk & Marno Verbeek, 2010. "Forecast accuracy and economic gains from Bayesian model averaging using time-varying weights," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 251-269.
    76. Felix Haase & Matthias Neuenkirch, 2020. "Predictability of Bull and Bear Markets: A New Look at Forecasting Stock Market Regimes (and Returns) in the US," Research Papers in Economics 2020-01, University of Trier, Department of Economics.
    77. Bakalli, Gaetan & Guerrier, Stéphane & Scaillet, Olivier, 2023. "A penalized two-pass regression to predict stock returns with time-varying risk premia," Journal of Econometrics, Elsevier, vol. 237(2).
    78. Takashi Nakazawa, 2022. "Constructing GDP Nowcasting Models Using Alternative Data," Bank of Japan Working Paper Series 22-E-9, Bank of Japan.
    79. Sermpinis, Georgios & Stasinakis, Charalampos & Hassanniakalager, Arman, 2017. "Reverse adaptive krill herd locally weighted support vector regression for forecasting and trading exchange traded funds," European Journal of Operational Research, Elsevier, vol. 263(2), pages 540-558.
    80. Knüppel, Malte & Krüger, Fabian, 2017. "Forecast Uncertainty, Disagreement, and Linear Pools of Density Forecasts," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168294, Verein für Socialpolitik / German Economic Association.
    81. Andrade, P. & Fourel, V. & Ghysels, E. & Idier, I., 2013. "The financial content of inflation risks in the euro area," Working papers 437, Banque de France.
    82. Bartosz Uniejewski & Katarzyna Maciejowska, 2022. "LASSO Principal Component Averaging -- a fully automated approach for point forecast pooling," Papers 2207.04794, arXiv.org.
    83. Cheng, Xu & Hansen, Bruce E., 2015. "Forecasting with factor-augmented regression: A frequentist model averaging approach," Journal of Econometrics, Elsevier, vol. 186(2), pages 280-293.
    84. Ma, Feng & Lu, Fei & Tao, Ying, 2022. "Geopolitical risk and excess stock returns predictability: New evidence from a century of data," Finance Research Letters, Elsevier, vol. 50(C).
    85. Faias, José Afonso, 2023. "Predicting the equity risk premium using the smooth cross-sectional tail risk: The importance of correlation," Journal of Financial Markets, Elsevier, vol. 63(C).
    86. Lycheva, Maria & Mironenkov, Alexey & Kurbatskii, Alexey & Fantazzini, Dean, 2022. "Forecasting oil prices with penalized regressions, variance risk premia and Google data," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 68, pages 28-49.
    87. Yi, Yongsheng & Ma, Feng & Zhang, Yaojie & Huang, Dengshi, 2019. "Forecasting stock returns with cycle-decomposed predictors," International Review of Financial Analysis, Elsevier, vol. 64(C), pages 250-261.
    88. Kajal Lahiri & Huaming Peng & Yongchen Zhao, 2013. "Testing the Value of Probability Forecasts for Calibrated Combining," Discussion Papers 13-02, University at Albany, SUNY, Department of Economics.
    89. Lars Lien Ankile & Kjartan Krange, 2022. "Deep Learning and Linear Programming for Automated Ensemble Forecasting and Interpretation," Papers 2201.00426, arXiv.org, revised Nov 2022.
    90. Qian, Yilin & Thompson, Ryan & Vasnev, Andrey L, 2022. "Global combinations of expert forecasts," Working Papers BAWP-2022-02, University of Sydney Business School, Discipline of Business Analytics.
    91. Eran Raviv & Kees E. Bouwman & Dick van Dijk, 2013. "Forecasting Day-Ahead Electricity Prices: Utilizing Hourly Prices," Tinbergen Institute Discussion Papers 13-068/III, Tinbergen Institute.
    92. Diebold, Francis X. & Shin, Minchul, 2019. "Machine learning for regularized survey forecast combination: Partially-egalitarian LASSO and its derivatives," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1679-1691.
    93. Laurent Ferrara & Clément Marsilli & Juan-Pablo Ortega, 2013. "Forecasting US growth during the Great Recession: Is the financial volatility the missing ingredient?," Working Papers hal-04141198, HAL.
    94. Jon Ellingsen & Vegard H. Larsen & Leif Anders Thorsrud, 2020. "News media vs. FRED-MD for macroeconomic forecasting," Working Papers No 08/2020, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    95. Nikodinoska, Dragana & Käso, Mathias & Müsgens, Felix, 2022. "Solar and wind power generation forecasts using elastic net in time-varying forecast combinations," Applied Energy, Elsevier, vol. 306(PA).
    96. Coroneo, Laura & Iacone, Fabrizio & Paccagnini, Alessia & Santos Monteiro, Paulo, 2023. "Testing the predictive accuracy of COVID-19 forecasts," International Journal of Forecasting, Elsevier, vol. 39(2), pages 606-622.
    97. Leland E. Farmer & Lawrence Schmidt & Allan Timmermann, 2023. "Pockets of Predictability," Journal of Finance, American Finance Association, vol. 78(3), pages 1279-1341, June.
    98. Foroni, Claudia & Marcellino, Massimiliano, 2014. "A comparison of mixed frequency approaches for nowcasting Euro area macroeconomic aggregates," International Journal of Forecasting, Elsevier, vol. 30(3), pages 554-568.
    99. Zhang, Yue-Jun & Wang, Jin-Li, 2019. "Do high-frequency stock market data help forecast crude oil prices? Evidence from the MIDAS models," Energy Economics, Elsevier, vol. 78(C), pages 192-201.
    100. John Cotter & Emmanuel Eyiah-Donkor & Valerio Potì, 2023. "Commodity futures return predictability and intertemporal asset pricing," Post-Print hal-04192933, HAL.
    101. Huck, Nicolas, 2010. "Pairs trading and outranking: The multi-step-ahead forecasting case," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1702-1716, December.
    102. Petropoulos, Fotios & Spiliotis, Evangelos & Panagiotelis, Anastasios, 2023. "Model combinations through revised base rates," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1477-1492.
    103. Degiannakis, Stavros & Filis, George & Hassani, Hossein, 2015. "Forecasting implied volatility indices worldwide: A new approach," MPRA Paper 72084, University Library of Munich, Germany.
    104. Emilio Zanetti Chini, 2018. "Forecasting dynamically asymmetric fluctuations of the U.S. business cycle," CREATES Research Papers 2018-13, Department of Economics and Business Economics, Aarhus University.
    105. Svec, Jiri & Katrak, Xerxis, 2017. "Forecasting volatility with interacting multiple models," Finance Research Letters, Elsevier, vol. 20(C), pages 245-252.
    106. Anthony Garratt & Timo Henckel & Shaun P. Vahey, 2019. "Empirically-transformed linear opinion pools," CAMA Working Papers 2019-47, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    107. Sainan Jin & Valentina Corradi & Norman Swanson, 2015. "Robust Forecast Comparison," Departmental Working Papers 201502, Rutgers University, Department of Economics.
    108. Christian Grimme & Robert Lehmann & Marvin Noeller, 2019. "Forecasting Imports with Information from Abroad," ifo Working Paper Series 294, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    109. Roman S. Leukhin, 2019. "Short-Term Fiscal Projections Using Forecast Combination Approach," Finansovyj žhurnal — Financial Journal, Financial Research Institute, Moscow 125375, Russia, issue 3, pages 9-21, June.
    110. Kolasa, Marcin & Rubaszek, Michał, 2014. "Forecasting with DSGE models with financial frictions," Dynare Working Papers 40, CEPREMAP.
    111. Dellas, Harris & Gibson, Heather D. & Hall, Stephen G. & Tavlas, George S., 2018. "The macroeconomic and fiscal implications of inflation forecast errors," Journal of Economic Dynamics and Control, Elsevier, vol. 93(C), pages 203-217.
    112. Viviano, Davide & Bradic, Jelena, 2023. "Synthetic Learner: Model-free inference on treatments over time," Journal of Econometrics, Elsevier, vol. 234(2), pages 691-713.
    113. Francis X. Diebold & Minchul Shin & Boyuan Zhang, 2021. "On the Aggregation of Probability Assessments: Regularized Mixtures of Predictive Densities for Eurozone Inflation and Real Interest Rates," Working Papers 21-06, Federal Reserve Bank of Philadelphia.
    114. Wagner Piazza Gaglianone & Jaqueline Terra Moura Marins, 2014. "Risk Assessment of the Brazilian FX Rate," Working Papers Series 344, Central Bank of Brazil, Research Department.
    115. Sancetta, Alessio, 2013. "Weak conditions for shrinking multivariate nonparametric density estimators," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 285-300.
    116. Lavancier, F. & Rochet, P., 2016. "A general procedure to combine estimators," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 175-192.
    117. Liao, Cunfei & Luo, Qianlin & Tang, Guohao, 2021. "Aggregate liquidity premium and cross-sectional returns: Evidence from China," Economic Modelling, Elsevier, vol. 104(C).
    118. Anne Sofie Jore & James Mitchell & Shaun Vahey, 2008. "Combining Forecast Densities from VARs with Uncertain Instabilities," Reserve Bank of New Zealand Discussion Paper Series DP2008/18, Reserve Bank of New Zealand.
    119. Koo, Bonsoo & Anderson, Heather M. & Seo, Myung Hwan & Yao, Wenying, 2020. "High-dimensional predictive regression in the presence of cointegration," Journal of Econometrics, Elsevier, vol. 219(2), pages 456-477.
    120. Zhu, Min & Chen, Rui & Du, Ke & Wang, You-Gan, 2018. "Dividend growth and equity premium predictability," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 125-137.
    121. Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    122. Andrada-Félix, Julián & Fernández-Rodríguez, Fernando & Fuertes, Ana-Maria, 2016. "Combining nearest neighbor predictions and model-based predictions of realized variance: Does it pay?," International Journal of Forecasting, Elsevier, vol. 32(3), pages 695-715.
    123. Pablo Montero-Manso & George Athanasopoulos & Rob J Hyndman & Thiyanga S Talagala, 2018. "FFORMA: Feature-based forecast model averaging," Monash Econometrics and Business Statistics Working Papers 19/18, Monash University, Department of Econometrics and Business Statistics.
    124. Aiolfi Marco & Capistrán Carlos & Timmermann Allan, 2010. "Forecast Combinations," Working Papers 2010-04, Banco de México.
    125. Knut Are Aastveit & Karsten R. Gerdrup & Anne Sofie Jore & Leif Anders Thorsrud, 2011. "Nowcasting GDP in real-time: A density combination approach," Working Paper 2011/11, Norges Bank.
    126. Davide De Gaetano, 2016. "Forecast Combinations For Realized Volatility In Presence Of Structural Breaks," Departmental Working Papers of Economics - University 'Roma Tre' 0208, Department of Economics - University Roma Tre.
    127. Sebastiano Manzan, 2011. "Differential Interpretation in the Survey of Professional Forecasters," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 43(5), pages 993-1017, August.
    128. Emmanuel Paroissien, 2020. "Forecasting bulk prices of Bordeaux wines using leading indicators," Post-Print hal-02408202, HAL.
    129. Markiewicz, Agnieszka & Pick, Andreas, 2014. "Adaptive learning and survey data," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PB), pages 685-707.
    130. Lyócsa, Štefan & Molnár, Peter & Todorova, Neda, 2017. "Volatility forecasting of non-ferrous metal futures: Covariances, covariates or combinations?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 51(C), pages 228-247.
    131. Ryan Thompson & Yilin Qian & Andrey L. Vasnev, 2022. "Flexible global forecast combinations," Papers 2207.07318, arXiv.org, revised Mar 2024.
    132. Lv, Wendai & Qi, Jipeng, 2022. "Stock market return predictability: A combination forecast perspective," International Review of Financial Analysis, Elsevier, vol. 84(C).
    133. Yin, Anwen, 2020. "Equity premium prediction and optimal portfolio decision with Bagging," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    134. Andrew B. Martinez & Jennifer L. Castle & David F. Hendry, 2021. "Smooth Robust Multi-Horizon Forecasts," Economics Papers 2021-W01, Economics Group, Nuffield College, University of Oxford.
    135. Baumann, Ursel & Darracq Pariès, Matthieu & Westermann, Thomas & Riggi, Marianna & Bobeica, Elena & Meyler, Aidan & Böninghausen, Benjamin & Fritzer, Friedrich & Trezzi, Riccardo & Jonckheere, Jana & , 2021. "Inflation expectations and their role in Eurosystem forecasting," Occasional Paper Series 264, European Central Bank.
    136. Groen, Jan J.J. & Kapetanios, George, 2016. "Revisiting useful approaches to data-rich macroeconomic forecasting," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 221-239.
    137. Raffaella Giacomini & Barbara Rossi, 2013. "Forecasting in macroeconomics," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 17, pages 381-408, Edward Elgar Publishing.
    138. Katarzyna Maciejowska & Bartosz Uniejewski & Tomasz Serafin, 2020. "PCA Forecast Averaging—Predicting Day-Ahead and Intraday Electricity Prices," Energies, MDPI, vol. 13(14), pages 1-19, July.
    139. an de Meulen, Philipp, 2015. "Das RWI-Kurzfristprognosemodell," RWI Konjunkturberichte, RWI - Leibniz-Institut für Wirtschaftsforschung, vol. 66(2), pages 25-46.
    140. Lyócsa, Štefan & Plíhal, Tomáš & Výrost, Tomáš, 2021. "FX market volatility modelling: Can we use low-frequency data?," Finance Research Letters, Elsevier, vol. 40(C).
    141. Alexopoulos, Thomas A., 2017. "The growing importance of natural gas as a predictor for retail electricity prices in US," Energy, Elsevier, vol. 137(C), pages 219-233.
    142. Taylor, James W. & Taylor, Kathryn S., 2023. "Combining probabilistic forecasts of COVID-19 mortality in the United States," European Journal of Operational Research, Elsevier, vol. 304(1), pages 25-41.
    143. Croushore Dean, 2010. "An Evaluation of Inflation Forecasts from Surveys Using Real-Time Data," The B.E. Journal of Macroeconomics, De Gruyter, vol. 10(1), pages 1-32, May.
    144. Afees A. Salisu & Ibrahim D. Raheem & Umar B. Ndako, 2017. "A sectoral analysis of asymmetric nexus between oil and stock," Working Papers 033, Centre for Econometric and Allied Research, University of Ibadan.
    145. Korbinian Dress & Stefan Lessmann & Hans-Jorg von Mettenheim, 2017. "Residual Value Forecasting Using Asymmetric Cost Functions," Papers 1707.02736, arXiv.org.
    146. Cheng, Gang & Yang, Yuhong, 2015. "Forecast combination with outlier protection," International Journal of Forecasting, Elsevier, vol. 31(2), pages 223-237.
    147. Dantas, Tiago Mendes & Cyrino Oliveira, Fernando Luiz, 2018. "Improving time series forecasting: An approach combining bootstrap aggregation, clusters and exponential smoothing," International Journal of Forecasting, Elsevier, vol. 34(4), pages 748-761.
    148. Ma, Feng & Liu, Jing & Wahab, M.I.M. & Zhang, Yaojie, 2018. "Forecasting the aggregate oil price volatility in a data-rich environment," Economic Modelling, Elsevier, vol. 72(C), pages 320-332.
    149. George Athanasopoulos & Rob J Hyndman & Nikolaos Kourentzes & Fotios Petropoulos, 2015. "Forecasting with Temporal Hierarchies," Monash Econometrics and Business Statistics Working Papers 16/15, Monash University, Department of Econometrics and Business Statistics.
    150. Samuels, Jon D. & Sekkel, Rodrigo M., 2017. "Model Confidence Sets and forecast combination," International Journal of Forecasting, Elsevier, vol. 33(1), pages 48-60.
    151. Nystrup, Peter & Lindström, Erik & Møller, Jan K. & Madsen, Henrik, 2021. "Dimensionality reduction in forecasting with temporal hierarchies," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1127-1146.
    152. Li, Jiahan & Chen, Weiye, 2014. "Forecasting macroeconomic time series: LASSO-based approaches and their forecast combinations with dynamic factor models," International Journal of Forecasting, Elsevier, vol. 30(4), pages 996-1015.
    153. Chauvet, Marcelle & Potter, Simon, 2013. "Forecasting Output," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 141-194, Elsevier.
    154. Yae, James & Tian, George Zhe, 2022. "Out-of-sample forecasting of cryptocurrency returns: A comprehensive comparison of predictors and algorithms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    155. Clements, Michael P., 2012. "Subjective and Ex Post Forecast Uncertainty: US Inflation and Output Growth," Economic Research Papers 270629, University of Warwick - Department of Economics.
    156. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    157. Caldeira, João F. & Moura, Guilherme V. & Santos, André A.P., 2016. "Predicting the yield curve using forecast combinations," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 79-98.
    158. Bayer, Sebastian, 2018. "Combining Value-at-Risk forecasts using penalized quantile regressions," Econometrics and Statistics, Elsevier, vol. 8(C), pages 56-77.
    159. Massimiliano Giacalone, 2022. "Optimal forecasting accuracy using Lp-norm combination," METRON, Springer;Sapienza Università di Roma, vol. 80(2), pages 187-230, August.
    160. Marcos Bujosa & Antonio García‐Ferrer & Aránzazu de Juan & Antonio Martín‐Arroyo, 2020. "Evaluating early warning and coincident indicators of business cycles using smooth trends," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(1), pages 1-17, January.
    161. Dress, Korbinian & Lessmann, Stefan & von Mettenheim, Hans-Jörg, 2018. "Residual value forecasting using asymmetric cost functions," International Journal of Forecasting, Elsevier, vol. 34(4), pages 551-565.
    162. Magnus, Jan & Vasnev, Andrey, 2021. "On the uncertainty of a combined forecast: The critical role of correlation," Working Papers BAWP-2022-01, University of Sydney Business School, Discipline of Business Analytics.
    163. Dimitriadis, Timo & Schnaitmann, Julie, 2021. "Forecast encompassing tests for the expected shortfall," International Journal of Forecasting, Elsevier, vol. 37(2), pages 604-621.
    164. Wagner Piazza Gaglianone, 2017. "Empirical Findings on Inflation Expectations in Brazil: a survey," Working Papers Series 464, Central Bank of Brazil, Research Department.
    165. Dong Hwan Oh & Andrew J. Patton, 2021. "Better the Devil You Know: Improved Forecasts from Imperfect Models," Finance and Economics Discussion Series 2021-071, Board of Governors of the Federal Reserve System (U.S.).
    166. Constantin Bürgi & Tara M. Sinclair, 2015. "A Nonparametric Approach to Identifying a Subset of Forecasters that Outperforms the Simple Average," Working Papers 2015-006, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    167. Boero, Gianna & Smith, Jeremy & Wallis, Kenneth F., 2011. "Scoring rules and survey density forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 379-393, April.
    168. Aristidou, Chrystalleni & Lee, Kevin & Shields, Kalvinder, 2022. "Fundamentals, regimes and exchange rate forecasts: Insights from a meta exchange rate model," Journal of International Money and Finance, Elsevier, vol. 123(C).
    169. Costantini, Mauro & Gunter, Ulrich & Kunst, Robert M., 2014. "Forecast combinations in a DSGE-VAR lab," Economics Series 309, Institute for Advanced Studies.
    170. Andreini, Paolo & Hasenzagl, Thomas & Reichlin, Lucrezia & Senftleben-König, Charlotte & Strohsal, Till, 2023. "Nowcasting German GDP: Foreign factors, financial markets, and model averaging," International Journal of Forecasting, Elsevier, vol. 39(1), pages 298-313.
    171. Di Fonzo, Tommaso & Girolimetto, Daniele, 2024. "Forecast combination-based forecast reconciliation: Insights and extensions," International Journal of Forecasting, Elsevier, vol. 40(2), pages 490-514.
    172. Huck, Nicolas, 2009. "Pairs selection and outranking: An application to the S&P 100 index," European Journal of Operational Research, Elsevier, vol. 196(2), pages 819-825, July.
    173. Ng, Serena, 2013. "Variable Selection in Predictive Regressions," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 752-789, Elsevier.
    174. Chan, Felix & Pauwels, Laurent L., 2018. "Some theoretical results on forecast combinations," International Journal of Forecasting, Elsevier, vol. 34(1), pages 64-74.
    175. Lu, Xinjie & Ma, Feng & Xu, Jin & Zhang, Zehui, 2022. "Oil futures volatility predictability: New evidence based on machine learning models11All the authors contribute to the paper equally," International Review of Financial Analysis, Elsevier, vol. 83(C).
    176. Macias, Paweł & Stelmasiak, Damian & Szafranek, Karol, 2023. "Nowcasting food inflation with a massive amount of online prices," International Journal of Forecasting, Elsevier, vol. 39(2), pages 809-826.
    177. Enilov, Martin & Mensi, Walid & Stankov, Petar, 2023. "Does safe haven exist? Tail risks of commodity markets during COVID-19 pandemic," Journal of Commodity Markets, Elsevier, vol. 29(C).
    178. Hollstein, Fabian & Prokopczuk, Marcel & Wese Simen, Chardin, 2017. "How to Estimate Beta?," Hannover Economic Papers (HEP) dp-617, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    179. Peter Christoffersen & Kris Jacobs & Bo Young Chang, 2011. "Forecasting with Option Implied Information," CREATES Research Papers 2011-46, Department of Economics and Business Economics, Aarhus University.
    180. Filipa Fernandes & Charalampos Stasinakis & Zivile Zekaite, 2019. "Forecasting government bond spreads with heuristic models: evidence from the Eurozone periphery," Annals of Operations Research, Springer, vol. 282(1), pages 87-118, November.
    181. Ma, Feng & Wahab, M.I.M. & Zhang, Yaojie, 2019. "Forecasting the U.S. stock volatility: An aligned jump index from G7 stock markets," Pacific-Basin Finance Journal, Elsevier, vol. 54(C), pages 132-146.
    182. Wan, Runqing & Fulop, Andras & Li, Junye, 2022. "Real-time Bayesian learning and bond return predictability," Journal of Econometrics, Elsevier, vol. 230(1), pages 114-130.
    183. Hollstein, Fabian & Prokopczuk, Marcel & Wese Simen, Chardin, 2019. "Estimating beta: Forecast adjustments and the impact of stock characteristics for a broad cross-section," Journal of Financial Markets, Elsevier, vol. 44(C), pages 91-118.
    184. Leif Anders Thorsrud, 2016. "Nowcasting using news topics. Big Data versus big bank," Working Paper 2016/20, Norges Bank.
    185. Jiang, Fuwei & Lee, Joshua & Martin, Xiumin & Zhou, Guofu, 2019. "Manager sentiment and stock returns," Journal of Financial Economics, Elsevier, vol. 132(1), pages 126-149.
    186. Davide De Gaetano, 2017. "Forecasting With Garch Models Under Structural Breaks: An Approach Based On Combinations Across Estimation Windows," Departmental Working Papers of Economics - University 'Roma Tre' 0219, Department of Economics - University Roma Tre.
    187. Yin, Libo & Yang, Qingyuan, 2016. "Predicting the oil prices: Do technical indicators help?," Energy Economics, Elsevier, vol. 56(C), pages 338-350.
    188. David Happersberger & Harald Lohre & Ingmar Nolte, 2020. "Estimating portfolio risk for tail risk protection strategies," European Financial Management, European Financial Management Association, vol. 26(4), pages 1107-1146, September.
    189. Karsten R. Gerdrup & Anne Sofie Jore & Christie Smith & Leif Anders Thorsrud, 2009. "Evaluating ensemble density combination - forecasting GDP and inflation," Working Paper 2009/19, Norges Bank.
    190. Galvão, Ana Beatriz & Garratt, Anthony & Mitchell, James, 2021. "Does judgment improve macroeconomic density forecasts?," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1247-1260.
    191. Olivier Coibion & Yuriy Gorodnichenko, 2010. "Information Rigidity and the Expectations Formation Process: A Simple Framework and New Facts," Working Papers 102, Department of Economics, College of William and Mary.
    192. Chikamatsu, Kyosuke & Hirakata, Naohisa & Kido, Yosuke & Otaka, Kazuki, 2021. "Mixed-frequency approaches to nowcasting GDP: An application to Japan," Japan and the World Economy, Elsevier, vol. 57(C).
    193. Lyócsa, Štefan & Todorova, Neda & Výrost, Tomáš, 2021. "Predicting risk in energy markets: Low-frequency data still matter," Applied Energy, Elsevier, vol. 282(PA).
    194. Soybilgen, Barış & Yazgan, Ege, 2018. "Evaluating nowcasts of bridge equations with advanced combination schemes for the Turkish unemployment rate," Economic Modelling, Elsevier, vol. 72(C), pages 99-108.
    195. Laurynas Narusevicius & Tomas Ramanauskas & Laura Gudauskaitė & Tomas Reichenbachas, 2019. "Lithuanian house price index: modelling and forecasting," Bank of Lithuania Occasional Paper Series 28, Bank of Lithuania.
    196. Elliott, Graham & Gargano, Antonio & Timmermann, Allan, 2015. "Complete subset regressions with large-dimensional sets of predictors," Journal of Economic Dynamics and Control, Elsevier, vol. 54(C), pages 86-110.
    197. Lin, Hai & Tao, Xinyuan & Wu, Chunchi, 2022. "Forecasting earnings with combination of analyst forecasts," Journal of Empirical Finance, Elsevier, vol. 68(C), pages 133-159.
    198. Boudoukh, Jacob & Israel, Ronen & Richardson, Matthew, 2022. "Biases in long-horizon predictive regressions," Journal of Financial Economics, Elsevier, vol. 145(3), pages 937-969.
    199. Dahlquist, Magnus & Hasseltoft, Henrik, 2020. "Economic momentum and currency returns," Journal of Financial Economics, Elsevier, vol. 136(1), pages 152-167.
    200. Dbouk, Wassim & Jamali, Ibrahim, 2018. "Predicting daily oil prices: Linear and non-linear models," Research in International Business and Finance, Elsevier, vol. 46(C), pages 149-165.
    201. Zhentao Shi & Liangjun Su & Tian Xie, 2020. "L2-Relaxation: With Applications to Forecast Combination and Portfolio Analysis," Papers 2010.09477, arXiv.org, revised Aug 2022.
    202. Eriksen, Jonas N., 2017. "Expected Business Conditions and Bond Risk Premia," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 52(4), pages 1667-1703, August.
    203. Abdollahi, Hooman & Ebrahimi, Seyed Babak, 2020. "A new hybrid model for forecasting Brent crude oil price," Energy, Elsevier, vol. 200(C).
    204. Till Weigt & Bernd Wilfling, 2018. "An approach to increasing forecast-combination accuracy through VAR error modeling," CQE Working Papers 6818, Center for Quantitative Economics (CQE), University of Muenster.
    205. Gaglianone, Wagner Piazza & Issler, João Victor, 2019. "Microfounded forecasting," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 813, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    206. Magnus, Jan R. & Vasnev, Andrey L., 2015. "Interpretation and use of sensitivity in econometrics, illustrated with forecast combinations," International Journal of Forecasting, Elsevier, vol. 31(3), pages 769-781.
    207. Barrow, Devon K., 2016. "Forecasting intraday call arrivals using the seasonal moving average method," Journal of Business Research, Elsevier, vol. 69(12), pages 6088-6096.
    208. Mihaela Bratu (Simionescu), 2012. "Improving the accuracy of consensus forecasts for the EURO area," Review of Applied Socio-Economic Research, Pro Global Science Association, vol. 4(2), pages 11-15, Decembre.
    209. Yongchen Zhao, 2021. "The robustness of forecast combination in unstable environments: a Monte Carlo study of advanced algorithms," Empirical Economics, Springer, vol. 61(1), pages 173-199, July.
    210. Alexander Frenkel A. & Natalia Volkova N. & Anton Surkov A. & Александр Френкель Адольфович & Наталия Волкова Николаевна & Антон Сурков Александрович, 2017. "Повышение точности прогнозирования интегральных показателей на основе объединения прогнозов // Improving the Prediction Accuracy of the Integral Indicators by the Means of Combining Forecasts," Финансы: теория и практика/Finance: Theory and Practice // Finance: Theory and Practice, ФГОБУВО Финансовый университет при Правительстве Российской Федерации // Financial University under The Government of Russian Federation, vol. 21(5), pages 118-127.
    211. Clements, Michael P. & Harvey, David I., 2011. "Combining probability forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 208-223, April.
    212. Li, Xiaodan & Gong, Xue & Ge, Futing & Huang, Jingjing, 2024. "Forecasting stock volatility using pseudo-out-of-sample information," International Review of Economics & Finance, Elsevier, vol. 90(C), pages 123-135.
    213. Kang, Yanfei & Spiliotis, Evangelos & Petropoulos, Fotios & Athiniotis, Nikolaos & Li, Feng & Assimakopoulos, Vassilios, 2021. "Déjà vu: A data-centric forecasting approach through time series cross-similarity," Journal of Business Research, Elsevier, vol. 132(C), pages 719-731.
    214. Krüger, Fabian & Nolte, Ingmar, 2016. "Disagreement versus uncertainty: Evidence from distribution forecasts," Journal of Banking & Finance, Elsevier, vol. 72(S), pages 172-186.
    215. Christopher Gibbs, 2015. "Forecast Combination, Non-linear Dynamics, and the Macroeconomy," Discussion Papers 2015-05, School of Economics, The University of New South Wales.
    216. Zhao, Albert Bo & Cheng, Tingting, 2022. "Stock return prediction: Stacking a variety of models," Journal of Empirical Finance, Elsevier, vol. 67(C), pages 288-317.
    217. Andrea Monticini & Francesco Ravazzolo, 2014. "Forecasting the intraday market price of money," DISCE - Working Papers del Dipartimento di Economia e Finanza def010, Università Cattolica del Sacro Cuore, Dipartimenti e Istituti di Scienze Economiche (DISCE).
    218. Till Weigt & Bernd Wilfling, 2016. "A new combination approach to reducing forecast errors with an application to volatility forecasting," CQE Working Papers 4616, Center for Quantitative Economics (CQE), University of Muenster.
    219. Darvas, Zsolt & Schepp, Zoltán, 2024. "Exchange rates and fundamentals: Forecasting with long maturity forward rates," Journal of International Money and Finance, Elsevier, vol. 143(C).
    220. Wang, Chengyang & Nishiyama, Yoshihiko, 2015. "Volatility forecast of stock indices by model averaging using high-frequency data," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 324-337.
    221. Schumacher, Christian & Marcellino, Massimiliano & Kuzin, Vladimir, 2009. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the Euro Area," CEPR Discussion Papers 7445, C.E.P.R. Discussion Papers.
    222. Constantin Burgi, 2016. "What Do We Lose When We Average Expectations?," Working Papers 2016-013, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    223. Cakici, Nusret & Shahzad, Syed Jawad Hussain & Będowska-Sójka, Barbara & Zaremba, Adam, 2024. "Machine learning and the cross-section of cryptocurrency returns," International Review of Financial Analysis, Elsevier, vol. 94(C).
    224. Carlos Trucíos & James W. Taylor, 2023. "A comparison of methods for forecasting value at risk and expected shortfall of cryptocurrencies," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 989-1007, July.
    225. Glas, Alexander, 2020. "Five dimensions of the uncertainty–disagreement linkage," International Journal of Forecasting, Elsevier, vol. 36(2), pages 607-627.
    226. Jiang, Yu & Guo, Yongji & Zhang, Yihao, 2017. "Forecasting China's GDP growth using dynamic factors and mixed-frequency data," Economic Modelling, Elsevier, vol. 66(C), pages 132-138.
    227. Park, Jin Suk & Newaz, Mohammad Khaleq, 2021. "Liquidity and short-run predictability: Evidence from international stock markets," Global Finance Journal, Elsevier, vol. 50(C).
    228. Nicoletta Pashourtidou & Christos Papamichael & Charalampos Karagiannakis, 2018. "Forecasting economic activity in sectors of the Cypriot economy," Cyprus Economic Policy Review, University of Cyprus, Economics Research Centre, vol. 12(2), pages 24-66, December.
    229. Lyócsa, Štefan & Molnár, Peter, 2018. "Exploiting dependence: Day-ahead volatility forecasting for crude oil and natural gas exchange-traded funds," Energy, Elsevier, vol. 155(C), pages 462-473.
    230. Antonios K. Alexandridis & Ekaterini Panopoulou & Ioannis Souropanis, 2024. "Forecasting exchange rates: An iterated combination constrained predictor approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(4), pages 983-1017, July.
    231. Rafal Weron, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," HSC Research Reports HSC/14/07, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    232. Likun Lei & Yaojie Zhang & Yu Wei & Yi Zhang, 2021. "Forecasting the volatility of Chinese stock market: An international volatility index," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 1336-1350, January.
    233. Klein, Tony, 2021. "Agree to Disagree? Predictions of U.S. Nonfarm Payroll Changes between 2008 and 2020 and the Impact of the COVID19 Labor Shock," QBS Working Paper Series 2021/07, Queen's University Belfast, Queen's Business School.
    234. Ilias Tsiakas & Jiahan Li & Haibin Zhang, 2020. "Equity Premium Prediction and the State of the Economy," Working Paper series 20-16, Rimini Centre for Economic Analysis.
    235. Hasumi, Ryo & Iiboshi, Hirokuni & Matsumae, Tatsuyoshi & Nakamura, Daisuke, 2019. "Does a financial accelerator improve forecasts during financial crises? Evidence from Japan with prediction-pooling methods," Journal of Asian Economics, Elsevier, vol. 60(C), pages 45-68.
    236. Götz, Thomas B. & Hecq, Alain & Urbain, Jean-Pierre, 2016. "Combining forecasts from successive data vintages: An application to U.S. growth," International Journal of Forecasting, Elsevier, vol. 32(1), pages 61-74.
    237. Jeronymo Marcondes Pinto & Jennifer L. Castle, 2022. "Machine Learning Dynamic Switching Approach to Forecasting in the Presence of Structural Breaks," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 18(2), pages 129-157, July.
    238. Marijn A. Bolhuis & Brett Rayner, 2020. "Deus ex Machina? A Framework for Macro Forecasting with Machine Learning," IMF Working Papers 2020/045, International Monetary Fund.
    239. Kourentzes, Nikolaos & Barrow, Devon & Petropoulos, Fotios, 2019. "Another look at forecast selection and combination: Evidence from forecast pooling," International Journal of Production Economics, Elsevier, vol. 209(C), pages 226-235.
    240. Vitor Azevedo & Georg Sebastian Kaiser & Sebastian Mueller, 2023. "Stock market anomalies and machine learning across the globe," Journal of Asset Management, Palgrave Macmillan, vol. 24(5), pages 419-441, September.
    241. Norman R. Swanson & Weiqi Xiong & Xiye Yang, 2020. "Predicting interest rates using shrinkage methods, real‐time diffusion indexes, and model combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(5), pages 587-613, August.
    242. Baltagi, Badi H., 2013. "Panel Data Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 995-1024, Elsevier.
    243. Lin, Yu & Liao, Qidong & Lin, Zixiao & Tan, Bin & Yu, Yuanyuan, 2022. "A novel hybrid model integrating modified ensemble empirical mode decomposition and LSTM neural network for multi-step precious metal prices prediction," Resources Policy, Elsevier, vol. 78(C).
    244. Hai Lin & Chunchi Wu & Guofu Zhou, 2018. "Forecasting Corporate Bond Returns with a Large Set of Predictors: An Iterated Combination Approach," Management Science, INFORMS, vol. 64(9), pages 4218-4238, September.
    245. Gunter, Ulrich & Önder, Irem, 2016. "Forecasting city arrivals with Google Analytics," Annals of Tourism Research, Elsevier, vol. 61(C), pages 199-212.
    246. Chiang, I-Hsuan Ethan & Liao, Yin & Zhou, Qing, 2021. "Modeling the cross-section of stock returns using sensible models in a model pool," Journal of Empirical Finance, Elsevier, vol. 60(C), pages 56-73.
    247. Santiago Etchegaray Alvarez, 2022. "Proyecciones macroeconómicas con datos en frecuencias mixtas. Modelos ADL-MIDAS, U-MIDAS y TF-MIDAS con aplicaciones para Uruguay," Documentos de trabajo 2022004, Banco Central del Uruguay.
    248. Matsypura, Dmytro & Thompson, Ryan & Vasnev, Andrey L., 2018. "Optimal selection of expert forecasts with integer programming," Omega, Elsevier, vol. 78(C), pages 165-175.
    249. Stein, Tobias, 2024. "Forecasting the equity premium with frequency-decomposed technical indicators," International Journal of Forecasting, Elsevier, vol. 40(1), pages 6-28.
    250. Niko Hauzenberger & Florian Huber & Karin Klieber, 2020. "Real-time Inflation Forecasting Using Non-linear Dimension Reduction Techniques," Papers 2012.08155, arXiv.org, revised Dec 2021.
    251. Yang, Dazhi & van der Meer, Dennis, 2021. "Post-processing in solar forecasting: Ten overarching thinking tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    252. Anwen Yin, 2024. "Predictive model averaging with parameter instability and heteroskedasticity," Bulletin of Economic Research, Wiley Blackwell, vol. 76(2), pages 418-442, April.
    253. Hasumi, Ryo & Iiboshi, Hirokuni & Matsumae, Tatsuyoshi & Nakamura, Daisuke, 2018. "Does a financial accelerator improve forecasts during financial crises?: Evidence from Japan with Prediction Pool Methods," MPRA Paper 85523, University Library of Munich, Germany.
    254. Kevin J. Lansing, 2019. "Endogenous Forecast Switching Near the Zero Lower Bound," Working Paper Series 2017-24, Federal Reserve Bank of San Francisco.
    255. Iason Kynigakis & Ekaterini Panopoulou, 2022. "Does model complexity add value to asset allocation? Evidence from machine learning forecasting models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 603-639, April.
    256. Wang, Yudong & Liu, Li & Wu, Chongfeng, 2017. "Forecasting the real prices of crude oil using forecast combinations over time-varying parameter models," Energy Economics, Elsevier, vol. 66(C), pages 337-348.
    257. João Valle e Azevedo & João Tovar Jalles, 2011. "Rational vs. Professional Forecasts," Working Papers w201114, Banco de Portugal, Economics and Research Department.
    258. Khoo, Zhi De & Ng, Kok Haur & Koh, You Beng & Ng, Kooi Huat, 2024. "Forecasting volatility of stock indices: Improved GARCH-type models through combined weighted volatility measure and weighted volatility indicators," The North American Journal of Economics and Finance, Elsevier, vol. 71(C).
    259. Wei, Wei & Zhu, Dan, 2022. "Generic improvements to least squares monte carlo methods with applications to optimal stopping problems," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1132-1144.
    260. Paolo Libenzio Brignoli & Alessandro Varacca & Cornelis Gardebroek & Paolo Sckokai, 2024. "Machine learning to predict grains futures prices," Agricultural Economics, International Association of Agricultural Economists, vol. 55(3), pages 479-497, May.
    261. Rodríguez-Vargas, Adolfo, 2020. "Forecasting Costa Rican inflation with machine learning methods," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 1(1).
    262. Reichlin, Lucrezia & Andreini, Paolo & Hasenzagl, Thomas & Senftleben-König, Charlotte & Strohsal, Till, 2020. "Nowcasting German GDP," CEPR Discussion Papers 14323, C.E.P.R. Discussion Papers.
    263. Victor Lopez-Perez, 2016. "Macroeconomic Forecast Uncertainty In The Euro Area," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 11(1), pages 9-41, March.
    264. Szafranek, Karol, 2019. "Bagged neural networks for forecasting Polish (low) inflation," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1042-1059.
    265. Pincheira-Brown, Pablo & Bentancor, Andrea & Hardy, Nicolás & Jarsun, Nabil, 2022. "Forecasting fuel prices with the Chilean exchange rate: Going beyond the commodity currency hypothesis," Energy Economics, Elsevier, vol. 106(C).
    266. Valentina Corradi & Sainan Jin & Norman R. Swanson, 2023. "Robust forecast superiority testing with an application to assessing pools of expert forecasters," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(4), pages 596-622, June.
    267. Wagner Piazza Gaglianone & Luiz Renato Lima, 2012. "Constructing Density Forecasts from Quantile Regressions," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(8), pages 1589-1607, December.
    268. Salisu, Afees A. & Vo, Xuan Vinh, 2020. "Predicting stock returns in the presence of COVID-19 pandemic: The role of health news," International Review of Financial Analysis, Elsevier, vol. 71(C).
    269. Ding, Lili & Zhao, Zhongchao & Wang, Lei, 2022. "Probability density forecasts for natural gas demand in China: Do mixed-frequency dynamic factors matter?," Applied Energy, Elsevier, vol. 312(C).
    270. Czudaj, Robert L., 2022. "Heterogeneity of beliefs and information rigidity in the crude oil market: Evidence from survey data," European Economic Review, Elsevier, vol. 143(C).
    271. Maciejowska, Katarzyna & Nowotarski, Jakub & Weron, Rafał, 2016. "Probabilistic forecasting of electricity spot prices using Factor Quantile Regression Averaging," International Journal of Forecasting, Elsevier, vol. 32(3), pages 957-965.
    272. Chao, Shih-Wei, 2016. "Do economic variables improve bond return volatility forecasts?," International Review of Economics & Finance, Elsevier, vol. 46(C), pages 10-26.
    273. Colino, Evelyn V. & Irwin, Scott H. & Garcia, Philip & Etienne, Xiaoli, 2012. "Composite and Outlook Forecast Accuracy," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 37(2), pages 1-19, August.
    274. Pauwels, Laurent L. & Vasnev, Andrey L., 2016. "A note on the estimation of optimal weights for density forecast combinations," International Journal of Forecasting, Elsevier, vol. 32(2), pages 391-397.
    275. De Rezende, Rafael B., 2016. "The interest rate effects of government bond purchases away from the lower bound," Working Paper Series 324, Sveriges Riksbank (Central Bank of Sweden).
    276. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    277. Raval, Devesh & Rosenbaum, Ted & Wilson, Nathan E., 2021. "How do machine learning algorithms perform in predicting hospital choices? evidence from changing environments," Journal of Health Economics, Elsevier, vol. 78(C).
    278. Ren, Yu & Liang, Xuanxuan & Wang, Qin, 2021. "Short-term exchange rate forecasting: A panel combination approach," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 73(C).
    279. Ma, Feng & Li, Yu & Liu, Li & Zhang, Yaojie, 2018. "Are low-frequency data really uninformative? A forecasting combination perspective," The North American Journal of Economics and Finance, Elsevier, vol. 44(C), pages 92-108.
    280. Niu, Zibo & Wang, Chenlu & Zhang, Hongwei, 2023. "Forecasting stock market volatility with various geopolitical risks categories: New evidence from machine learning models," International Review of Financial Analysis, Elsevier, vol. 89(C).
    281. Lyócsa, Štefan & Molnár, Peter & Výrost, Tomáš, 2021. "Stock market volatility forecasting: Do we need high-frequency data?," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1092-1110.
    282. Lof, Matthijs & Nyberg, Henri, 2017. "Noncausality and the commodity currency hypothesis," Energy Economics, Elsevier, vol. 65(C), pages 424-433.
    283. Konstantin A. Kholodilin & Boriss Siliverstovs, 2017. "Think national, forecast local: a case study of 71 German urban housing markets," Applied Economics, Taylor & Francis Journals, vol. 49(42), pages 4271-4297, September.
    284. Greenaway-McGrevy, Ryan, 2022. "Forecast combination for VARs in large N and T panels," International Journal of Forecasting, Elsevier, vol. 38(1), pages 142-164.
    285. Jose Torres-Pruñonosa & Pablo García-Estévez & Josep Maria Raya & Camilo Prado-Román, 2022. "How on Earth Did Spanish Banking Sell the Housing Stock?," SAGE Open, , vol. 12(1), pages 21582440221, March.
    286. Chen, Guojin & Liu, Yanzhen & Zhang, Yu, 2021. "Systemic risk measures and distribution forecasting of macroeconomic shocks," International Review of Economics & Finance, Elsevier, vol. 75(C), pages 178-196.
    287. Öztunç Kaymak, Öznur & Kaymak, Yiğit, 2022. "Prediction of crude oil prices in COVID-19 outbreak using real data," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    288. Proaño, Christian R. & Theobald, Thomas, 2014. "Predicting recessions with a composite real-time dynamic probit model," International Journal of Forecasting, Elsevier, vol. 30(4), pages 898-917.
    289. Panopoulou, Ekaterini & Souropanis, Ioannis, 2019. "The role of technical indicators in exchange rate forecasting," Journal of Empirical Finance, Elsevier, vol. 53(C), pages 197-221.
    290. Stefano Cassella & Huseyin Gulen, 2018. "Extrapolation Bias and the Predictability of Stock Returns by Price-Scaled Variables," The Review of Financial Studies, Society for Financial Studies, vol. 31(11), pages 4345-4397.
    291. Xiaowen Wang & Ying Ma & Wen Li, 2021. "The Prediction of Gold Futures Prices at the Shanghai Futures Exchange Based on the MEEMD-CS-Elman Model," SAGE Open, , vol. 11(1), pages 21582440211, March.
    292. Pablo Pincheira-Brown & Andrea Bentancor & Nicolás Hardy, 2023. "An Inconvenient Truth about Forecast Combinations," Mathematics, MDPI, vol. 11(18), pages 1-24, September.
    293. Christian Kascha & Francesco Ravazzolo, 2008. "Combining inflation density forecasts," Working Paper 2008/22, Norges Bank.
    294. Zhang, Hongwei & Zhao, Xinyi & Gao, Wang & Niu, Zibo, 2023. "The role of higher moments in predicting China's oil futures volatility: Evidence from machine learning models," Journal of Commodity Markets, Elsevier, vol. 32(C).
    295. Xiaojie Xu, 2020. "Corn Cash Price Forecasting," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(4), pages 1297-1320, August.
    296. Björn Fastrich & Peter Winker, 2014. "Combining Forecasts with Missing Data: Making Use of Portfolio Theory," Computational Economics, Springer;Society for Computational Economics, vol. 44(2), pages 127-152, August.
    297. Genre, Véronique & Kenny, Geoff & Meyler, Aidan & Timmermann, Allan, 2013. "Combining expert forecasts: Can anything beat the simple average?," International Journal of Forecasting, Elsevier, vol. 29(1), pages 108-121.
    298. Kajal Lahiri & Liu Yang, 2015. "A Non-linear Forecast Combination Procedure for Binary Outcomes," CESifo Working Paper Series 5175, CESifo.
    299. Fang, Debin & Hao, Peng & Hao, Jian, 2019. "Study of the influence mechanism of China's electricity consumption based on multi-period ST-LMDI model," Energy, Elsevier, vol. 170(C), pages 730-743.
    300. Stavroula P. Fameliti & Vasiliki D. Skintzi, 2020. "Predictive ability and economic gains from volatility forecast combinations," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 200-219, March.
    301. Costa, Alexandre Bonnet R. & Ferreira, Pedro Cavalcanti G. & Gaglianone, Wagner P. & Guillén, Osmani Teixeira C. & Issler, João Victor & Lin, Yihao, 2021. "Machine learning and oil price point and density forecasting," Energy Economics, Elsevier, vol. 102(C).
    302. Bordignon, Silvano & Bunn, Derek W. & Lisi, Francesco & Nan, Fany, 2013. "Combining day-ahead forecasts for British electricity prices," Energy Economics, Elsevier, vol. 35(C), pages 88-103.
    303. Francis X. Diebold & Minchul Shin, 2017. "Beating the Simple Average: Egalitarian LASSO for Combining Economic Forecasts," PIER Working Paper Archive 17-017, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 20 Aug 2017.
    304. Gaglianone, Wagner Piazza & Marins, Jaqueline Terra Moura, 2017. "Evaluation of exchange rate point and density forecasts: An application to Brazil," International Journal of Forecasting, Elsevier, vol. 33(3), pages 707-728.
    305. Li, Gang & Wu, Doris Chenguang & Zhou, Menglin & Liu, Anyu, 2019. "The combination of interval forecasts in tourism," Annals of Tourism Research, Elsevier, vol. 75(C), pages 363-378.
    306. Sancetta, Alessio, 2009. "Nearest neighbor conditional estimation for Harris recurrent Markov chains," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2224-2236, November.
    307. Jesús Molina‐Muñoz & Andrés Mora‐Valencia & Javier Perote, 2024. "Predicting carbon and oil price returns using hybrid models based on machine and deep learning," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(2), June.
    308. Dominik Wolff & Ulrich Neugebauer, 2019. "Tree-based machine learning approaches for equity market predictions," Journal of Asset Management, Palgrave Macmillan, vol. 20(4), pages 273-288, July.
    309. Mamdouh Abdelmoula M. ABDELSALAM, 2017. "Improving Phillips Curve’s Inflation Forecasts under Misspecification," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(3), pages 54-76, September.
    310. Allan Timmermann, 2018. "Forecasting Methods in Finance," Annual Review of Financial Economics, Annual Reviews, vol. 10(1), pages 449-479, November.
    311. Hoornweg, V., 2013. "Some Tools for Robustifying Econometric Analyses," Econometric Institute Research Papers 50163, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    312. Catherine L. Kling & Raymond W. Arritt & Gray Calhoun & David A. Keiser, 2017. "Integrated Assessment Models of the Food, Energy, and Water Nexus: A Review and an Outline of Research Needs," Annual Review of Resource Economics, Annual Reviews, vol. 9(1), pages 143-163, October.
    313. Shahid IQBAL & Maqbool H. SIAL, 2016. "Projections of Inflation Dynamics for Pakistan: GMDH Approach," Journal of Economics and Political Economy, KSP Journals, vol. 3(3), pages 536-559, September.
    314. Møller, Jan Kloppenborg & Nystrup, Peter & Madsen, Henrik, 2024. "Likelihood-based inference in temporal hierarchies," International Journal of Forecasting, Elsevier, vol. 40(2), pages 515-531.
    315. Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
    316. Malte Knüppel & Fabian Krüger, 2022. "Forecast uncertainty, disagreement, and the linear pool," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(1), pages 23-41, January.
    317. Dichtl, Hubert & Drobetz, Wolfgang & Neuhierl, Andreas & Wendt, Viktoria-Sophie, 2021. "Data snooping in equity premium prediction," International Journal of Forecasting, Elsevier, vol. 37(1), pages 72-94.
    318. Godahewa, Rakshitha & Bergmeir, Christoph & Webb, Geoffrey I. & Montero-Manso, Pablo, 2023. "An accurate and fully-automated ensemble model for weekly time series forecasting," International Journal of Forecasting, Elsevier, vol. 39(2), pages 641-658.
    319. Hubert Dichtl & Wolfgang Drobetz & Viktoria‐Sophie Wendt, 2021. "How to build a factor portfolio: Does the allocation strategy matter?," European Financial Management, European Financial Management Association, vol. 27(1), pages 20-58, January.
    320. Yu, Dan & Chen, Chuang & Wang, Yudong & Zhang, Yaojie, 2023. "Hedging pressure momentum and the predictability of oil futures returns," Economic Modelling, Elsevier, vol. 121(C).
    321. Abdollahi, Hooman, 2020. "A novel hybrid model for forecasting crude oil price based on time series decomposition," Applied Energy, Elsevier, vol. 267(C).
    322. Deschamps, Bruno & Ioannidis, Christos & Ka, Kook, 2020. "High-frequency credit spread information and macroeconomic forecast revision," International Journal of Forecasting, Elsevier, vol. 36(2), pages 358-372.
    323. Bonnier, Jean-Baptiste, 2022. "Forecasting crude oil volatility with exogenous predictors: As good as it GETS?," Energy Economics, Elsevier, vol. 111(C).
    324. Schumacher, Christian, 2016. "A comparison of MIDAS and bridge equations," International Journal of Forecasting, Elsevier, vol. 32(2), pages 257-270.
    325. Barrow, Devon K. & Crone, Sven F., 2016. "Cross-validation aggregation for combining autoregressive neural network forecasts," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1120-1137.
    326. Rossi, Barbara & Gürkaynak, Refet & Kısacıkoğlu, Burçin, 2013. "Do DSGE Models Forecast More Accurately Out-of-Sample than VAR Models?," CEPR Discussion Papers 9576, C.E.P.R. Discussion Papers.
    327. Klein, Tony, 2022. "Agree to disagree? Predictions of U.S. nonfarm payroll changes between 2008 and 2020 and the impact of the COVID19 labor shock," Journal of Economic Behavior & Organization, Elsevier, vol. 194(C), pages 264-286.
    328. Aparicio, Diego & Bertolotto, Manuel I., 2020. "Forecasting inflation with online prices," International Journal of Forecasting, Elsevier, vol. 36(2), pages 232-247.
    329. Daouia, Abdelaati & Girard, Stéphane & Stupfler, Gilles, 2021. "ExpectHill estimation, extreme risk and heavy tails," Journal of Econometrics, Elsevier, vol. 221(1), pages 97-117.
    330. Ma, Yao & Yang, Baochen & Su, Yunpeng, 2020. "Technical trading index, return predictability and idiosyncratic volatility," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 879-900.
    331. Jamali, Ibrahim & Yamani, Ehab, 2019. "Out-of-sample exchange rate predictability in emerging markets: Fundamentals versus technical analysis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 61(C), pages 241-263.
    332. Liu, Xiuli & Moreno, Blanca & García, Ana Salomé, 2016. "A grey neural network and input-output combined forecasting model. Primary energy consumption forecasts in Spanish economic sectors," Energy, Elsevier, vol. 115(P1), pages 1042-1054.
    333. Ding, Lili & Zhao, Zhongchao & Han, Meng, 2021. "Probability density forecasts for steam coal prices in China: The role of high-frequency factors," Energy, Elsevier, vol. 220(C).
    334. Borup, Daniel & Rapach, David E. & Schütte, Erik Christian Montes, 2023. "Mixed-frequency machine learning: Nowcasting and backcasting weekly initial claims with daily internet search volume data," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1122-1144.
    335. Li Liu & Yudong Wang, 2021. "Forecasting aggregate market volatility: The role of good and bad uncertainties," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(1), pages 40-61, January.
    336. Fei, Tianlun & Liu, Xiaoquan & Wen, Conghua, 2019. "Cross-sectional return dispersion and volatility prediction," Pacific-Basin Finance Journal, Elsevier, vol. 58(C).
    337. Federico Bassetti & Roberto Casarin & Francesco Ravazzolo, 2019. "Density Forecasting," BEMPS - Bozen Economics & Management Paper Series BEMPS59, Faculty of Economics and Management at the Free University of Bozen.

  14. Andrew J. Patton & Allan Timmermann, 2008. "The Resolution of Macroeconomic Uncertainty: Evidence from Survey Forecast," CREATES Research Papers 2008-54, Department of Economics and Business Economics, Aarhus University.

    Cited by:

    1. Pfajfar, D. & Zakelj, B., 2012. "Uncertainty and Disagreement in Forecasting Inflation : Evidence from the Laboratory (Revised version of CentER DP 2011-053)," Discussion Paper 2012-072, Tilburg University, Center for Economic Research.
    2. Pfajfar, D. & Zakelj, B., 2012. "Uncertainty and Disagreement in Forecasting Inflation : Evidence from the Laboratory (Revised version of EBC DP 2011-014)," Other publications TiSEM 2b92a09f-918e-4614-978d-0, Tilburg University, School of Economics and Management.
    3. Jonas Dovern & Ulrich Fritsche & Jiri Slacalek, 2012. "Disagreement Among Forecasters in G7 Countries," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1081-1096, November.
    4. Pfajfar, D. & Zakelj, B., 2012. "Uncertainty and Disagreement in Forecasting Inflation : Evidence from the Laboratory (Revised version of CentER DP 2011-053)," Other publications TiSEM 38fac5ce-fe8f-4b61-a679-f, Tilburg University, School of Economics and Management.
    5. Fernandes, Marcelo & Thiele, Eduardo, 2015. "The Macroeconomic Determinants of the Term Structure of Inflation Expectations in Brazil," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 35(1), October.
    6. Ohnsorge,Franziska Lieselotte & Stocker,Marc & Some,Modeste Y., 2016. "Quantifying uncertainties in global growth forecasts," Policy Research Working Paper Series 7770, The World Bank.

  15. Allan Timmermann & Bruce N. Lehmann, 2007. "Performance Measurement and Evaluation," FMG Discussion Papers dp604, Financial Markets Group.

    Cited by:

    1. Cuthbertson, Keith & Nitzsche, Dirk & O'Sullivan, Niall, 2016. "A review of behavioural and management effects in mutual fund performance," International Review of Financial Analysis, Elsevier, vol. 44(C), pages 162-176.
    2. Cuthbertson, Keith & Nitzsche, Dirk, 2013. "Performance, stock selection and market timing of the German equity mutual fund industry," Journal of Empirical Finance, Elsevier, vol. 21(C), pages 86-101.

  16. Timmermann, Allan & Elliott, Graham, 2007. "Economic Forecasting," CEPR Discussion Papers 6158, C.E.P.R. Discussion Papers.

    Cited by:

    1. von der Gracht, Heiko A. & Hommel, Ulrich & Prokesch, Tobias & Wohlenberg, Holger, 2016. "Testing weighting approaches for forecasting in a Group Wisdom Support System environment," Journal of Business Research, Elsevier, vol. 69(10), pages 4081-4094.
    2. Andrii Babii & Xi Chen & Eric Ghysels & Rohit Kumar, 2020. "Binary Choice with Asymmetric Loss in a Data-Rich Environment: Theory and an Application to Racial Justice," Papers 2010.08463, arXiv.org, revised Nov 2021.
    3. Barbara Rossi, 2011. "Advances in Forecasting Under Instability," Working Papers 11-20, Duke University, Department of Economics.
    4. Norman R. Swanson & Nii Ayi Armah, 2011. "Predictive Inference Under Model Misspecification with an Application to Assessing the Marginal Predictive Content of Money for Output," Departmental Working Papers 201103, Rutgers University, Department of Economics.
    5. Luca Brugnolini, 2018. "Forecasting Deflation Probability in the EA: A Combinatoric Approach," CBM Working Papers WP/01/2018, Central Bank of Malta.
    6. Ivana Komunjer & Michael T. Owyang, 2012. "Multivariate Forecast Evaluation and Rationality Testing," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1066-1080, November.
    7. Anwen Yin, 2022. "Does the kitchen‐sink model work forecasting the equity premium?," International Review of Finance, International Review of Finance Ltd., vol. 22(1), pages 223-247, March.
    8. David I. Harvey & Stephen J. Leybourne & Yang Zu, 2024. "Tests for equal forecast accuracy under heteroskedasticity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 850-869, August.
    9. Kilian, Lutz & Alquist, Ron, 2007. "What Do We Learn from the Price of Crude Oil Futures?," CEPR Discussion Papers 6548, C.E.P.R. Discussion Papers.
    10. Ghysels, Eric & Ozkan, Nazire, 2015. "Real-time forecasting of the US federal government budget: A simple mixed frequency data regression approach," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1009-1020.
    11. Emilio Zanetti Chini, 2018. "Forecaster’s utility and forecasts coherence," CREATES Research Papers 2018-01, Department of Economics and Business Economics, Aarhus University.
    12. Massimiliano Marcellino, 2007. "Pooling‐Based Data Interpolation and Backdating," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(1), pages 53-71, January.
    13. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
    14. Barbara Rossi & Tatevik Sekhposyan, 2015. "Alternative Tests for Correct Specification of Conditional Predictive Densities," Working Papers 758, Barcelona School of Economics.
    15. Mehmet Pinar & Thanasis Stengos & M. Ege Yazgan, 2018. "Quantile forecast combination using stochastic dominance," Empirical Economics, Springer, vol. 55(4), pages 1717-1755, December.
    16. Gibson, Heather D. & Hall, Stephen G. & Tavlas, George S., 2020. "Nonlinear forecast combinations: An example using euro-area real GDP growth," Journal of Economic Behavior & Organization, Elsevier, vol. 180(C), pages 579-589.
    17. Brice Corgnet & Cary Deck & Mark Desantis & David Porter, 2022. "Forecasting Skills in Experimental Market : Illusion or Reality?," Post-Print hal-04325544, HAL.
    18. Duncan, Roberto & Martínez-García, Enrique, 2019. "New perspectives on forecasting inflation in emerging market economies: An empirical assessment," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1008-1031.
    19. Grzegorz Marcjasz & Bartosz Uniejewski & Rafał Weron, 2020. "Beating the Naïve—Combining LASSO with Naïve Intraday Electricity Price Forecasts," Energies, MDPI, vol. 13(7), pages 1-16, April.
    20. Jin, Xiaoye, 2022. "Performance of intraday technical trading in China’s gold market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 76(C).
    21. Timo Dimitriadis & Andrew J. Patton & Patrick W. Schmidt, 2019. "Testing Forecast Rationality for Measures of Central Tendency," Papers 1910.12545, arXiv.org, revised Jul 2024.
    22. Qiu, Yue & Zheng, Yuchen, 2023. "Improving box office projections through sentiment analysis: Insights from regularization-based forecast combinations," Economic Modelling, Elsevier, vol. 125(C).
    23. Shahzad Ahmad & Farooq Pasha, 2015. "A Pragmatic Model for Monetary Policy Analysis I: The Case of Pakistan," SBP Research Bulletin, State Bank of Pakistan, Research Department, vol. 11, pages 1-42.
    24. Becker, Sascha & Nautz, Dieter, 2010. "Inflation, price dispersion and market integration through the lens of a monetary search model," Discussion Papers 2010/2, Free University Berlin, School of Business & Economics.
    25. Medel, Carlos A., 2017. "Forecasting Chilean Inflation with the Hybrid New Keynesian Phillips Curve: Globalisation, Combination, and Accuracy," MPRA Paper 78439, University Library of Munich, Germany.
    26. Xiaojie Xu, 2017. "Short-run price forecast performance of individual and composite models for 496 corn cash markets," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(14), pages 2593-2620, October.
    27. Pinto, Jeronymo Marcondes & Marçal, Emerson Fernandes, 2019. "Cross-validation based forecasting method: a machine learning approach," Textos para discussão 498, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
    28. Oleg Korenok & Stanislav Radchenko & Norman R. Swanson, 2010. "International evidence on the efficacy of new‐Keynesian models of inflation persistence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 31-54, January.
    29. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
    30. Masayoshi Hayashi, 2012. "Forecasting Welfare Caseloads: The Case of the Japanese Public Assistance Program," CIRJE F-Series CIRJE-F-846, CIRJE, Faculty of Economics, University of Tokyo.
    31. Boriss Siliverstovs & Daniel S. Wochner, 2021. "State‐dependent evaluation of predictive ability," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 547-574, April.
    32. Edda Claus, 2011. "Seven Leading Indexes of New Zealand Employment," The Economic Record, The Economic Society of Australia, vol. 87(276), pages 76-89, March.
    33. Hambuckers, J. & Ulm, M., 2023. "On the role of interest rate differentials in the dynamic asymmetry of exchange rates," Economic Modelling, Elsevier, vol. 129(C).
    34. , 2019. "The Contribution of Jump Signs and Activity to Forecasting Stock Price Volatility," Working Papers 1902, Federal Reserve Bank of Dallas, revised 17 Dec 2022.
    35. Kilian, Lutz & Baumeister, Christiane & Lee, Thomas K, 2014. "Are there Gains from Pooling Real-Time Oil Price Forecasts?," CEPR Discussion Papers 10075, C.E.P.R. Discussion Papers.
    36. Ruben Loaiza‐Maya & Gael M. Martin & David T. Frazier, 2021. "Focused Bayesian prediction," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(5), pages 517-543, August.
    37. Hampel, Katharina & Kunz, Marcus & Schanne, Norbert & Wapler, Rüdiger & Weyh, Antje, 2007. "Regional employment forecasts with spatial interdependencies," IAB-Discussion Paper 200702, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
    38. Silva, Thiago Christiano & Wilhelm, Paulo Victor Berri & Amancio, Diego R., 2024. "Machine learning and economic forecasting: The role of international trade networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 649(C).
    39. David A. Mascio & Frank J. Fabozzi & J. Kenton Zumwalt, 2021. "Market timing using combined forecasts and machine learning," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(1), pages 1-16, January.
    40. João F. Caldeira & Guilherme V. Moura & Francisco J. Nogales & André A. P. Santos, 2017. "Combining Multivariate Volatility Forecasts: An Economic-Based Approach," Journal of Financial Econometrics, Oxford University Press, vol. 15(2), pages 247-285.
    41. Dabo-Niang, Sophie & Francq, Christian & Zakoian, Jean-Michel, 2009. "Combining parametric and nonparametric approaches for more efficient time series prediction," MPRA Paper 16893, University Library of Munich, Germany.
    42. Pablo Pincheira, 2012. "Are Forecast Combinations Efficient?," Working Papers Central Bank of Chile 661, Central Bank of Chile.
    43. Byrne, Joseph & Cao, Shuo & Korobilis, Dimitris, 2015. "Term Structure Dynamics, Macro-Finance Factors and Model Uncertainty," MPRA Paper 63844, University Library of Munich, Germany.
    44. Tim Bollerslev & Hao Zhou, 2006. "Expected stock returns and variance risk premia," Finance and Economics Discussion Series 2007-11, Board of Governors of the Federal Reserve System (U.S.).
    45. Elliot Beck & Damian Kozbur & Michael Wolf, 2023. "Hedging Forecast Combinations With an Application to the Random Forest," Papers 2308.15384, arXiv.org, revised Aug 2023.
    46. Régis Barnichon & Geert Mesters, 2020. "Optimal policy perturbations," Economics Working Papers 1716, Department of Economics and Business, Universitat Pompeu Fabra.
    47. Lima, Luiz Renato & Meng, Fanning & Godeiro, Lucas, 2020. "Quantile forecasting with mixed-frequency data," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1149-1162.
    48. Timmermann, Allan & Patton, Andrew, 2007. "Learning in Real Time: Theory and Empirical Evidence from the Term Structure of Survey Forecasts," CEPR Discussion Papers 6526, C.E.P.R. Discussion Papers.
    49. Bajgrowicz, Pierre & Scaillet, Olivier, 2012. "Technical trading revisited: False discoveries, persistence tests, and transaction costs," Journal of Financial Economics, Elsevier, vol. 106(3), pages 473-491.
    50. Barbara Rossi, 2005. "Are Exchange Rates Really Random Walks? Some Evidence Robust to Parameter Instability," International Finance 0503006, University Library of Munich, Germany.
    51. Deprez, Niek & Frömmel, Michael, 2024. "Are simple technical trading rules profitable in bitcoin markets?," International Review of Economics & Finance, Elsevier, vol. 93(PB), pages 858-874.
    52. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
    53. Yi-Ting Chen & Chu-An Liu, 2021. "Model Averaging for Asymptotically Optimal Combined Forecasts," IEAS Working Paper : academic research 21-A002, Institute of Economics, Academia Sinica, Taipei, Taiwan.
    54. Hannes Mueller & Christopher Rauh, 2019. "The hard problem of prediction for conflict prevention," Cahiers de recherche 2019-02, Universite de Montreal, Departement de sciences economiques.
    55. Ralf Dewenter & Ulrich Heimeshoff, 2017. "Predicting Advertising Volumes Using Structural Time Series Models: A Case Study," Economics Bulletin, AccessEcon, vol. 37(3), pages 1644-1652.
    56. Sun, Yuying & Hong, Yongmiao & Wang, Shouyang & Zhang, Xinyu, 2023. "Penalized time-varying model averaging," Journal of Econometrics, Elsevier, vol. 235(2), pages 1355-1377.
    57. Muhammad Nadim Hanif & Muhammad Jahanzeb Malik, 2015. "Evaluating the Performance of Inflation Forecasting Models of Pakistan," SBP Research Bulletin, State Bank of Pakistan, Research Department, vol. 11, pages 43-78.
    58. Boriss Siliverstovs & Daniel Wochner, 2019. "Recessions as Breadwinner for Forecasters State-Dependent Evaluation of Predictive Ability: Evidence from Big Macroeconomic US Data," KOF Working papers 19-463, KOF Swiss Economic Institute, ETH Zurich.
    59. Gloria Gonzalez-Rivera & Vladimir Rodriguez-Caballero & Esther Ruiz, 2023. "Expecting the unexpected: Stressed scenarios for economic growth," Working Papers 202314, University of California at Riverside, Department of Economics.
    60. Lumengo Bonga-Bonga, 2008. "Modeling the rand-dollar future spot rates: The Kalman Filter approach," Working Papers 098, Economic Research Southern Africa.
    61. Thierry Cohignac & Nabil Kazi-Tani, 2019. "Quantile Mixing and Model Uncertainty Measures," Working Papers hal-02405859, HAL.
    62. Nazaria Solferino & Robert Waldmann, 2010. "Predicting the signs of forecast errors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(5), pages 476-485.
    63. Pablo Pincheira & Carlos A. Medel, 2012. "Forecasting Inflation with a Simple and Accurate Benchmark: a Cross-Country Analysis," Working Papers Central Bank of Chile 677, Central Bank of Chile.
    64. Philip Hans Franses & Michael McAleer & Rianne Legerstee, 2010. "Evaluating Macroeconomic Forecasts: A Review of Some Recent Developments," CIRJE F-Series CIRJE-F-729, CIRJE, Faculty of Economics, University of Tokyo.
    65. Hounyo, Ulrich & Lahiri, Kajal, 2023. "Estimating the variance of a combined forecast: Bootstrap-based approach," Journal of Econometrics, Elsevier, vol. 232(2), pages 445-468.
    66. David O. Cushman, 2012. "Mankiw vs. DeLong and Krugman on the CEA's Real GDP Forecasts in Early 2009: What Might a Time Series Econometrician Have Said?," Econ Journal Watch, Econ Journal Watch, vol. 9(3), pages 309-349, September.
    67. Diebold, Francis X. & Shin, Minchul, 2019. "Machine learning for regularized survey forecast combination: Partially-egalitarian LASSO and its derivatives," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1679-1691.
    68. Becker, R. & Clements, A.E. & Doolan, M.B. & Hurn, A.S., 2015. "Selecting volatility forecasting models for portfolio allocation purposes," International Journal of Forecasting, Elsevier, vol. 31(3), pages 849-861.
    69. Gregor W. Smith, 2007. "Pooling Forecasts In Linear Rational Expectations Models," Working Paper 1129, Economics Department, Queen's University.
    70. Konstantinos Nikolopoulos & Waleed S. Alghassab & Konstantia Litsiou & Stelios Sapountzis, 2019. "Long-Term Economic Forecasting with Structured Analogies and Interaction Groups," Working Papers 19018, Bangor Business School, Prifysgol Bangor University (Cymru / Wales).
    71. Gael M. Martin & Rub'en Loaiza-Maya & David T. Frazier & Worapree Maneesoonthorn & Andr'es Ram'irez Hassan, 2020. "Optimal probabilistic forecasts: When do they work?," Papers 2009.09592, arXiv.org.
    72. Liudas Giraitis & George Kapetanios & Simon Price, 2012. "Adaptive Forecasting in the Presence of Recent and Ongoing Structural Change," Working Papers 691, Queen Mary University of London, School of Economics and Finance.
    73. Lahiri, Kajal & Wang, J. George, 2013. "Evaluating probability forecasts for GDP declines using alternative methodologies," International Journal of Forecasting, Elsevier, vol. 29(1), pages 175-190.
    74. Maik Wolters, 2017. "How the Baby Boomers' Retirement Wave Distorts Model-Based Output Gap Estimates," Jena Economics Research Papers 2017-008, Friedrich-Schiller-University Jena.
    75. Hännikäinen, Jari, 2014. "Multi-step forecasting in the presence of breaks," MPRA Paper 55816, University Library of Munich, Germany.
    76. Manganelli, Simone, 2006. "A new theory of forecasting," Working Paper Series 584, European Central Bank.
    77. Loening, Josef L. & Durevall, Dick & Birru, Yohannes A., 2009. "Inflation dynamics and food prices in an agricultural economy : the case of Ethiopia," Policy Research Working Paper Series 4969, The World Bank.
    78. Dellas, Harris & Gibson, Heather D. & Hall, Stephen G. & Tavlas, George S., 2018. "The macroeconomic and fiscal implications of inflation forecast errors," Journal of Economic Dynamics and Control, Elsevier, vol. 93(C), pages 203-217.
    79. Durevall, Dick & Loening, Josef, 2009. "Ethiopia: Updated Inflation Forecasts," MPRA Paper 25899, University Library of Munich, Germany.
    80. Francis X. Diebold & Minchul Shin & Boyuan Zhang, 2021. "On the Aggregation of Probability Assessments: Regularized Mixtures of Predictive Densities for Eurozone Inflation and Real Interest Rates," Working Papers 21-06, Federal Reserve Bank of Philadelphia.
    81. Rebonato, Riccardo & Ronzani, Riccardo, 2021. "Is convexity efficiently priced? Evidence from international swap markets," Journal of Empirical Finance, Elsevier, vol. 63(C), pages 392-413.
    82. Hendry, David F. & Hubrich, Kirstin, 2006. "Forecasting economic aggregates by disaggregates," Working Paper Series 589, European Central Bank.
    83. Hännikäinen, Jari, 2014. "Zero lower bound, unconventional monetary policy and indicator properties of interest rate spreads," MPRA Paper 56737, University Library of Munich, Germany.
    84. Erik Kole & Thijs Markwat & Anne Opschoor & Dick van Dijk, 2017. "Forecasting Value-at-Risk under Temporal and Portfolio Aggregation," Journal of Financial Econometrics, Oxford University Press, vol. 15(4), pages 649-677.
    85. David Bolder & Yuliya Romanyuk, 2008. "Combining Canadian Interest-Rate Forecasts," Staff Working Papers 08-34, Bank of Canada.
    86. Andrii Babii & Eric Ghysels & Jonas Striaukas, 2024. "Econometrics of machine learning methods in economic forecasting," Chapters, in: Michael P. Clements & Ana Beatriz Galvão (ed.), Handbook of Research Methods and Applications in Macroeconomic Forecasting, chapter 10, pages 246-273, Edward Elgar Publishing.
    87. Graziano Moramarco, 2021. "Financial-cycle ratios and medium-term predictions of GDP: Evidence from the United States," Papers 2111.00822, arXiv.org, revised Jan 2024.
    88. Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023. "Machine learning advances for time series forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
    89. Kőrösi, Gábor, 2016. "A lány továbbra is szolgál.. [Modelling and econometrics]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(6), pages 647-667.
    90. Patrick Schmidt & Matthias Katzfuss & Tilmann Gneiting, 2021. "Interpretation of point forecasts with unknown directive," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(6), pages 728-743, September.
    91. Kosei Fukuda, 2010. "Three new empirical perspectives on the Hodrick–Prescott parameter," Empirical Economics, Springer, vol. 39(3), pages 713-731, December.
    92. Tsuchiya, Yoichi, 2016. "Directional analysis of fiscal sustainability: Revisiting Domar's debt sustainability condition," International Review of Economics & Finance, Elsevier, vol. 41(C), pages 189-201.
    93. Wang, Yiyao & Lee, Tae-Hwy, 2014. "Asymmetric loss in the Greenbook and the Survey of Professional Forecasters," International Journal of Forecasting, Elsevier, vol. 30(2), pages 235-245.
    94. Gergely Akos Ganics, 2017. "Optimal density forecast combinations," Working Papers 1751, Banco de España.
    95. Bennedsen, Mikkel & Hillebrand, Eric & Koopman, Siem Jan, 2021. "Modeling, forecasting, and nowcasting U.S. CO2 emissions using many macroeconomic predictors," Energy Economics, Elsevier, vol. 96(C).
    96. Yin, Anwen, 2020. "Equity premium prediction and optimal portfolio decision with Bagging," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    97. Maheu, John M & Song, Yong & Yang, Qiao, 2018. "Oil Price Shocks and Economic Growth: The Volatility Link," MPRA Paper 83999, University Library of Munich, Germany.
    98. Medel, Carlos A., 2014. "Probabilidad Clásica de Sobreajuste con Criterios de Información: Estimaciones con Series Macroeconómicas Chilenas [Classical Probability of Overfitting with Information Criteria: Estimations with ," MPRA Paper 57401, University Library of Munich, Germany.
    99. Rodrigo Alfaro & Andrés Sagner, 2009. "When RSI met the Binomial-Tree," Working Papers Central Bank of Chile 520, Central Bank of Chile.
    100. Colino, Evelyn V. & Irwin, Scott H. & Garcia, Philip, 2008. "How Much Can Outlook Forecasts be Improved? An Application to the U.S. Hog Market," 2008 Conference, April 21-22, 2008, St. Louis, Missouri 37620, NCCC-134 Conference on Applied Commodity Price Analysis, Forecasting, and Market Risk Management.
    101. Reto Cueni & Bruno S. Frey, 2014. "Forecasts and Reactivity," CREMA Working Paper Series 2014-10, Center for Research in Economics, Management and the Arts (CREMA).
    102. Ari Hyytinen & Petri Rouvinen & Mika Pajarinen & Joosua Virtanen, 2023. "Ex Ante Predictability of Rapid Growth: A Design Science Approach," Entrepreneurship Theory and Practice, , vol. 47(6), pages 2465-2493, November.
    103. Jaqueson K. Galimberti, 2020. "Forecasting GDP Growth from Outer Space," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(4), pages 697-722, August.
    104. González, Andrés & Teräsvirta, Timo, 2006. "Modelling autoregressive processes with a shifting mean," SSE/EFI Working Paper Series in Economics and Finance 637, Stockholm School of Economics, revised 22 May 2007.
    105. Sancetta, A., 2007. "Online Forecast Combination for Dependent Heterogeneous Data," Cambridge Working Papers in Economics 0718, Faculty of Economics, University of Cambridge.
    106. Ramazan Gencay & Ege Yazgan, 2017. "When Are Wavelets Useful Forecasters?," Working Papers 1704, The Center for Financial Studies (CEFIS), Istanbul Bilgi University.
    107. Dewenter, Ralf & Heimeshoff, Ulrich, 2016. "Predicting advertising volumes: A structural time series approach," DICE Discussion Papers 228, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).
    108. Maria Antoinette Silgoner, 2005. "An Overview of European Economic Indicators: Great Variety of Data on the Euro Area, Need for More Extensive Coverage of the New EU Member States," Monetary Policy & the Economy, Oesterreichische Nationalbank (Austrian Central Bank), issue 3, pages 66-89.
    109. Stanislav Anatolyev, 2007. "Inference about predictive ability when there are many predictors," Working Papers w0096, New Economic School (NES).
    110. Dewangan, Chaman Lal & Singh, S.N. & Chakrabarti, S., 2020. "Combining forecasts of day-ahead solar power," Energy, Elsevier, vol. 202(C).
    111. Marc-Oliver Pohle, 2020. "The Murphy Decomposition and the Calibration-Resolution Principle: A New Perspective on Forecast Evaluation," Papers 2005.01835, arXiv.org.
    112. Euler Pereira G. de Mello & Francisco Marcos R. Figueiredo, 2014. "Assessing the Short-term Forecasting Power of Confidence Indices," Working Papers Series 371, Central Bank of Brazil, Research Department.
    113. Norman Swanson & Valentina Corradi, 2006. "Nonparametric Bootstrap Procedures for Predictive Inference Based on Recursive Estimation Schemes," Departmental Working Papers 200618, Rutgers University, Department of Economics.
    114. Gibbs, Christopher G. & Vasnev, Andrey L., 2024. "Conditionally optimal weights and forward-looking approaches to combining forecasts," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1734-1751.
    115. Montgomery, Jacob M. & Hollenbach, Florian M. & Ward, Michael D., 2015. "Calibrating ensemble forecasting models with sparse data in the social sciences," International Journal of Forecasting, Elsevier, vol. 31(3), pages 930-942.
    116. Chevillon, Guillaume, 2016. "Multistep forecasting in the presence of location shifts," International Journal of Forecasting, Elsevier, vol. 32(1), pages 121-137.
    117. Rui Fan & Stephen J. Taylor & Matteo Sandri, 2018. "Density forecast comparisons for stock prices, obtained from high‐frequency returns and daily option prices," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(1), pages 83-103, January.
    118. Fang, Jiali & Jacobsen, Ben & Qin, Yafeng, 2014. "Predictability of the simple technical trading rules: An out-of-sample test," Review of Financial Economics, Elsevier, vol. 23(1), pages 30-45.
    119. Buncic, Daniel & Tischhauser, Martin, 2017. "Macroeconomic factors and equity premium predictability," International Review of Economics & Finance, Elsevier, vol. 51(C), pages 621-644.
    120. Galvao Jr., Antonio F., 2011. "Quantile regression for dynamic panel data with fixed effects," Journal of Econometrics, Elsevier, vol. 164(1), pages 142-157, September.
    121. Y. Tsuchiya, 2014. "A directional evaluation of corporate executives' exchange rate forecasts," Applied Economics, Taylor & Francis Journals, vol. 46(1), pages 95-101, January.
    122. Favero, Carlo A., 2013. "Modelling and forecasting government bond spreads in the euro area: A GVAR model," Journal of Econometrics, Elsevier, vol. 177(2), pages 343-356.
    123. Timothy Christensen & Hyungsik Roger Moon & Frank Schorfheide, 2020. "Robust Forecasting," PIER Working Paper Archive 20-038, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
      • Timothy Christensen & Hyungsik Roger Moon & Frank Schorfheide, 2020. "Robust Forecasting," Papers 2011.03153, arXiv.org, revised Dec 2020.
    124. Sudarshan Kumar & Sobhesh Kumar Agarwalla & Jayanth R. Varma & Vineet Virmani, 2023. "Harvesting the volatility smile in a large emerging market: A Dynamic Nelson–Siegel approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(11), pages 1615-1644, November.
    125. Li Chen & Jiti Gao & Farshid Vahid, 2019. "Global Temperatures and Greenhouse Gases: A Common Features Approach," Monash Econometrics and Business Statistics Working Papers 23/19, Monash University, Department of Econometrics and Business Statistics.
    126. Gneiting, Tilmann, 2011. "Quantiles as optimal point forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 197-207, April.
    127. Norman Swanson & Oleg Korenok, 2006. "The Incremental Predictive Information Associated with Using Theoretical New Keynesian DSGE Models Versus Simple Linear Alternatives," Departmental Working Papers 200615, Rutgers University, Department of Economics.
    128. Guillaume Belly & Lukas Boeckelmann & Carlos Mateo Caicedo Graciano & Alberto Di Iorio & Klodiana Istrefi & Vasileios Siakoulis & Arthur Stalla-Bourdillon, 2023. "Forecasting sovereign risk in the Euro area via machine learning," Post-Print hal-04459577, HAL.
    129. Mehmet Pinar & Thanasis Stengos & M. Ege Yazgan, 2012. "Is there an Optimal Forecast Combination? A Stochastic Dominance Approach to Forecast Combination Puzzle," Working Paper series 17_12, Rimini Centre for Economic Analysis.
    130. Zhu, Yinchu & Timmermann, Allan, 2022. "Conditional rotation between forecasting models," Journal of Econometrics, Elsevier, vol. 231(2), pages 329-347.
    131. Menelaos Karanasos & Alexandros Paraskevopoulos & Faek Menla Ali & Michail Karoglou & Stavroula Yfanti, 2014. "Modelling Returns and Volatilities During Financial Crises: a Time Varying Coefficient Approach," Papers 1403.7179, arXiv.org.
    132. Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies," CIRANO Working Papers 2004s-19, CIRANO.
    133. Lambert, David K. & Miljkovic, Dragan, 2010. "The sources of variability in U.S. food prices," Journal of Policy Modeling, Elsevier, vol. 32(2), pages 210-222, March.
    134. Michael B. Devereux & Gregor W. Smith & James Yetman, 2009. "Consumption and Real Exchange Rates in Professional Forecasts," NBER Working Papers 14795, National Bureau of Economic Research, Inc.
    135. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01442618, HAL.
    136. Eraslan, Sercan & Schröder, Maximilian, 2019. "Nowcasting GDP with a large factor model space," Discussion Papers 41/2019, Deutsche Bundesbank.
    137. Paolella, Marc S. & Polak, Paweł & Walker, Patrick S., 2019. "Regime switching dynamic correlations for asymmetric and fat-tailed conditional returns," Journal of Econometrics, Elsevier, vol. 213(2), pages 493-515.
    138. Eriksen, Jonas N., 2017. "Expected Business Conditions and Bond Risk Premia," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 52(4), pages 1667-1703, August.
    139. Timmermann, Allan & Zhu, Yinchu, 2021. "Conditional Rotation Between Forecasting Models," CEPR Discussion Papers 15917, C.E.P.R. Discussion Papers.
    140. G. Kontogeorgos & K. Lambrias, 2022. "Evaluating the Eurosystem/ECB staff macroeconomic projections: The first 20 years," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 213-229, March.
    141. Laurent, Sébastien & Rombouts, Jeroen V.K. & Violante, Francesco, 2013. "On loss functions and ranking forecasting performances of multivariate volatility models," Journal of Econometrics, Elsevier, vol. 173(1), pages 1-10.
    142. Timmermann, Allan, 2008. "Elusive return predictability," International Journal of Forecasting, Elsevier, vol. 24(1), pages 1-18.
    143. Barbara Rossi & Tatevik Sekhposyan, 2010. "Understanding Models' Forecasting Performance," Working Papers 10-56, Duke University, Department of Economics.
    144. Pablo Pincheira & Carlos Medel, 2012. "Forecasting Inflation With a Random Walk," Working Papers Central Bank of Chile 669, Central Bank of Chile.
    145. Prasad S Bhattacharya & Dimitrios D Thomakos, 2011. "Improving forecasting performance by window and model averaging," CAMA Working Papers 2011-05, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    146. Philippe Bacchetta & Eric van Wincoop, 2009. "On the Unstable Relationship between Exchange Rates and Macroeconomic Fundamentals," Working Papers 272009, Hong Kong Institute for Monetary Research.
    147. Troy Matheson & James Mitchell & Brian Silverstone, 2007. "Nowcasting and predicting data revisions in real time using qualitative panel survey data," Reserve Bank of New Zealand Discussion Paper Series DP2007/02, Reserve Bank of New Zealand.
    148. Erik Olsen & Gavin Fay & Sarah Gaichas & Robert Gamble & Sean Lucey & Jason S Link, 2016. "Ecosystem Model Skill Assessment. Yes We Can!," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-24, January.
    149. Caio Almeida & Kym Ardison & Daniela Kubudi & Axel Simonsen & José Vicente, 2018. "Forecasting Bond Yields with Segmented Term Structure Models," Journal of Financial Econometrics, Oxford University Press, vol. 16(1), pages 1-33.
    150. Alex Tagliabracci, 2020. "Asymmetry in the conditional distribution of euro-area inflation," Temi di discussione (Economic working papers) 1270, Bank of Italy, Economic Research and International Relations Area.
    151. Emilian Dobrescu, 2014. "Attempting to Quantify the Accuracy of Complex Macroeconomic Forecasts," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 5-21, December.
    152. Dennis Kant & Andreas Pick & Jasper de Winter, 2022. "Nowcasting GDP using machine learning methods," Working Papers 754, DNB.
    153. Florian Ziel & Rafal Weron, 2016. "Day-ahead electricity price forecasting with high-dimensional structures: Univariate vs. multivariate models," HSC Research Reports HSC/16/08, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    154. Sancetta, A., 2005. "Forecasting Distributions with Experts Advice," Cambridge Working Papers in Economics 0517, Faculty of Economics, University of Cambridge.
    155. Nikolay Robinzonov & Klaus Wohlrabe, 2010. "Freedom of Choice in Macroeconomic Forecasting ," CESifo Economic Studies, CESifo Group, vol. 56(2), pages 192-220, June.
    156. Medel, Carlos A., 2015. "Forecasting Inflation with the Hybrid New Keynesian Phillips Curve: A Compact-Scale Global VAR Approach," MPRA Paper 67081, University Library of Munich, Germany.
    157. Kourentzes, Nikolaos & Barrow, Devon & Petropoulos, Fotios, 2019. "Another look at forecast selection and combination: Evidence from forecast pooling," International Journal of Production Economics, Elsevier, vol. 209(C), pages 226-235.
    158. Zihui Yang & Yinggang Zhou, 2017. "Quantitative Easing and Volatility Spillovers Across Countries and Asset Classes," Management Science, INFORMS, vol. 63(2), pages 333-354, February.
    159. Rama K. Malladi, 2024. "Benchmark Analysis of Machine Learning Methods to Forecast the U.S. Annual Inflation Rate During a High-Decile Inflation Period," Computational Economics, Springer;Society for Computational Economics, vol. 64(1), pages 335-375, July.
    160. Siddhartha S. Bora & Ani L. Katchova & Todd H. Kuethe, 2021. "The Rationality of USDA Forecasts under Multivariate Asymmetric Loss," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(3), pages 1006-1033, May.
    161. Hardy, Nicolás & Ferreira, Tiago & Quinteros, Maria J. & Magner, Nicolás S., 2023. "“Watch your tone!”: Forecasting mining industry commodity prices with financial report tone," Resources Policy, Elsevier, vol. 86(PA).
    162. Xin Huang & Han Lin Shang & David Pitt, 2022. "A model sufficiency test using permutation entropy," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(5), pages 1017-1036, August.
    163. Laura Veldkamp & Anna Orlik, 2016. "Understanding Uncertainty Shocks and the Role of the Black Swan," Working Papers 16-04, New York University, Leonard N. Stern School of Business, Department of Economics.
    164. Blaskowitz, Oliver J. & Herwartz, Helmut, 2009. "On economic evaluation of directional forecasts," SFB 649 Discussion Papers 2009-052, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    165. Blaskowitz, Oliver & Herwartz, Helmut, 2011. "On economic evaluation of directional forecasts," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1058-1065, October.
    166. Philip Hans Franses & Michael McAleer & Rianne Legerstee, 2014. "Evaluating Macroeconomic Forecasts: A Concise Review Of Some Recent Developments," Journal of Economic Surveys, Wiley Blackwell, vol. 28(2), pages 195-208, April.
    167. Graziano Moramarco, 2021. "Regime-Switching Density Forecasts Using Economists' Scenarios," Papers 2110.13761, arXiv.org, revised Feb 2024.
    168. Laura Veldkamp & Anna Orlik, 2013. "Understanding Uncertainty Shocks," 2013 Meeting Papers 391, Society for Economic Dynamics.
    169. Kevin Lee, James Morley and Kalvinder Sheields, 2011. "The Meta Taylor Rule," Department of Economics - Working Papers Series 1131, The University of Melbourne.
    170. Rafal Weron & Florian Ziel, 2018. "Electricity price forecasting," HSC Research Reports HSC/18/08, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    171. Yu Jeffrey Hu & Jeroen Rombouts & Ines Wilms, 2023. "Fast Forecasting of Unstable Data Streams for On-Demand Service Platforms," Papers 2303.01887, arXiv.org, revised May 2024.
    172. Strunz, Franziska & Gödl, Maximilian, 2023. "An Evaluation of Professional Forecasts for the German Economy," VfS Annual Conference 2023 (Regensburg): Growth and the "sociale Frage" 277707, Verein für Socialpolitik / German Economic Association.
    173. Anna Orlik & Laura Veldkamp, 2014. "Understanding Uncertainty Shocks and the Role of Black Swans," NBER Working Papers 20445, National Bureau of Economic Research, Inc.
    174. Y. Tsuchiya, 2014. "Are consumer sentiments useful in Japan? An application of a new market-timing test," Applied Economics Letters, Taylor & Francis Journals, vol. 21(5), pages 356-359, March.
    175. Norman Swanson & Oleg Korenok, 2006. "How Sticky Is Sticky Enough? A Distributional and Impulse Response Analysis of New Keynesian DSGE Models. Extended Working Paper Version," Departmental Working Papers 200612, Rutgers University, Department of Economics.
    176. Adam Elbourne & Coen Teulings, 2011. "The potential of a small model," CPB Discussion Paper 193, CPB Netherlands Bureau for Economic Policy Analysis.
    177. Degiannakis, Stavros & Filis, George, 2022. "Oil price volatility forecasts: What do investors need to know?," Journal of International Money and Finance, Elsevier, vol. 123(C).
    178. Knut Are Aastveit & James Mitchell & Francesco Ravazzolo & Herman van Dijk, 2018. "The Evolution of Forecast Density Combinations in Economics," Tinbergen Institute Discussion Papers 18-069/III, Tinbergen Institute.
    179. Michele Berardi & Jaqueson K. Galimberti, 2012. "On the plausibility of adaptive learning in macroeconomics: A puzzling conflict in the choice of the representative algorithm," Centre for Growth and Business Cycle Research Discussion Paper Series 177, Economics, The University of Manchester.
    180. Jeroen Rombouts & Marie Ternes & Ines Wilms, 2024. "Cross-Temporal Forecast Reconciliation at Digital Platforms with Machine Learning," Papers 2402.09033, arXiv.org, revised May 2024.
    181. Chen, Guojin & Liu, Yanzhen & Zhang, Yu, 2021. "Systemic risk measures and distribution forecasting of macroeconomic shocks," International Review of Economics & Finance, Elsevier, vol. 75(C), pages 178-196.
    182. Jack Fosten & Daniel Gutknecht & Marc-Oliver Pohle, 2023. "Testing Quantile Forecast Optimality," Papers 2302.02747, arXiv.org, revised Oct 2023.
    183. Miquel Clar-Lopez & Jordi López-Tamayo & Raúl Ramos, 2014. "Unemployment forecasts, time varying coefficient models and the Okun’s law in Spanish regions," Economics and Business Letters, Oviedo University Press, vol. 3(4), pages 247-262.
    184. James H. Stock & Mark W. Watson, 2017. "Twenty Years of Time Series Econometrics in Ten Pictures," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 59-86, Spring.
    185. Chen, Heng & Li, Xu & Pei, Guangyu & Xin, Qian, 2024. "Heterogeneous overreaction in expectation formation: Evidence and theory," Journal of Economic Theory, Elsevier, vol. 218(C).
    186. Herman O. Stekler, 2008. "What Do We Know About G-7 Macro Forecasts?," Working Papers 2008-009, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    187. Xiaojie Xu, 2020. "Corn Cash Price Forecasting," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(4), pages 1297-1320, August.
    188. Rizwan Raheem AHMED & Dalia STREIMIKIENE & Saghir Pervaiz GHAURI & Muhammad AQIL, 2021. "Forecasting Inflation by Using the Sub-Groups of both CPI and WPI: Evidence from Auto Regression (AR) and ARIMA Models," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 144-161, June.
    189. Zhou, Weilun & Gao, Jiti & Harris, David & Kew, Hsein, 2024. "Semi-parametric single-index predictive regression models with cointegrated regressors," Journal of Econometrics, Elsevier, vol. 238(1).
    190. Gneiting, Tilmann, 2011. "Quantiles as optimal point forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 197-207.
    191. Kaya, Huseyin, 2013. "Forecasting the yield curve and the role of macroeconomic information in Turkey," Economic Modelling, Elsevier, vol. 33(C), pages 1-7.
    192. Régis Barnichon & Geert Mesters, 2022. "A Sufficient Statistics Approach for Macro Policy Evaluation," Working Paper Series 2022, Federal Reserve Bank of San Francisco.
    193. Nikolay Robinzonov & Gerhard Tutz & Torsten Hothorn, 2012. "Boosting techniques for nonlinear time series models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(1), pages 99-122, January.
    194. Mr. Allan Timmermann, 2006. "An Evaluation of the World Economic Outlook Forecasts," IMF Working Papers 2006/059, International Monetary Fund.
    195. Xiaoye Jin, 2022. "Evaluating the predictive power of intraday technical trading in China's crude oil market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(7), pages 1416-1432, November.
    196. David Schröder, 2020. "The role of market efficiency on implied cost of capital estimates: an international perspective," Annals of Finance, Springer, vol. 16(4), pages 463-499, December.
    197. Procasky, William J. & Yin, Anwen, 2023. "The impact of COVID-19 on the relative market efficiency and forecasting ability of credit derivative and equity markets," International Review of Financial Analysis, Elsevier, vol. 90(C).
    198. Pablo Pincheira, 2010. "A Real Time Evaluation of the Central Bank of Chile GDP Growth Forecasts," Working Papers Central Bank of Chile 556, Central Bank of Chile.
    199. Meub, Lukas & Proeger, Till & Bizer, Kilian & Spiwoks, Markus, 2015. "Strategic coordination in forecasting – An experimental study," Finance Research Letters, Elsevier, vol. 13(C), pages 155-162.
    200. Catherine L. Kling & Raymond W. Arritt & Gray Calhoun & David A. Keiser, 2017. "Integrated Assessment Models of the Food, Energy, and Water Nexus: A Review and an Outline of Research Needs," Annual Review of Resource Economics, Annual Reviews, vol. 9(1), pages 143-163, October.
    201. Bizer, Kilian & Meub, Lukas & Proeger, Till & Spiwoks, Markus, 2014. "Strategic coordination in forecasting: An experimental study," University of Göttingen Working Papers in Economics 195, University of Goettingen, Department of Economics.
    202. Kuangyu Wen, 2023. "A semiparametric spatio‐temporal model of crop yield trend and its implication to insurance rating," Agricultural Economics, International Association of Agricultural Economists, vol. 54(5), pages 662-673, September.
    203. Dichtl, Hubert & Drobetz, Wolfgang & Neuhierl, Andreas & Wendt, Viktoria-Sophie, 2021. "Data snooping in equity premium prediction," International Journal of Forecasting, Elsevier, vol. 37(1), pages 72-94.
    204. Ullrich Heilemann & Herman Stekler, 2010. "Perspectives on Evaluating Macroeconomic Forecasts," Working Papers 2010-002, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    205. Kaiji Motegi & Xiaojing Cai & Shigeyuki Hamori & Haifeng Xu, 2020. "Moving average threshold heterogeneous autoregressive (MAT‐HAR) models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(7), pages 1035-1042, November.
    206. Leonard I. Nakamura & Tom Stark, 2007. "Mismeasured personal saving and the permanent income hypothesis," Working Papers 07-8, Federal Reserve Bank of Philadelphia.
    207. Komunjer, Ivana, 2013. "Quantile Prediction," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 961-994, Elsevier.
    208. Todd E. Clark & Taisuke Nakata, 2006. "The trend growth rate of employment : past, present, and future," Economic Review, Federal Reserve Bank of Kansas City, vol. 91(Q I), pages 43-85.
    209. Nicolas Sirven & Brigitte Santos-Eggimann & Jacques Spagnoli, 2008. "Comparability of Health Care Responsiveness in Europe using anchoring vignettes from SHARE," Working Papers DT15, IRDES institut for research and information in health economics, revised Sep 2008.
    210. McKenzie, Jordi, 2011. "Mean absolute percentage error and bias in economic forecasting," Economics Letters, Elsevier, vol. 113(3), pages 259-262.
    211. Laura Veldkamp & Anna Orlik, 2014. "Uncertainty Shocks and the Role of the Black Swan," 2014 Meeting Papers 275, Society for Economic Dynamics.
    212. Anwen Yin, 2021. "Forecasting the Market Equity Premium: Does Nonlinearity Matter?," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 13(5), pages 1-9, May.
    213. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    214. Iania, Leonardo & Algieri, Bernardina & Leccadito, Arturo, 2022. "Forecasting total energy’s CO2 emissions," LIDAM Discussion Papers LFIN 2022003, Université catholique de Louvain, Louvain Finance (LFIN).
    215. Bennedsen, Mikkel & Lunde, Asger & Shephard, Neil & Veraart, Almut E.D., 2023. "Inference and forecasting for continuous-time integer-valued trawl processes," Journal of Econometrics, Elsevier, vol. 236(2).
    216. Jari Hännikäinen, 2015. "Zero lower bound, unconventional monetary policy and indicator properties of interest rate spreads," Review of Financial Economics, John Wiley & Sons, vol. 26(1), pages 47-54, September.
    217. Harun Özkan & M. Yazgan, 2015. "Is forecasting inflation easier under inflation targeting?," Empirical Economics, Springer, vol. 48(2), pages 609-626, March.
    218. Diogo de Prince & Emerson Fernandes Marçal & Pedro L. Valls Pereira, 2022. "Forecasting Industrial Production Using Its Aggregated and Disaggregated Series or a Combination of Both: Evidence from One Emerging Market Economy," Econometrics, MDPI, vol. 10(2), pages 1-34, June.
    219. James Lightwood & Steve Anderson & Stanton A Glantz, 2020. "Predictive validation and forecasts of short-term changes in healthcare expenditure associated with changes in smoking behavior in the United States," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-18, January.
    220. Juan R. Hernández, 2024. "Covered interest parity: a forecasting approach to estimate the neutral band," BIS Working Papers 1206, Bank for International Settlements.
    221. Byrne, Joseph P. & Cao, Shuo & Korobilis, Dimitris, 2017. "Forecasting the term structure of government bond yields in unstable environments," Journal of Empirical Finance, Elsevier, vol. 44(C), pages 209-225.
    222. Jamali, Ibrahim & Yamani, Ehab, 2019. "Out-of-sample exchange rate predictability in emerging markets: Fundamentals versus technical analysis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 61(C), pages 241-263.
    223. Russell Jame & Rick Johnston & Stanimir Markov & Michael C. Wolfe, 2016. "The Value of Crowdsourced Earnings Forecasts," Journal of Accounting Research, Wiley Blackwell, vol. 54(4), pages 1077-1110, September.
    224. Katarzyna Maciejowska & Bartosz Uniejewski & Rafa{l} Weron, 2022. "Forecasting Electricity Prices," Papers 2204.11735, arXiv.org.
    225. Alessandra Canepa, & Menelaos G. Karanasos & Alexandros G. Paraskevopoulos,, 2019. "Second Order Time Dependent Inflation Persistence in the United States: a GARCH-in-Mean Model with Time Varying Coefficients," Department of Economics and Statistics Cognetti de Martiis. Working Papers 201911, University of Turin.
    226. Basher, Syed Abul & Raboy, David G., 2018. "The misuse of net present value in energy efficiency standards," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 218-225.
    227. Arai, Natsuki, 2020. "Investigating the inefficiency of the CBO’s budgetary projections," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1290-1300.
    228. Aysun, Uluc & Wright, Cardel, 2024. "A two-step dynamic factor modelling approach for forecasting inflation in small open economies," Emerging Markets Review, Elsevier, vol. 62(C).
    229. William J. Procasky & Anwen Yin, 2022. "Forecasting high‐yield equity and CDS index returns: Does observed cross‐market informational flow have predictive power?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(8), pages 1466-1490, August.

  17. Timmermann, Allan & Guidolin, Massimo, 2007. "Forecasts of US Short-term Interest Rates: A Flexible Forecast Combination Approach," CEPR Discussion Papers 6188, C.E.P.R. Discussion Papers.

    Cited by:

    1. Monica Billio & Roberto Casarin & Francesco Ravazzolo & Herman K. van Dijk, 2012. "Time-varying Combinations of Predictive Densities using Nonlinear Filtering," Tinbergen Institute Discussion Papers 12-118/III, Tinbergen Institute.
    2. Jesus Crespo Cuaresma & Ines Fortin & Jaroslava Hlouskova & Michael Obersteiner, 2024. "Regime‐dependent commodity price dynamics: A predictive analysis," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(7), pages 2822-2847, November.
    3. Benavides, Guillermo & Capistrán, Carlos, 2012. "Forecasting exchange rate volatility: The superior performance of conditional combinations of time series and option implied forecasts," Journal of Empirical Finance, Elsevier, vol. 19(5), pages 627-639.
    4. Massimo Guidolin & Alexei G. Orlov & Manuela Pedio, 2014. "Understanding the Impact of Monetary Policy Shocks on the Corporate Bond Market in Good and Bad Times: A Markov Switching Model," BAFFI CAREFIN Working Papers 1623, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    5. Zi‐Yi Guo, 2021. "Out‐of‐sample performance of bias‐corrected estimators for diffusion processes," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(2), pages 243-268, March.
    6. Verena Monschang & Bernd Wilfling, 2022. "A procedure for upgrading linear-convex combination forecasts with an application to volatility prediction," CQE Working Papers 9722, Center for Quantitative Economics (CQE), University of Muenster.
    7. John M. Maheu & Qiao Yang, 2015. "An Infinite Hidden Markov Model for Short-term Interest Rates," Working Paper series 15-05, Rimini Centre for Economic Analysis.
    8. Pierdzioch, Christian & Risse, Marian & Rohloff, Sebastian, 2014. "The international business cycle and gold-price fluctuations," The Quarterly Review of Economics and Finance, Elsevier, vol. 54(2), pages 292-305.
    9. Marco Del Negro & Raiden B. Hasegawa & Frank Schorfheide, 2014. "Dynamic Prediction Pools: An Investigation of Financial Frictions and Forecasting Performance," PIER Working Paper Archive 14-034, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    10. Massimo Guidolin & Alexei G. Orlov & Manuela Pedio, 2015. "The Impact of Monetary Policy on Corporate Bonds under Regime Shifts," Working Papers 562, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    11. Lennart Hoogerheide & Richard Kleijn & Francesco Ravazzolo & Herman K. Van Dijk & Marno Verbeek, 2010. "Forecast accuracy and economic gains from Bayesian model averaging using time-varying weights," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 251-269.
    12. Monica Billio & Roberto Casarin & Francesco Ravazzolo & Herman K. van Dijk, 2011. "Combining Predictive Densities using Bayesian Filtering with Applications to US Economics Data," Tinbergen Institute Discussion Papers 11-003/4, Tinbergen Institute.
    13. Apostolos Thomadakis, 2012. "Contagion or Flight-to-Quality Phenomena in Stock and Bond Returns," School of Economics Discussion Papers 0612, School of Economics, University of Surrey.
    14. Massimo Guidolin & Daniel L. Thornton, 2010. "Predictions of short-term rates and the expectations hypothesis," Working Papers 2010-013, Federal Reserve Bank of St. Louis.
    15. Massimo Guidolin & Federica Ria, 2010. "Regime shifts in mean-variance efficient frontiers: some international evidence," Working Papers 2010-040, Federal Reserve Bank of St. Louis.
    16. Antoine Mandel & Amir Sani, 2016. "Learning Time-Varying Forecast Combinations," Documents de travail du Centre d'Economie de la Sorbonne 16036, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    17. Avino, Davide & Nneji, Ogonna, 2014. "Are CDS spreads predictable? An analysis of linear and non-linear forecasting models," International Review of Financial Analysis, Elsevier, vol. 34(C), pages 262-274.
    18. Guidolin, Massimo & Hyde, Stuart & McMillan, David & Ono, Sadayuki, 2009. "Non-linear predictability in stock and bond returns: When and where is it exploitable?," International Journal of Forecasting, Elsevier, vol. 25(2), pages 373-399.
    19. Antoine Mandel & Amir Sani, 2017. "A Machine Learning Approach to the Forecast Combination Puzzle," Working Papers halshs-01317974, HAL.
    20. Eo, Yunjong & Kang, Kyu Ho, 2020. "The effects of conventional and unconventional monetary policy on forecasting the yield curve," Journal of Economic Dynamics and Control, Elsevier, vol. 111(C).
    21. Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    22. Massimo Guidolin, 2011. "Markov Switching Models in Empirical Finance," Working Papers 415, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    23. Jin, Xin & Maheu, John M. & Yang, Qiao, 2022. "Infinite Markov pooling of predictive distributions," Journal of Econometrics, Elsevier, vol. 228(2), pages 302-321.
    24. Miguel Belmonte & Gary Koop, 2013. "Model Switching and Model Averaging in Time-Varying Parameter Regression Models," Working Papers 1302, University of Strathclyde Business School, Department of Economics.
    25. Massimo Guidolin & Manuela Pedio, 2019. "Forecasting and Trading Monetary Policy Effects on the Riskless Yield Curve with Regime Switching Nelson†Siegel Models," Working Papers 639, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    26. Massimo Guidolin & Manuela Pedio, 2019. "Forecasting and Trading Monetary Policy Switching Nelson-Siegel Models," BAFFI CAREFIN Working Papers 19106, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    27. Chen, Ying & Niu, Linlin, 2014. "Adaptive dynamic Nelson–Siegel term structure model with applications," Journal of Econometrics, Elsevier, vol. 180(1), pages 98-115.
    28. Elena Andreou & Eric Ghysels & Constantinos Kourouyiannis, 2012. "Robust volatility forecasts in the presence of structural breaks," University of Cyprus Working Papers in Economics 08-2012, University of Cyprus Department of Economics.
    29. Sadayuki Ono, 2007. "Term Structure Dynamics in a Monetary Economy with Learning," Discussion Papers 07/29, Department of Economics, University of York.
    30. Daniel L. Thornton, 2005. "Predictions of short-term rates and the expectations hypothesis of the term structure of interest rates," Working Papers 2004-010, Federal Reserve Bank of St. Louis.
    31. Safari, Ali & Davallou, Maryam, 2018. "Oil price forecasting using a hybrid model," Energy, Elsevier, vol. 148(C), pages 49-58.
    32. Monica Billio & Roberto Casarin & Francesco Ravazzolo & Herman K. van Dijk, 2011. "Combining Predictive Densities using Nonlinear Filtering with Applications to US Economics Data," Tinbergen Institute Discussion Papers 11-172/4, Tinbergen Institute.
    33. Hamid Baghestani & Mohammad Arzaghi & Ilker Kaya, 2015. "On the accuracy of Blue Chip forecasts of interest rates and country risk premiums," Applied Economics, Taylor & Francis Journals, vol. 47(2), pages 113-122, January.
    34. Michiel D. de Pooter & Francesco Ravazzolo & Dick van Dijk, 2007. "Predicting the Term Structure of Interest Rates: Incorporating Parameter Uncertainty, Model Uncertainty and Macroeconomic Information," Tinbergen Institute Discussion Papers 07-028/4, Tinbergen Institute.
    35. Knut Are Aastveit & James Mitchell & Francesco Ravazzolo & Herman van Dijk, 2018. "The Evolution of Forecast Density Combinations in Economics," Tinbergen Institute Discussion Papers 18-069/III, Tinbergen Institute.
    36. Zhu, Xiaoneng & Rahman, Shahidur, 2015. "A regime-switching Nelson–Siegel term structure model of the macroeconomy," Journal of Macroeconomics, Elsevier, vol. 44(C), pages 1-17.
    37. Jia Liu & John M. Maheu, 2018. "Improving Markov switching models using realized variance," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(3), pages 297-318, April.
    38. Massimo Guidolin & Stuart Hyde, 2008. "Equity portfolio diversification under time-varying predictability and comovements: evidence from Ireland, the US, and the UK," Working Papers 2008-005, Federal Reserve Bank of St. Louis.
    39. Ravazzolo, F. & van Dijk, H.K. & Verbeek, M.J.C.M., 2007. "Predictive gains from forecast combinations using time-varying model weights," Econometric Institute Research Papers EI 2007-26, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    40. Xiaojing Xi & Rogemar Mamon, 2014. "Capturing the Regime-Switching and Memory Properties of Interest Rates," Computational Economics, Springer;Society for Computational Economics, vol. 44(3), pages 307-337, October.
    41. Lin-Yee Hin & Nikolai Dokuchaev, 2016. "Short Rate Forecasting Based On The Inference From The Cir Model For Multiple Yield Curve Dynamics," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 11(01), pages 1-33, March.
    42. Kocięcki, Andrzej & Kolasa, Marcin & Rubaszek, Michał, 2012. "A Bayesian method of combining judgmental and model-based density forecasts," Economic Modelling, Elsevier, vol. 29(4), pages 1349-1355.
    43. Guidolin, Massimo & Pedio, Manuela, 2019. "Forecasting and trading monetary policy effects on the riskless yield curve with regime switching Nelson–Siegel models," Journal of Economic Dynamics and Control, Elsevier, vol. 107(C), pages 1-1.
    44. Sermpinis, Georgios & Stasinakis, Charalampos & Dunis, Christian, 2014. "Stochastic and genetic neural network combinations in trading and hybrid time-varying leverage effects," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 30(C), pages 21-54.
    45. Federico Bassetti & Roberto Casarin & Francesco Ravazzolo, 2019. "Density Forecasting," BEMPS - Bozen Economics & Management Paper Series BEMPS59, Faculty of Economics and Management at the Free University of Bozen.

  18. Timmermann, Allan & Patton, Andrew, 2007. "Learning in Real Time: Theory and Empirical Evidence from the Term Structure of Survey Forecasts," CEPR Discussion Papers 6526, C.E.P.R. Discussion Papers.

    Cited by:

    1. Kajal Lahiri & Xuguang Sheng, 2008. "Measuring Forecast Uncertainty by Disagreement: The Missing Link," ifo Working Paper Series 60, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    2. Lahiri, Kajal & Sheng, Xuguang, 2010. "Learning and heterogeneity in GDP and inflation forecasts," International Journal of Forecasting, Elsevier, vol. 26(2), pages 265-292, April.
    3. Lahiri, Kajal & Sheng, Xuguang, 2008. "Evolution of forecast disagreement in a Bayesian learning model," Journal of Econometrics, Elsevier, vol. 144(2), pages 325-340, June.

  19. Pesaran, M.H. & Pettenuzzo, D. & Timmermann, A., 2006. "Learning, Structural Instability and Present Value Calculations," Cambridge Working Papers in Economics 0602, Faculty of Economics, University of Cambridge.

    Cited by:

    1. Theofanis Archontakis & Wolfgang Lemke, 2008. "Threshold Dynamics of Short‐term Interest Rates: Empirical Evidence and Implications for the Term Structure," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 37(1), pages 75-117, February.
    2. Lütkebohmert, Eva & Gordy, Michael B., 2007. "Granularity adjustment for Basel II," Discussion Paper Series 2: Banking and Financial Studies 2007,01, Deutsche Bundesbank.
    3. Radu Tunaru, 2015. "Model Risk in Financial Markets:From Financial Engineering to Risk Management," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 9524, December.
    4. Philip Vermeulen & Daniel Dias & Maarten Dossche & Erwan Gautier & Ignacio Hernando & Roberto Sabbatini & Harald Stahl, 2007. "Price setting in the euro area : some stylised facts from individual producer price data," Working Paper Research 111, National Bank of Belgium.
    5. Ramb, Fred, 2007. "Corporate marginal tax rate, tax loss carryforwards and investment functions: empirical analysis using a large German panel data set," Discussion Paper Series 1: Economic Studies 2007,21, Deutsche Bundesbank.
    6. Frey, Rainer & Hussinger, Katrin, 2006. "The Role of Technology in M&As: A Firm Level Comparison of Cross-Border and Domestic Deals," ZEW Discussion Papers 06-069, ZEW - Leibniz Centre for European Economic Research.
    7. Schmieder, Christian & Reinschmidt, Timo & Mager, Ferdinand & Gerke, Wolfgang, 2006. "Empirical risk analysis of pension insurance: the case of Germany," Discussion Paper Series 2: Banking and Financial Studies 2006,07, Deutsche Bundesbank.
    8. Klaus Adam & Albert Marcet, 2011. "Internal Rationality, Imperfect Market Knowledge and Asset Prices," CEP Discussion Papers dp1068, Centre for Economic Performance, LSE.
    9. Pausch, Thilo, 2007. "Endogenous credit derivatives and bank behavior," Discussion Paper Series 2: Banking and Financial Studies 2007,16, Deutsche Bundesbank.
    10. Aoki, Kosuke & Kimura, Takeshi, 2007. "Uncertainty about perceived inflation target and monetary policy," Discussion Paper Series 1: Economic Studies 2007,18, Deutsche Bundesbank.
    11. Heijdra, B.J. & Ligthart, J.E., 2006. "The Transitional Dynamics of Fiscal Policy in Small Open Economies," Other publications TiSEM 0012a555-1a7d-464e-baae-c, Tilburg University, School of Economics and Management.
    12. Kick, Thomas & Koetter, Michael, 2007. "Slippery slopes of stress: Ordered failure events in German banking," Journal of Financial Stability, Elsevier, vol. 3(2), pages 132-148, July.
    13. Dasgupta, Partha, 2010. "The Place of Nature in Economic Development," Handbook of Development Economics, in: Dani Rodrik & Mark Rosenzweig (ed.), Handbook of Development Economics, edition 1, volume 5, chapter 0, pages 4977-5046, Elsevier.
    14. Gandré, Pauline, 2015. "Asset prices and information disclosure under recency-biased learning," CEPREMAP Working Papers (Docweb) 1515, CEPREMAP.
    15. Koetter, Michael & Karmann, Alexander & Fiorentino, Elisabetta, 2006. "The cost efficiency of German banks: a comparison of SFA and DEA," Discussion Paper Series 2: Banking and Financial Studies 2006,10, Deutsche Bundesbank.
    16. Sascha Becker & Marc-Andreas Muendler & Sascha O. Becker, 2006. "The Effect of FDI on Job Separation," CESifo Working Paper Series 1864, CESifo.
    17. Beck, Günter W. & Wieland, Volker, 2006. "Money in monetary policy design under uncertainty: The two-pillar Phillips curve versus ECB-style cross-checking," CFS Working Paper Series 2007/17, Center for Financial Studies (CFS).
    18. T M Niguez & I Paya & D Peel & J Perote, 2011. "On the stability of the CRRA utility under high degrees of uncertainty," Working Papers 615773, Lancaster University Management School, Economics Department.
    19. Tödter, Karl-Heinz & Manzke, Bernhard, 2007. "The welfare effects of inflation: a cost-benefit perspective," Discussion Paper Series 1: Economic Studies 2007,33, Deutsche Bundesbank.
    20. Lemke, Wolfgang, 2007. "An affine macro-finance term structure model for the euro area," Discussion Paper Series 1: Economic Studies 2007,13, Deutsche Bundesbank.
    21. Binder, Michael & Offermanns, Christian J., 2007. "International investment positions and exchange rate dynamics: a dynamic panel analysis," Discussion Paper Series 1: Economic Studies 2007,23, Deutsche Bundesbank.
    22. Christian Schoder & Christian R. Proaño & Willi Semmler, 2012. "Are the current account imbalances between EMU countries sustainable?," IMK Working Paper 90-2012, IMK at the Hans Boeckler Foundation, Macroeconomic Policy Institute.
    23. Raabe, K. & Arnold, I.J.M. & Kool, C.J.M., 2006. "Industries and the bank lending effects of bank credit demand and monetary policy in Germany," Research Memorandum 006, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    24. Hashem M. Pesaran & Ron P. Smith, 2011. "Beyond the DSGE Straitjacket," CESifo Working Paper Series 3447, CESifo.
    25. Ziegler, Christina & Eickmeier, Sandra, 2006. "How good are dynamic factor models at forecasting output and inflation? A meta-analytic approach," Discussion Paper Series 1: Economic Studies 2006,42, Deutsche Bundesbank.
    26. Faria, Pedro & Schmidt, Tobias, 2007. "International cooperation on innovation: empirical evidence for German and Portuguese firms," Discussion Paper Series 1: Economic Studies 2007,30, Deutsche Bundesbank.
    27. Hakenes, Hendrik & Fecht, Falko, 2006. "Money market derivatives and the allocation of liquidity risk in the banking sector," Discussion Paper Series 2: Banking and Financial Studies 2006,12, Deutsche Bundesbank.
    28. M. Hashem Pesaran & Ron P. Smith, 2006. "Macroeconometric Modelling with a Global Perspective," CESifo Working Paper Series 1659, CESifo.
    29. Loretan, Michael Stanislaus & Kurz-Kim, Jeong-Ryeol, 2007. "A note on the coefficient of determination in regression models with infinite-variance variables," Discussion Paper Series 1: Economic Studies 2007,10, Deutsche Bundesbank.
    30. Falko Fecht & Hans Grüner, 2008. "Limits to International Banking Consolidation," Open Economies Review, Springer, vol. 19(5), pages 651-666, November.
    31. Greiber, Claus & Setzer, Ralph, 2007. "Money and housing: evidence for the euro area and the US," Discussion Paper Series 1: Economic Studies 2007,12, Deutsche Bundesbank.
    32. Nikolai Stähler, 2008. "Unemployment and Employment Protection in a Unionized Economy with Search Frictions," LABOUR, CEIS, vol. 22(2), pages 271-289, June.
    33. Dr Martin Weale & Dr. James Mitchell, 2007. "The Rationality and Reliability of Expectations Reported by British Households: Micro Evidence from the British Household Panel Survey," National Institute of Economic and Social Research (NIESR) Discussion Papers 287, National Institute of Economic and Social Research.
    34. Dötz, Niko, 2007. "Time-varying contributions by the corporate bond and CDS markets to credit risk price discovery," Discussion Paper Series 2: Banking and Financial Studies 2007,08, Deutsche Bundesbank.
    35. Stahn, Kerstin, 2006. "Has the export pricing behaviour of German enterprises changed? Empirical evidence from German sectoral prices," Discussion Paper Series 1: Economic Studies 2006,37, Deutsche Bundesbank.
    36. Härdle, Wolfgang Karl & Moro, Rouslan A. & Schäfer, Dorothea, 2007. "Estimating probabilities of default with support vector machines," SFB 649 Discussion Papers 2007-035, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    37. Marcet, Albert & Adam, Klaus, 2009. "Internal Rationality and Asset Prices," CEPR Discussion Papers 7498, C.E.P.R. Discussion Papers.
    38. Knetsch, Thomas A. & Reimers, Hans-Eggert, 2006. "How to treat benchmark revisions? The case of German production and orders statistics," Discussion Paper Series 1: Economic Studies 2006,38, Deutsche Bundesbank.
    39. Ñíguez, Trino-Manuel & Paya, Ivan & Peel, David & Perote, Javier, 2012. "On the stability of the constant relative risk aversion (CRRA) utility under high degrees of uncertainty," Economics Letters, Elsevier, vol. 115(2), pages 244-248.
    40. Gandré, Pauline, 2020. "US stock prices and recency-biased learning in the run-up to the Global Financial Crisis and its aftermath," Journal of International Money and Finance, Elsevier, vol. 104(C).

  20. Pesaran, M.H. & Timmermann, A., 2006. "Testing Dependence Among Serially Correlated Multi-category Variables," Cambridge Working Papers in Economics 0648, Faculty of Economics, University of Cambridge.

    Cited by:

    1. Wang, Yudong & Hao, Xianfeng, 2023. "Forecasting the real prices of crude oil: What is the role of parameter instability?," Energy Economics, Elsevier, vol. 117(C).
    2. Christian Seiler, 2012. "The Data Sets of the LMU-ifo Economics & Business Data Center – A Guide for Researchers," Schmollers Jahrbuch : Journal of Applied Social Science Studies / Zeitschrift für Wirtschafts- und Sozialwissenschaften, Duncker & Humblot, Berlin, vol. 132(4), pages 609-618.
    3. Etienne, Xiaoli, 2015. "Financialization of Agricultural Commodity Markets: Do Financial Data Help to Forecast Agricultural Prices," 2015 Conference, August 9-14, 2015, Milan, Italy 211626, International Association of Agricultural Economists.
    4. Chen, Shiu-Sheng, 2013. "Forecasting Crude Oil Price Movements with Oil-Sensitive Stocks," MPRA Paper 49240, University Library of Munich, Germany.
    5. Tsuchiya, Yoichi, 2013. "Do corporate executives have accurate predictions for the economy? A directional analysis," Economic Modelling, Elsevier, vol. 30(C), pages 167-174.
    6. Hashmat Khan & Santosh Upadhayaya, 2017. "Does Business Confidence Matter for Investment?," Carleton Economic Papers 17-13, Carleton University, Department of Economics, revised 20 Mar 2019.
    7. Cem Cakmakli & Richard Paap & Dick J.C. van Dijk, 2011. "Modeling and Estimation of Synchronization in Multistate Markov-Switching Models," Tinbergen Institute Discussion Papers 11-002/4, Tinbergen Institute.
    8. Degiannakis, Stavros & Filis, George, 2017. "Forecasting oil price realized volatility using information channels from other asset classes," MPRA Paper 96276, University Library of Munich, Germany.
    9. Wang, Yudong & Liu, Li & Wu, Chongfeng, 2020. "Forecasting commodity prices out-of-sample: Can technical indicators help?," International Journal of Forecasting, Elsevier, vol. 36(2), pages 666-683.
    10. Duncan, Roberto & Martínez-García, Enrique, 2019. "New perspectives on forecasting inflation in emerging market economies: An empirical assessment," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1008-1031.
    11. Baumeister, Christiane & Kilian, Lutz, 2014. "A general approach to recovering market expectations from futures prices with an application to crude oil," CFS Working Paper Series 466, Center for Financial Studies (CFS).
    12. Natalia Bailey & Sean Holly & M. Hashem Pesaran, 2016. "A Two‐Stage Approach to Spatio‐Temporal Analysis with Strong and Weak Cross‐Sectional Dependence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(1), pages 249-280, January.
    13. Helmut Elsinger, 2020. "Serial Correlation in Contingency Tables (Helmut Elsinger)," Working Papers 228, Oesterreichische Nationalbank (Austrian Central Bank).
    14. Link, Sebastian, 2022. "The Price and Employment Response of Firms to the Introduction of Minimum Wages," IZA Discussion Papers 15701, Institute of Labor Economics (IZA).
    15. Baumeister, Christiane & Kilian, Lutz, 2013. "Are product spreads useful for forecasting? An empirical evaluation of the Verleger hypothesis," CFS Working Paper Series 2013/09, Center for Financial Studies (CFS).
    16. Hambuckers, J. & Ulm, M., 2023. "On the role of interest rate differentials in the dynamic asymmetry of exchange rates," Economic Modelling, Elsevier, vol. 129(C).
    17. Edward S. Knotek & Saeed Zaman, 2014. "Nowcasting U.S. Headline and Core Inflation," Working Papers (Old Series) 1403, Federal Reserve Bank of Cleveland.
    18. Markos Farag, Stephen Snudden, Greg Upton, 2024. "Can Futures Prices Predict the Real Price of Primary Commodities?," LCERPA Working Papers jc0145, Laurier Centre for Economic Research and Policy Analysis, revised 2024.
    19. Harchaoui, Tarek M. & Janssen, Robert V., 2018. "How can big data enhance the timeliness of official statistics?," International Journal of Forecasting, Elsevier, vol. 34(2), pages 225-234.
    20. Tsuchiya, Yoichi, 2013. "Are government and IMF forecasts useful? An application of a new market-timing test," Economics Letters, Elsevier, vol. 118(1), pages 118-120.
    21. Weiling Liu & Emanuel Moench, 2014. "What predicts U.S. recessions?," Staff Reports 691, Federal Reserve Bank of New York.
    22. Kilian, Lutz & Baumeister, Christiane & Lee, Thomas K, 2014. "Are there Gains from Pooling Real-Time Oil Price Forecasts?," CEPR Discussion Papers 10075, C.E.P.R. Discussion Papers.
    23. Knüppel, Malte & Schultefrankenfeld, Guido, 2011. "How informative are central bank assessments of macroeconomic risks?," Discussion Paper Series 1: Economic Studies 2011,13, Deutsche Bundesbank.
    24. Li, Dongxin & Zhang, Li & Li, Lihong, 2023. "Forecasting stock volatility with economic policy uncertainty: A smooth transition GARCH-MIDAS model," International Review of Financial Analysis, Elsevier, vol. 88(C).
    25. Garratt, Anthony & Lee, Kevin & Shields, Kalvinder, 2016. "Forecasting global recessions in a GVAR model of actual and expected output," International Journal of Forecasting, Elsevier, vol. 32(2), pages 374-390.
    26. Ma, Feng & Wang, Jiqian & Wahab, M.I.M. & Ma, Yuanhui, 2023. "Stock market volatility predictability in a data-rich world: A new insight," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1804-1819.
    27. Lei, Xiying & Yang, Yao & Alharthi, Majed & Rasul, Farhat & Faraz Raza, Syed Muhammad, 2022. "Immense reliance on natural resources and environmental challenges in G-20 economies through the lens of COP-26 targets," Resources Policy, Elsevier, vol. 79(C).
    28. Danilo Leiva-Leon, 2014. "A New Approach to Infer Changes in the Synchronization of Business Cycle Phases," Staff Working Papers 14-38, Bank of Canada.
    29. Yaojie Zhang & Yudong Wang & Feng Ma & Yu Wei, 2022. "To jump or not to jump: momentum of jumps in crude oil price volatility prediction," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-31, December.
    30. Baumeister, Christiane & Guérin, Pierre & Kilian, Lutz, 2015. "Do high-frequency financial data help forecast oil prices? The MIDAS touch at work," International Journal of Forecasting, Elsevier, vol. 31(2), pages 238-252.
    31. Andrea Bastianin & Elisabetta Mirto & Yan Qin & Luca Rossini, 2024. "What drives the European carbon market? Macroeconomic factors and forecasts," Working Papers 2024.02, Fondazione Eni Enrico Mattei.
    32. Wang, Yudong & Liu, Li & Diao, Xundi & Wu, Chongfeng, 2015. "Forecasting the real prices of crude oil under economic and statistical constraints," Energy Economics, Elsevier, vol. 51(C), pages 599-608.
    33. Christiane Baumeister & Lutz Kilian, 2013. "Forecasting the Real Price of Oil in a Changing World: A Forecast Combination Approach," Staff Working Papers 13-28, Bank of Canada.
    34. Shiu-Sheng Chen, 2016. "Commodity prices and related equity prices," Canadian Journal of Economics, Canadian Economics Association, vol. 49(3), pages 949-967, August.
    35. Kilian, Lutz & Baumeister, Christiane, 2013. "Do Oil Price Increases Cause Higher Food Prices?," CEPR Discussion Papers 9689, C.E.P.R. Discussion Papers.
    36. Xing, Li-Min & Zhang, Yue-Jun, 2022. "Forecasting crude oil prices with shrinkage methods: Can nonconvex penalty and Huber loss help?," Energy Economics, Elsevier, vol. 110(C).
    37. Nyberg, Henri & Pönkä, Harri, 2016. "International sign predictability of stock returns: The role of the United States," Economic Modelling, Elsevier, vol. 58(C), pages 323-338.
    38. Pönkä, Harri, 2014. "Predicting the direction of US stock markets using industry returns," MPRA Paper 62942, University Library of Munich, Germany.
    39. Hong, Yanran & Wang, Lu & Liang, Chao & Umar, Muhammad, 2022. "Impact of financial instability on international crude oil volatility: New sight from a regime-switching framework," Resources Policy, Elsevier, vol. 77(C).
    40. Bernard, Jean-Thomas & Khalaf, Lynda & Kichian, Maral & Yelou, Clement, 2015. "Oil Price Forecasts for the Long-Term: Expert Outlooks, Models, or Both?," Working Papers 208082, University of Laval, Center for Research on the Economics of the Environment, Agri-food, Transports and Energy (CREATE).
    41. Christiane Baumeister & Lutz Kilian & Thomas K. Lee, 2016. "Inside the Crystal Ball: New Approaches to Predicting the Gasoline Price at the Pump," CESifo Working Paper Series 5759, CESifo.
    42. Lahiri, Kajal & Yang, Liu, 2016. "Asymptotic variance of Brier (skill) score in the presence of serial correlation," Economics Letters, Elsevier, vol. 141(C), pages 125-129.
    43. Sevcan Uzun & Ahmet Sensoy & Duc Khuong Nguyen, 2023. "Jump forecasting in foreign exchange markets: A high‐frequency analysis," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(3), pages 578-624, April.
    44. IIZUKA Nobuo, 2013. "Predicting Business Cycle Phases by Professional Forecasters- Are They Useful ?," ESRI Discussion paper series 305, Economic and Social Research Institute (ESRI).
    45. Yi, Yongsheng & Ma, Feng & Zhang, Yaojie & Huang, Dengshi, 2019. "Forecasting stock returns with cycle-decomposed predictors," International Review of Financial Analysis, Elsevier, vol. 64(C), pages 250-261.
    46. Kajal Lahiri & Huaming Peng & Yongchen Zhao, 2013. "Testing the Value of Probability Forecasts for Calibrated Combining," Discussion Papers 13-02, University at Albany, SUNY, Department of Economics.
    47. Wang, Yudong & Hao, Xianfeng, 2022. "Forecasting the real prices of crude oil: A robust weighted least squares approach," Energy Economics, Elsevier, vol. 116(C).
    48. Henri Nyberg, 2018. "Forecasting US interest rates and business cycle with a nonlinear regime switching VAR model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(1), pages 1-15, January.
    49. Ferrara, Laurent & Marcellino, Massimiliano & Mogliani, Matteo, 2015. "Macroeconomic forecasting during the Great Recession: The return of non-linearity?," International Journal of Forecasting, Elsevier, vol. 31(3), pages 664-679.
    50. Sebastian Link, 2018. "Harmonization and Interpretation of the ifo Business Survey's Micro Data," CESifo Working Paper Series 7427, CESifo.
    51. Christian Seiler, 2013. "Nonresponse in Business Tendency Surveys: Theoretical Discourse and Empirical Evidence," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 52.
    52. Heijdra, B.J. & Ligthart, J.E., 2005. "Fiscal Policy, Monopolistic Competition and Finite Lives," Other publications TiSEM 305239e1-d4e2-4d0e-b950-b, Tilburg University, School of Economics and Management.
    53. Pönkä, Harri & Stenborg, Markku, 2018. "Forecasting the state of the Finnish business cycle," MPRA Paper 91226, University Library of Munich, Germany.
    54. James Mitchell & Richard J. Smith & Martin R. Weale, 2013. "Efficient Aggregation Of Panel Qualitative Survey Data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(4), pages 580-603, June.
    55. Lahiri, Kajal & Wang, J. George, 2013. "Evaluating probability forecasts for GDP declines using alternative methodologies," International Journal of Forecasting, Elsevier, vol. 29(1), pages 175-190.
    56. M. Mogliani & T. Ferrière, 2016. "Rationality of announcements, business cycle asymmetry, and predictability of revisions. The case of French GDP," Working papers 600, Banque de France.
    57. Zhang, Lili & Zhong, Juandan, 2024. "Transportation sector and Chinese stock volatility forecasting: Evidence from freight and passenger traffic," Finance Research Letters, Elsevier, vol. 60(C).
    58. Chatziantoniou, Ioannis & Degiannakis, Stavros & Filis, George, 2019. "Futures-based forecasts: How useful are they for oil price volatility forecasting?," Energy Economics, Elsevier, vol. 81(C), pages 639-649.
    59. Cem Cakmakli & Dick van Dijk, 2010. "Getting the Most out of Macroeconomic Information for Predicting Stock Returns and Volatility," Tinbergen Institute Discussion Papers 10-115/4, Tinbergen Institute.
    60. Young Bin Ahn & Yoichi Tsuchiya, 2016. "Directional analysis of consumers’ forecasts of inflation in a small open economy: evidence from South Korea," Applied Economics, Taylor & Francis Journals, vol. 48(10), pages 854-864, February.
    61. Steven Trypsteen, 2014. "The Importance of a Time-Varying Variance and Cross-Country Interactions in Forecast Models," Discussion Papers 2014/15, University of Nottingham, Centre for Finance, Credit and Macroeconomics (CFCM).
    62. Harri Ponka, 2017. "The Role of Credit in Predicting US Recessions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(5), pages 469-482, August.
    63. Jixiang, Zhang & Feng, Ma, 2024. "Video apps user engagement and stock market volatility: Evidence from China," Finance Research Letters, Elsevier, vol. 64(C).
    64. Christiane Baumeister & Lutz Kilian, 2014. "What Central Bankers Need To Know About Forecasting Oil Prices," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 55(3), pages 869-889, August.
    65. Kajal Lahiri & Liu Yang, 2018. "Confidence Bands for ROC Curves With Serially Dependent Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 115-130, January.
    66. Tsuchiya, Yoichi, 2016. "Directional analysis of fiscal sustainability: Revisiting Domar's debt sustainability condition," International Review of Economics & Finance, Elsevier, vol. 41(C), pages 189-201.
    67. Gu, Wentao & Peng, Yiqing, 2019. "Forecasting the market return direction based on a time-varying probability density model," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
    68. Morita, Hiroshi & 森田, 裕史, 2019. "Forecasting Public Investment Using Daily Stock Returns," Discussion paper series HIAS-E-88, Hitotsubashi Institute for Advanced Study, Hitotsubashi University.
    69. Anthony Garratt & Shaun P. Vahey & Yunyi Zhang, 2019. "Real‐time forecast combinations for the oil price," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(3), pages 456-462, April.
    70. Kevin Lee & Kian Ong & Kalvinder K. Shields, 2020. "Making Fiscal Adjustments Using Event Probability Forecasts in OECD Countries," The Economic Record, The Economic Society of Australia, vol. 96(314), pages 294-313, September.
    71. Yusui Tang & Feng Ma & Yaojie Zhang & Yu Wei, 2022. "Forecasting the oil price realized volatility: A multivariate heterogeneous autoregressive model," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4770-4783, October.
    72. Link Sebastian, 2020. "Harmonization of the ifo Business Survey’s Micro Data," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 240(4), pages 543-555, August.
    73. Al-Sadoon, Majid M. & Li, Tong & Pesaran, M. Hashem, 2012. "An Exponential Class of Dynamic Binary Choice Panel Data Models with Fixed Effects," IZA Discussion Papers 7054, Institute of Labor Economics (IZA).
    74. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    75. Liang, Chao & Umar, Muhammad & Ma, Feng & Huynh, Toan L.D., 2022. "Climate policy uncertainty and world renewable energy index volatility forecasting," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    76. Amor Aniss Benmoussa & Reinhard Ellwanger & Stephen Snudden, 2020. "The New Benchmark for Forecasts of the Real Price of Crude Oil," Staff Working Papers 20-39, Bank of Canada.
    77. Ron Alquist & Lutz Kilian & Robert Vigfusson, 2011. "Forecasting the Price of Oil," Staff Working Papers 11-15, Bank of Canada.
    78. Geoff Kenny & Thomas Kostka & Federico Masera, 2015. "Can Macroeconomists Forecast Risk? Event-Based Evidence from the Euro-Area SPF," International Journal of Central Banking, International Journal of Central Banking, vol. 11(4), pages 1-46, December.
    79. Y. Tsuchiya, 2014. "A directional evaluation of corporate executives' exchange rate forecasts," Applied Economics, Taylor & Francis Journals, vol. 46(1), pages 95-101, January.
    80. Anthony Garratt & Kevin Lee & Kalvinder Shields, 2014. "Forecasting Global Recessions in a GVAR Model of Actual and Expected Output in the G7," Discussion Papers 2014/06, University of Nottingham, Centre for Finance, Credit and Macroeconomics (CFCM).
    81. Reinhard Ellwanger, Stephen Snudden, 2021. "Predictability of Aggregated Time Series," LCERPA Working Papers bm0127, Laurier Centre for Economic Research and Policy Analysis.
    82. Liang, Chao & Xia, Zhenglan & Lai, Xiaodong & Wang, Lu, 2022. "Natural gas volatility prediction: Fresh evidence from extreme weather and extended GARCH-MIDAS-ES model," Energy Economics, Elsevier, vol. 116(C).
    83. Zhu, Yinchu & Timmermann, Allan, 2022. "Conditional rotation between forecasting models," Journal of Econometrics, Elsevier, vol. 231(2), pages 329-347.
    84. Ma, Feng & Wahab, M.I.M. & Zhang, Yaojie, 2019. "Forecasting the U.S. stock volatility: An aligned jump index from G7 stock markets," Pacific-Basin Finance Journal, Elsevier, vol. 54(C), pages 132-146.
    85. Zhang, Zhikai & He, Mengxi & Zhang, Yaojie & Wang, Yudong, 2022. "Geopolitical risk trends and crude oil price predictability," Energy, Elsevier, vol. 258(C).
    86. Yudong Wang & Zhiyuan Pan & Chongfeng Wu, 2017. "Time‐Varying Parameter Realized Volatility Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(5), pages 566-580, August.
    87. Yin, Libo & Yang, Qingyuan, 2016. "Predicting the oil prices: Do technical indicators help?," Energy Economics, Elsevier, vol. 56(C), pages 338-350.
    88. Díaz, Juan D. & Hansen, Erwin & Cabrera, Gabriel, 2024. "Machine-learning stock market volatility: Predictability, drivers, and economic value," International Review of Financial Analysis, Elsevier, vol. 94(C).
    89. Blaskowitz, Oliver & Herwartz, Helmut, 2014. "Testing the value of directional forecasts in the presence of serial correlation," International Journal of Forecasting, Elsevier, vol. 30(1), pages 30-42.
    90. de Bondt, Gabe J. & Hahn, Elke & Zekaite, Zivile, 2021. "ALICE: Composite leading indicators for euro area inflation cycles," International Journal of Forecasting, Elsevier, vol. 37(2), pages 687-707.
    91. Francisco Javier Eransus & Alfonso Novales Cinca, 2014. "Parameter Estimation Error in Tests of Predictive Performance under Discrete Loss Functions," Documentos de Trabajo del ICAE 2014-22, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    92. Liang, Chao & Wang, Lu & Duong, Duy, 2024. "More attention and better volatility forecast accuracy: How does war attention affect stock volatility predictability?," Journal of Economic Behavior & Organization, Elsevier, vol. 218(C), pages 1-19.
    93. Garratt, Anthony & Petrella, Ivan & Zhang, Yunyi, 2022. "Asymmetry and Interdependence when Evaluating U.S. Energy Information Agency Forecasts," MPRA Paper 114325, University Library of Munich, Germany.
    94. Pierre Guérin & Danilo Leiva-Leon & Massimiliano Marcellino, 2017. "Markov-switching three-pass regression filter," Working Papers 1748, Banco de España.
    95. Timmermann, Allan & Zhu, Yinchu, 2021. "Conditional Rotation Between Forecasting Models," CEPR Discussion Papers 15917, C.E.P.R. Discussion Papers.
    96. G. Kontogeorgos & K. Lambrias, 2022. "Evaluating the Eurosystem/ECB staff macroeconomic projections: The first 20 years," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 213-229, March.
    97. Filippo Altissimo & Riccardo Cristadoro & Mario Forni & Marco Lippi & Giovanni Veronese, 2010. "New Eurocoin: Tracking Economic Growth in Real Time," The Review of Economics and Statistics, MIT Press, vol. 92(4), pages 1024-1034, November.
    98. Khan, Faridoon & Muhammadullah, Sara & Sharif, Arshian & Lee, Chien-Chiang, 2024. "The role of green energy stock market in forecasting China's crude oil market: An application of IIS approach and sparse regression models," Energy Economics, Elsevier, vol. 130(C).
    99. Christian Seiler, 2014. "The determinants of unit non-response in the Ifo Business Survey," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 8(3), pages 161-177, September.
    100. Dawud Ansari & Mariza Montes de Oca Leon & Helen Schlüter, 2021. "What Drives Saudi Airstrikes in Yemen? An Empirical Analysis of the Dynamics of Coalition Airstrikes, Houthi Attacks, and the Oil Market," Discussion Papers of DIW Berlin 1959, DIW Berlin, German Institute for Economic Research.
    101. Tsuchiya, Yoichi, 2016. "Do production managers predict turning points? A directional analysis," Economic Modelling, Elsevier, vol. 58(C), pages 1-8.
    102. Christiane Baumeister & Lutz Kilian, 2011. "Real-Time Forecasts of the Real Price of Oil," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(2), pages 326-336, September.
    103. Harri Pönkä, 2018. "Sentiment and sign predictability of stock returns," Economics Bulletin, AccessEcon, vol. 38(3), pages 1676-1684.
    104. Wang, Yudong & Liu, Li & Ma, Feng & Diao, Xundi, 2018. "Momentum of return predictability," Journal of Empirical Finance, Elsevier, vol. 45(C), pages 141-156.
    105. Chen, Wang & Ma, Feng & Wei, Yu & Liu, Jing, 2020. "Forecasting oil price volatility using high-frequency data: New evidence," International Review of Economics & Finance, Elsevier, vol. 66(C), pages 1-12.
    106. Conlon, Thomas & Cotter, John & Eyiah-Donkor, Emmanuel, 2024. "Forecasting the price of oil: A cautionary note," Journal of Commodity Markets, Elsevier, vol. 33(C).
    107. Erum, Naila & Hussain, Shahzad, 2019. "Corruption, natural resources and economic growth: Evidence from OIC countries," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    108. Pönkä, Harri, 2015. "Real oil prices and the international sign predictability of stock returns," MPRA Paper 68330, University Library of Munich, Germany.
    109. Wang, Yudong & Liu, Li & Wu, Chongfeng, 2017. "Forecasting the real prices of crude oil using forecast combinations over time-varying parameter models," Energy Economics, Elsevier, vol. 66(C), pages 337-348.
    110. Cortazar, Gonzalo & Ortega, Hector & Valencia, Consuelo, 2021. "How good are analyst forecasts of oil prices?," Energy Economics, Elsevier, vol. 102(C).
    111. Chrystalleni Aristidou & Kevin Lee & Kalvinder Shields, 2015. "Real-Time Data should be used in Forecasting Output Growth and Recessionary Events in the US," Discussion Papers 2015/13, University of Nottingham, Centre for Finance, Credit and Macroeconomics (CFCM).
    112. Pönkä, Harri & Zheng, Yi, 2019. "The role of oil prices on the Russian business cycle," Research in International Business and Finance, Elsevier, vol. 50(C), pages 70-78.
    113. Hao, Xianfeng & Zhao, Yuyang & Wang, Yudong, 2020. "Forecasting the real prices of crude oil using robust regression models with regularization constraints," Energy Economics, Elsevier, vol. 86(C).
    114. Kimberly Berg & Pierre Guérin & Yuko Imura, 2016. "Predictive Ability of Commodity Prices for the Canadian Dollar," Staff Analytical Notes 16-2, Bank of Canada.
    115. Y. Tsuchiya, 2014. "Are consumer sentiments useful in Japan? An application of a new market-timing test," Applied Economics Letters, Taylor & Francis Journals, vol. 21(5), pages 356-359, March.
    116. Lei, Xiying & Alharthi, Majed & Ahmad, Ishtiaq & Aziz, Babar & Abdin, Zain ul, 2022. "Importance of international relations for the promotion of renewable energy, preservation of natural resources and environment: Empirics from SEA nations," Renewable Energy, Elsevier, vol. 196(C), pages 1250-1257.
    117. Panagiotis Delis & Stavros Degiannakis & George Filis, 2022. "What matters when developing oil price volatility forecasting frameworks?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 361-382, March.
    118. Garciga, Christian & Knotek II, Edward S., 2019. "Forecasting GDP growth with NIPA aggregates: In search of core GDP," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1814-1828.
    119. Yaojie Zhang & Mengxi He & Yuqi Zhao & Xianfeng Hao, 2023. "Predicting stock realized variance based on an asymmetric robust regression approach," Bulletin of Economic Research, Wiley Blackwell, vol. 75(4), pages 1022-1047, October.
    120. Yuqing Feng & Yaojie Zhang & Yudong Wang, 2024. "Out‐of‐sample volatility prediction: Rolling window, expanding window, or both?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(3), pages 567-582, April.
    121. Ben Jacobsen & Ben R. Marshall & Nuttawat Visaltanachoti, 2019. "Stock Market Predictability and Industrial Metal Returns," Management Science, INFORMS, vol. 65(7), pages 3026-3042, July.
    122. Ellwanger, Reinhard & Snudden, Stephen, 2023. "Forecasts of the real price of oil revisited: Do they beat the random walk?," Journal of Banking & Finance, Elsevier, vol. 154(C).
    123. Liu, Jingzhen & Kemp, Alexander, 2019. "Forecasting the sign of U.S. oil and gas industry stock index excess returns employing macroeconomic variables," Energy Economics, Elsevier, vol. 81(C), pages 672-686.
    124. Kitazawa, Yoshitsugu, 2022. "Transformations and moment conditions for dynamic fixed effects logit models," Journal of Econometrics, Elsevier, vol. 229(2), pages 350-362.
    125. Yi, Yongsheng & Ma, Feng & Zhang, Yaojie & Huang, Dengshi, 2018. "Forecasting the prices of crude oil using the predictor, economic and combined constraints," Economic Modelling, Elsevier, vol. 75(C), pages 237-245.
    126. Roberto Duncan & Enrique Martínez García, 2015. "Forecasting local inflation in Open Economies: What Can a NOEM Model Do?," Globalization Institute Working Papers 235, Federal Reserve Bank of Dallas, revised 21 Dec 2022.
    127. Garratt, Anthony & Petrella, Ivan & Zhang, Yunyi, 2022. "Asymmetry and Interdependence when Evaluating U.S. Energy Information Administration Forecasts," MPRA Paper 115559, University Library of Munich, Germany.
    128. Liu, Li & Pan, Zhiyuan, 2020. "Forecasting stock market volatility: The role of technical variables," Economic Modelling, Elsevier, vol. 84(C), pages 55-65.
    129. Gaglianone, Wagner Piazza & Marins, Jaqueline Terra Moura, 2017. "Evaluation of exchange rate point and density forecasts: An application to Brazil," International Journal of Forecasting, Elsevier, vol. 33(3), pages 707-728.
    130. Knüppel, Malte & Schultefrankenfeld, Guido, 2008. "How informative are macroeconomic risk forecasts? An examination of the Bank of England's inflation forecasts," Discussion Paper Series 1: Economic Studies 2008,14, Deutsche Bundesbank.
    131. Kontogeorgos, Georgios & Lambrias, Kyriacos, 2019. "An analysis of the Eurosystem/ECB projections," Working Paper Series 2291, European Central Bank.
    132. Xiaoyi Mu and Haichun Ye, 2015. "Small Trends and Big Cycles in Crude Oil Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    133. Degiannakis, Stavros & Filis, George, 2018. "Forecasting oil prices: High-frequency financial data are indeed useful," Energy Economics, Elsevier, vol. 76(C), pages 388-402.
    134. Reinhard Ellwanger, Stephen Snudden, Lenin Arango-Castillo, 2023. "Seize the Last Day: Period-End-Point Sampling for Forecasts of Temporally Aggregated Data," LCERPA Working Papers bm0142, Laurier Centre for Economic Research and Policy Analysis.
    135. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    136. Wang, Jiqian & Ma, Feng & Wang, Tianyang & Wu, Lan, 2023. "International stock volatility predictability: New evidence from uncertainties," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 85(C).
    137. Tsuchiya, Yoichi, 2014. "Purchasing and supply managers provide early clues on the direction of the US economy: An application of a new market-timing test," International Review of Economics & Finance, Elsevier, vol. 29(C), pages 599-618.
    138. Li, Dakai, 2024. "Forecasting stock market realized volatility: The role of investor attention to the price of petroleum products," International Review of Economics & Finance, Elsevier, vol. 90(C), pages 115-122.
    139. Yoshitsugu Kitazawa, 2013. "Exploration of dynamic fixed effects logit models from a traditional angle," Discussion Papers 60, Kyushu Sangyo University, Faculty of Economics.
    140. Snudden, Stephen, 2018. "Targeted growth rates for long-horizon crude oil price forecasts," International Journal of Forecasting, Elsevier, vol. 34(1), pages 1-16.
    141. Amor Aniss Benmoussa, Reinhard Ellwanger, Stephen Snudden, 2023. "Carpe Diem: Can daily oil prices improve model-based forecasts of the real price of crude oil?," LCERPA Working Papers bm0141, Laurier Centre for Economic Research and Policy Analysis.
    142. Li Liu & Yudong Wang, 2021. "Forecasting aggregate market volatility: The role of good and bad uncertainties," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(1), pages 40-61, January.
    143. Constantin Bürgi & Dorine Boumans, 2020. "Categorical Forecasts and Non-Categorical Loss Functions," CESifo Working Paper Series 8266, CESifo.
    144. Knüppel, Malte & Schultefrankenfeld, Guido, 2011. "Evaluating macroeconomic risk forecasts," Discussion Paper Series 1: Economic Studies 2011,14, Deutsche Bundesbank.

  21. Sandeep Kapur & Allan Timmermann, 2005. "Relative Performance Evaluation Contracts and Asset Market Equilibrium," Birkbeck Working Papers in Economics and Finance 0503, Birkbeck, Department of Economics, Mathematics & Statistics.

    Cited by:

    1. Axel Stahmer, 2015. "Fund flows inducing mispricing of risk in competitive financial markets," ESMT Research Working Papers ESMT-15-04, ESMT European School of Management and Technology.
    2. Vayanos, Dimitri & Jiang, Hao & Zheng, Lu, 2020. "Tracking Biased Weights: Asset Pricing Implications of Value-Weighted Indexing," CEPR Discussion Papers 15563, C.E.P.R. Discussion Papers.
    3. Opazo, Luis & Raddatz, Claudio & Schmukler, Sergio L., 2014. "Institutional investors and long-term investment : evidence from Chile," Policy Research Working Paper Series 6922, The World Bank.
    4. Stracca, Livio, 2005. "Delegated portfolio management: a survey of the theoretical literature," Working Paper Series 520, European Central Bank.
    5. Johnson, Timothy C., 2016. "Rethinking reversals," Journal of Financial Economics, Elsevier, vol. 120(2), pages 211-228.
    6. Don U. A. Galagedera & John Watson, 2015. "Benchmarking superannuation funds based on relative performance," Applied Economics, Taylor & Francis Journals, vol. 47(28), pages 2959-2973, June.
    7. Buffa, Andrea & Vayanos, Dimitri & Woolley, Paul, 2014. "Asset management contracts and equilibrium prices," LSE Research Online Documents on Economics 119026, London School of Economics and Political Science, LSE Library.
    8. Luis Opazo & Claudio Raddatz & Sergio Schmukler, 2009. "The Long And The Short Of Emerging Market Debt," Working Papers Central Bank of Chile 530, Central Bank of Chile.
    9. Gehrig, Thomas P. & Lütje, Torben & Menkhoff, Lukas, 2008. "Bonus Payments and Fund Managers' Behavior: Trans-Atlantic Evidence," Hannover Economic Papers (HEP) dp-411, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    10. Galagedera, Don U.A. & Watson, John & Premachandra, I.M. & Chen, Yao, 2016. "Modeling leakage in two-stage DEA models: An application to US mutual fund families," Omega, Elsevier, vol. 61(C), pages 62-77.
    11. Huang, Shiyang & Jiang, Ying & Qiu, Zhigang & Ye, Zhiqiang, 2019. "An equilibrium model of risk management spillover," Journal of Banking & Finance, Elsevier, vol. 107(C), pages 1-1.
    12. Michael Sockin & Mindy Z Xiaolan, 2023. "Delegated Learning and Contract Commonality in Asset Management," Review of Finance, European Finance Association, vol. 27(6), pages 1931-1975.
    13. Premachandra, I.M. & Zhu, Joe & Watson, John & Galagedera, Don U.A., 2012. "Best-performing US mutual fund families from 1993 to 2008: Evidence from a novel two-stage DEA model for efficiency decomposition," Journal of Banking & Finance, Elsevier, vol. 36(12), pages 3302-3317.
    14. Cuoco, Domenico & Kaniel, Ron, 2009. "Equilibrium Prices in the Presence of Delegated Portfolio Management," CEPR Discussion Papers 7453, C.E.P.R. Discussion Papers.
    15. Blake, David & Timmermann, Allan & Tonks, Ian & Wermers, Russ, 2010. "Decentralized investment management: evidence from the pension fund industry," MPRA Paper 35767, University Library of Munich, Germany.
    16. Huang, Shiyang & Qiu, Zhigang & Shang, Qi & Tang, Ke, 2013. "Asset pricing with heterogeneous beliefs and relative performance," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4107-4119.
    17. Pablo Solórzano-Taborga & Ana Belén Alonso-Conde & Javier Rojo-Suárez, 2020. "Data Envelopment Analysis and Multifactor Asset Pricing Models," IJFS, MDPI, vol. 8(2), pages 1-18, April.
    18. Liu, Xiangbo & Qiu, Zhigang & Xiong, Yan, 2013. "VaR constrained asset pricing with relative performance," Economics Letters, Elsevier, vol. 121(2), pages 174-178.
    19. Raddatz, Claudio & Schmukler, Sergio L., 2011. "Deconstructing herding : evidence from pension fund investment behavior," Policy Research Working Paper Series 5700, The World Bank.
    20. Jean-Daniel Guigou & Patrick De Lamirande & Bruno Lovat, 2011. "Strategic delegation and collusion: Do incentive schemes matter?," LSF Research Working Paper Series 11-02, Luxembourg School of Finance, University of Luxembourg.

  22. Kosowski, Robert & Timmermann, Allan & Wermers, Russ & White, Hal, 2005. "Can mutual fund stars really pick stocks? New evidence from a bootstrap analysis," CFR Working Papers 05-14, University of Cologne, Centre for Financial Research (CFR).

    Cited by:

    1. Wei-Xing Zhou & Guo-Hua Mu & Si-Wei Chen & Didier Sornette, "undated". "Strategies used as Spectroscopy of Financial Markets Reveal New Stylized Facts," Working Papers ETH-RC-11-005, ETH Zurich, Chair of Systems Design.
    2. Mohammad (Vahid) Irani & Hugh Hoikwang Kim, 2023. "The consequences of non‐trading institutional investors," Financial Management, Financial Management Association International, vol. 52(3), pages 433-481, September.
    3. Enareta Kurtbegu & Juliana Caicedo-llano, 2014. "European equity fund managers: luck or skill?!," Economics Bulletin, AccessEcon, vol. 34(4), pages 2340-2350.
    4. Charles Cao & Grant Farnsworth & Hong Zhang, 2021. "The Economics of Hedge Fund Startups: Theory and Empirical Evidence," Journal of Finance, American Finance Association, vol. 76(3), pages 1427-1469, June.
    5. D'Agostino, Antonello & McQuinn, Kieran & Whelan, Karl, 2010. "Are Some Forecasters Really Better Than Others?," Research Technical Papers 5/RT/10, Central Bank of Ireland.
    6. Jezek, M., 2009. "Passive Investors, Active Traders and Strategic Delegation of Price Discovery," Cambridge Working Papers in Economics 0951, Faculty of Economics, University of Cambridge.
    7. Andrei Semenov, 2009. "Risk factor beta conditional value-at-risk," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(6), pages 549-558.
    8. Keith Cuthbertson & Dirk Nitzsche & Niall O’Sullivan, 2023. "UK mutual funds: performance persistence and portfolio size," Journal of Asset Management, Palgrave Macmillan, vol. 24(4), pages 284-298, July.
    9. Campbell R. Harvey & Yan Liu, 2022. "Luck versus Skill in the Cross Section of Mutual Fund Returns: Reexamining the Evidence," Journal of Finance, American Finance Association, vol. 77(3), pages 1921-1966, June.
    10. Nicolae B. Gârleanu & Lasse H. Pedersen, 2015. "Efficiently Inefficient Markets for Assets and Asset Management," NBER Working Papers 21563, National Bureau of Economic Research, Inc.
    11. Angelidis, Timotheos & Giamouridis, Daniel & Tessaromatis, Nikolaos, 2012. "Revisiting Mutual Fund Performance Evaluation," MPRA Paper 36644, University Library of Munich, Germany.
    12. Dirk Brounen & Piet Eichholtz & David Ling, 2007. "Trading Intensity and Real Estate Performance," The Journal of Real Estate Finance and Economics, Springer, vol. 35(4), pages 449-474, November.
    13. Mateus, Irina B. & Mateus, Cesario & Todorovic, Natasa, 2019. "Review of new trends in the literature on factor models and mutual fund performance," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 344-354.
    14. Silvio John Camilleri & Ritienne Farrugia, 2018. "The Risk-Adjusted Performance of Alternative Investment Funds and UCITS: A Comparative Analysis," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 10(7), pages 1-23, July.
    15. Lee, Jaeram & Jeon, Hyunglae & Kang, Jangkoo & Lee, Changjun, 2020. "Do actively managed mutual funds exploit stock market mispricing?," The North American Journal of Economics and Finance, Elsevier, vol. 53(C).
    16. Thomas George & Chuan-Yang Hwang & Tavy Ronen, 2010. "Bootstrap refinements in tests of microstructure frictions," Review of Quantitative Finance and Accounting, Springer, vol. 35(1), pages 47-70, July.
    17. Solórzano-Taborga, Pablo & Alonso-Conde, Ana Belén & Rojo-Suárez, Javier, 2018. "Efficiency and Persistence of Spanish Absolute Return Funds || Eficiencia y persistencia de los fondos de retorno absolutos españoles," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 25(1), pages 186-214, Junio.
    18. Jiong Gong & Ping Jiang & Shu Tian, 2016. "Contractual mutual fund governance: the case of China," Review of Quantitative Finance and Accounting, Springer, vol. 46(3), pages 543-567, April.
    19. Andrew Clare & Mariana Clare, 2019. "An examination of ex ante fund performance: identifying indicators of future performance," Journal of Asset Management, Palgrave Macmillan, vol. 20(3), pages 175-195, May.
    20. H. Pierre Hsieh & Imen Tebourbi & Wen‐Min Lu & Nai‐Yu Liu, 2020. "Mutual fund performance: The decision quality and capital magnet efficiencies," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 41(5), pages 861-872, July.
    21. Favilukis, Jack & Lin, Xiaoji, 2016. "Does wage rigidity make firms riskier? Evidence from long-horizon return predictability," Journal of Monetary Economics, Elsevier, vol. 78(C), pages 80-95.
    22. Francis In & Sangbae Kim & Philip I Ji, 2014. "On timing ability in Australian managed funds," Australian Journal of Management, Australian School of Business, vol. 39(1), pages 93-106, February.
    23. Artamonov, Nikita & Voronina, Anna & Emelyanov, Nikita & Kurbatskii, Aleksei, 2020. "Estimation of interest rates’ impact on mutual funds’ performance in the USA," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 58, pages 55-75.
    24. Huang, Rong & Asteriou, Dimitrios & Pouliot, William, 2020. "A reappraisal of luck versus skill in the cross-section of mutual fund returns," Journal of Economic Behavior & Organization, Elsevier, vol. 176(C), pages 166-187.
    25. Witkowska Dorota, 2012. "Measurement of the Efficiency of Mutual Funds Operating on the Pan-European Market," Folia Oeconomica Stetinensia, Sciendo, vol. 12(2), pages 126-146, December.
    26. Kim, Sangbae & In, Francis & Ji, Philip Inyeob & Park, Raphael Jonghyeon, 2014. "False discoveries in the performance of Australian managed funds," Pacific-Basin Finance Journal, Elsevier, vol. 26(C), pages 244-256.
    27. Gallefoss, Kristoffer & Hansen, Helge Hoff & Haukaas, Eirik Solli & Molnár, Peter, 2015. "What daily data can tell us about mutual funds: Evidence from Norway," Journal of Banking & Finance, Elsevier, vol. 55(C), pages 117-129.
    28. Jung‐Soon Shin & Minki Kim & Dongjun Oh & Tong Suk Kim, 2019. "Do hedge funds time market tail risk? Evidence from option‐implied tail risk," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(2), pages 205-237, February.
    29. Almeida, Caio & Ardison, Kym & Garcia, René, 2020. "Nonparametric assessment of hedge fund performance," Journal of Econometrics, Elsevier, vol. 214(2), pages 349-378.
    30. Harvey, Campbell R. & Liu, Yan, 2021. "Lucky factors," Journal of Financial Economics, Elsevier, vol. 141(2), pages 413-435.
    31. Li, Xin & Paulson, Nicholas, 2014. "Is Farm Management Skill Persistent?," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170170, Agricultural and Applied Economics Association.
    32. Wang, Xiaoxiao, 2023. "Bank affiliation and mutual funds’ trading strategy distinctiveness," International Review of Financial Analysis, Elsevier, vol. 88(C).
    33. Cao, Charles & Simin, Timothy T. & Wang, Ying, 2013. "Do mutual fund managers time market liquidity?," Journal of Financial Markets, Elsevier, vol. 16(2), pages 279-307.
    34. Fernando Chague & Rodrigo De Losso, Bruno Giovannetti, 2017. "Uncovering Skilled Short-sellers," Working Papers, Department of Economics 2017_01, University of São Paulo (FEA-USP).
    35. Jha, Ranjini & Korkie, Bob & Turtle, Harry J., 2009. "Measuring performance in a dynamic world: Conditional mean-variance fundamentals," Journal of Banking & Finance, Elsevier, vol. 33(10), pages 1851-1859, October.
    36. Stambaugh, Robert F. & Pástor, Luboš & Taylor, Lucian, 2014. "Scale and Skill in Active Management," CEPR Discussion Papers 9854, C.E.P.R. Discussion Papers.
    37. Hollstein, Fabian & Prokopczuk, Marcel & Wese Simen, Chardin, 2017. "The Term Structure of Systematic and Idiosyncratic Risk," Hannover Economic Papers (HEP) dp-618, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    38. Hunter, David & Kandel, Eugene & Kandel, Shmuel & Wermers, Russ, 2014. "Mutual fund performance evaluation with active peer benchmarks," Journal of Financial Economics, Elsevier, vol. 112(1), pages 1-29.
    39. Turtle, H.J. & Zhang, Chengping, 2012. "Time-varying performance of international mutual funds," Journal of Empirical Finance, Elsevier, vol. 19(3), pages 334-348.
    40. Cuthbertson, Keith & Nitzsche, Dirk & O'Sullivan, Niall, 2008. "UK mutual fund performance: Skill or luck?," Journal of Empirical Finance, Elsevier, vol. 15(4), pages 613-634, September.
    41. Michael Busack & Wolfgang Drobetz & Jan Tille, 2017. "Can investors benefit from the performance of alternative UCITS funds?," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 31(1), pages 69-111, February.
    42. Dimitrios G. Konstantinides & Georgios C. Zachos, 2019. "Exhibiting Abnormal Returns Under a Risk Averse Strategy," Methodology and Computing in Applied Probability, Springer, vol. 21(2), pages 551-566, June.
    43. Alan Crane & Kevin Crotty, 2020. "How Skilled Are Security Analysts?," Journal of Finance, American Finance Association, vol. 75(3), pages 1629-1675, June.
    44. Fisher, Mark & Jensen, Mark J., 2022. "Bayesian nonparametric learning of how skill is distributed across the mutual fund industry," Journal of Econometrics, Elsevier, vol. 230(1), pages 131-153.
    45. Chang, Xiaochen & Guo, Songlin & Huang, Junkai, 2022. "Kidnapped mutual funds: Irrational preference of naive investors and fund incentive distortion," International Review of Financial Analysis, Elsevier, vol. 83(C).
    46. Subrata Roy, 2016. "Another Look in Conditioning Alphas on Economic Information: Indian Evidence," Global Business Review, International Management Institute, vol. 17(1), pages 191-213, February.
    47. Dimitrios Koutmos & Bochen Wu & Qi Zhang, 2020. "In search of winning mutual funds in the Chinese stock market," Review of Quantitative Finance and Accounting, Springer, vol. 54(2), pages 589-616, February.
    48. Jeffrey Hobbs & Vivek Singh, 2015. "A comparison of buy‐side and sell‐side analysts," Review of Financial Economics, John Wiley & Sons, vol. 24(1), pages 42-51, January.
    49. Javier Vidal-García & Marta Vidal & Sabri Boubaker & Riadh Manita, 2019. "Idiosyncratic risk and mutual fund performance," Annals of Operations Research, Springer, vol. 281(1), pages 349-372, October.
    50. Nguyen, Duc Binh Benno & Prokopczuk, Marcel & Wese Simen, Chardin, 2017. "The Risk Premium of Gold," Hannover Economic Papers (HEP) dp-616, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    51. F. Douglas Foster & Geoffrey J. Warren, 2015. "Why Might Investors Choose Active Management?," Journal of Behavioral Finance, Taylor & Francis Journals, vol. 16(1), pages 20-39, January.
    52. Hou, Yang & Meng, Jiayin, 2018. "The momentum effect in the Chinese market and its relationship with the simultaneous and the lagged investor sentiment," MPRA Paper 94838, University Library of Munich, Germany.
    53. Chen Su & Hanxiong Zhang & Nathan Lael Joseph, 2022. "The performance of UK stock recommendation revisions: Does brokerage house reputation matter?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(3), pages 3051-3070, July.
    54. Li-Wen Chen & Andrew Adams & Richard Taffler, 2010. "What Style-Timing Skills do Mutual Fund Stars Possess?," CFI Discussion Papers 1001, Centre for Finance and Investment, Heriot Watt University.
    55. Laurent Barras & Olivier Scaillet & Russ Wermers, 2010. "False Discoveries in Mutual Fund Performance: Measuring Luck in Estimated Alphas," Journal of Finance, American Finance Association, vol. 65(1), pages 179-216, February.
    56. Johansson, Anders C. & Feng, Xunan, 2014. "Can Mutual Funds Pick Stocks in China? Evidence from the IPO Market," Stockholm School of Economics Asia Working Paper Series 2014-32, Stockholm School of Economics, Stockholm China Economic Research Institute.
    57. Wu, Yueh-Cheng & Lin, Sheng-Wei, 2022. "Efficiency evaluation of Asia's cultural tourism using a dynamic DEA approach," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    58. Qiang Bu, 2018. "Long-term negative fund alpha: Is it caused by bad skill or bad luck?," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 32(1), pages 1-16, February.
    59. Nathaniel Light & Ivan Stetsyuk, 2022. "Puzzle solved? A comprehensive analysis of hedge fund-like mutual funds according to the value-added paradigm," Journal of Asset Management, Palgrave Macmillan, vol. 23(3), pages 256-275, May.
    60. William J. Hippler & M. Kabir Hassan & Luca Pezzo, 2021. "Partial adjustment towards performance‐based mutual fund returns: Evidence from U.S.‐based equity funds," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(4), pages 5864-5883, October.
    61. Cai, Biqing & Cheng, Tingting & Yan, Cheng, 2018. "Time-varying skills (versus luck) in U.S. active mutual funds and hedge funds," Journal of Empirical Finance, Elsevier, vol. 49(C), pages 81-106.
    62. Xuejun Jin & Yifan Shen & Bin Yu & Meifen Qian, 2022. "Flow‐driven risk shifting of high‐performing funds," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 62(1), pages 71-100, March.
    63. Cuthbertson, Keith & Nitzsche, Dirk & O'Sullivan, Niall, 2022. "Mutual fund performance persistence: Factor models and portfolio size," International Review of Financial Analysis, Elsevier, vol. 81(C).
    64. Cueto, José Manuel, 2019. "Models for expected returns with statistical factors," DES - Working Papers. Statistics and Econometrics. WS 28776, Universidad Carlos III de Madrid. Departamento de Estadística.
    65. Yuan Zhao, 2014. "Global Real Estate Mutual Funds Performance: Managerial Skills and Diversification Benefits?," ERES eres2014_212, European Real Estate Society (ERES).
    66. Christiansen, Charlotte & Grønborg, Niels S. & Nielsen, Ole L., 2020. "Mutual fund selection for realistically short samples," Journal of Empirical Finance, Elsevier, vol. 55(C), pages 218-240.
    67. Zia-Ur-Rehman Rao & Tanveer Ahsan & Muhammad Zubair Tauni & Muhammad Umar, 2018. "Performance and Persistence in Performance of Actively Managed Chinese Equity Funds," Post-Print hal-01959131, HAL.
    68. Blake, David & Cairns, Andrew & Dowd, Kevin, 2008. "Turning pension plans into pension planes: What investment strategy designers of defined contribution pension plans can learn from commercial aircraft designers," MPRA Paper 33749, University Library of Munich, Germany.
    69. Maximilian Koestner & Benjamin Loos & Steffen Meyer & Andreas Hackethal, 2017. "Do individual investors learn from their mistakes?," Journal of Business Economics, Springer, vol. 87(5), pages 669-703, July.
    70. Lucia Milone & Paolo Pellizzari, 2009. "Mutual funds flows and the "Sheriff of Nottingham" effect," Working Papers 188, Department of Applied Mathematics, Università Ca' Foscari Venezia.
    71. Zheng, Yao & Osmer, Eric & Zhang, Ruiyi, 2018. "Sentiment hedging: How hedge funds adjust their exposure to market sentiment," Journal of Banking & Finance, Elsevier, vol. 88(C), pages 147-160.
    72. Bianchi, Daniele & Babiak, Mykola, 2022. "On the performance of cryptocurrency funds," Journal of Banking & Finance, Elsevier, vol. 138(C).
    73. Jordan, Bradford D. & Riley, Timothy B., 2015. "Volatility and mutual fund manager skill," Journal of Financial Economics, Elsevier, vol. 118(2), pages 289-298.
    74. Keswani, Aneel & Medhat, Mamdouh & Miguel, Antonio F. & Ramos, Sofia B., 2020. "Uncertainty avoidance and mutual funds," Journal of Corporate Finance, Elsevier, vol. 65(C).
    75. Chen, Li-Wen & Adams, Andrew & Taffler, Richard, 2013. "What style-timing skills do mutual fund “stars” possess?," Journal of Empirical Finance, Elsevier, vol. 21(C), pages 156-173.
    76. Isoé N. Schneider & Daniel Knebel Baggio & João S. Tusi da Silveira & Maria M. Baccin Brizolla, 2020. "Assessing Market Timing Performance of Brazilian Multi-Asset Pension Funds using the Battese and Coelli's Stochastic Frontier Model (1995)," Economics Bulletin, AccessEcon, vol. 40(1), pages 50-60.
    77. Miguel, António F. & Chen, Yihao, 2021. "Do machines beat humans? Evidence from mutual fund performance persistence," International Review of Financial Analysis, Elsevier, vol. 78(C).
    78. Kooli, Maher & Stetsyuk, Ivan, 2021. "Are hedge fund managers skilled?," Global Finance Journal, Elsevier, vol. 49(C).
    79. Jennifer Huang & Clemens Sialm & Hanjiang Zhang, 2009. "Risk Shifting and Mutual Fund Performance," NBER Working Papers 14903, National Bureau of Economic Research, Inc.
    80. Omneya Abdelsalam & Meryem Duygun & Juan Carlos Matallín-Sáez & Emili Tortosa-Ausina, 2014. "Is Ethical Money Sensitive to Past Returns? The Case of Portfolio Constraints and Persistence of Islamic and Socially Responsible Funds," Working Papers 2014/19, Economics Department, Universitat Jaume I, Castellón (Spain).
    81. Antonio Diez de los Rios & René Garcia, 2011. "The option CAPM and the performance of hedge funds," Review of Derivatives Research, Springer, vol. 14(2), pages 137-167, July.
    82. Joseph Gerakos & Juhani T. Linnainmaa & Adair Morse, 2016. "Asset Managers: Institutional Performance and Smart Betas," NBER Working Papers 22982, National Bureau of Economic Research, Inc.
    83. Jonathan Fletcher & Andrew Marshall, 2014. "Investor Heterogeneity and the Cross-section of U.K. Investment Trust Performance," Journal of Financial Services Research, Springer;Western Finance Association, vol. 45(1), pages 67-89, February.
    84. Wan-Ni Lai & Yi-Ting Chen & Edward W. Sun, 2021. "Comonotonicity and low volatility effect," Annals of Operations Research, Springer, vol. 299(1), pages 1057-1099, April.
    85. Salganik, G., 2010. "Essays on investment flows of hedge fund and mutual fund investors," Other publications TiSEM e5953fbe-064e-4647-9353-0, Tilburg University, School of Economics and Management.
    86. Gil-Bazo, Javier & Ruiz-Verdú, Pablo, 2006. "Yet another puzzle? the relation between price and performance in the mutual fund industry," DEE - Working Papers. Business Economics. WB wb066519, Universidad Carlos III de Madrid. Departamento de Economía de la Empresa.
    87. Huij, Joop & Derwall, Jeroen, 2008. ""Hot Hands" in bond funds," Journal of Banking & Finance, Elsevier, vol. 32(4), pages 559-572, April.
    88. Zhongzhi Lawrence He, 2018. "Generalized Information Ratio," Papers 1803.01381, arXiv.org, revised Apr 2018.
    89. Yan, Cheng & Cheng, Tingting, 2019. "In search of the optimal number of fund subgroups," Journal of Empirical Finance, Elsevier, vol. 50(C), pages 78-92.
    90. Cujean, Julien, 2020. "Idea sharing and the performance of mutual funds," Journal of Financial Economics, Elsevier, vol. 135(1), pages 88-119.
    91. MacDonald, Ronald & Menkhoff, Lukas & Rebitzky, Rafael R., 2009. "Exchange rate forecasters’ performance: evidence of skill?," SIRE Discussion Papers 2009-10, Scottish Institute for Research in Economics (SIRE).
    92. Guo, J., 2012. "Quantitative investment strategies and portfolio management," Other publications TiSEM 4d5766f2-94ab-412e-ba8e-5, Tilburg University, School of Economics and Management.
    93. Francisco Peñaranda & Enrique Sentana, 2015. "A Unifying Approach to the Empirical Evaluation of Asset Pricing Models," The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 412-435, May.
    94. Barker, Richard & Hendry, John & Roberts, John & Sanderson, Paul, 2012. "Can company-fund manager meetings convey informational benefits? Exploring the rationalisation of equity investment decision making by UK fund managers," Accounting, Organizations and Society, Elsevier, vol. 37(4), pages 207-222.
    95. Hammouda, Amira & Saeed, Asif & Vidal, Marta & Vidal-García, Javier, 2023. "On the short-term persistence of mutual fund performance in Europe," Research in International Business and Finance, Elsevier, vol. 65(C).
    96. Wahal, Sunil & Wang, Albert (Yan), 2011. "Competition among mutual funds," Journal of Financial Economics, Elsevier, vol. 99(1), pages 40-59, January.
    97. Yu, Hsin-Yi, 2012. "Where are the smart investors? New evidence of the smart money effect," Journal of Empirical Finance, Elsevier, vol. 19(1), pages 51-64.
    98. Blake, David & Caulfield, Tristan & Ioannidis, Christos & Tonks, Ian, 2014. "Improved inference in the evaluation of mutual fund performance using panel bootstrap methods," Journal of Econometrics, Elsevier, vol. 183(2), pages 202-210.
    99. Isabel Abinzano & Luis Muga & Rafael Santamaria, 2010. "Do Managerial Skills Vary Across Fund Managers? Results Using European Mutual Funds," Journal of Financial Services Research, Springer;Western Finance Association, vol. 38(1), pages 41-67, August.
    100. Marshall, Andrew & Tang, Leilei, 2011. "Assessing the impact of heteroskedasticity for evaluating hedge fund performance," International Review of Financial Analysis, Elsevier, vol. 20(1), pages 12-19, January.
    101. Scott Bennett & David R. Gallagher & Graham Harman & Geoffrey J. Warren & Yuki Xi, 2018. "A new perspective on performance persistence: evidence using portfolio holdings," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 58(1), pages 91-125, March.
    102. Jing-Zhi Huang & Ying Wang, 2014. "Timing Ability of Government Bond Fund Managers: Evidence from Portfolio Holdings," Management Science, INFORMS, vol. 60(8), pages 2091-2109, August.
    103. Alexandros Kostakis, 2007. "Mind Coskewness: A Performance Measure for Prudent, Long-Term Investors," Discussion Papers 07/07, Department of Economics, University of York.
    104. Wermers, Russ & Yao, Tong & Zhao, Jane, 2007. "The investment value of mutual fund portfolio disclosure," CFR Working Papers 06-09, University of Cologne, Centre for Financial Research (CFR).
    105. Geoffroy Enjolras & Robert Kast & Patrick Sentis, 2009. "Diversification in Area-Yield Crop Insurance : The Multi Linear Additive Model," Working Papers 09-15, LAMETA, Universtiy of Montpellier, revised Nov 2009.
    106. Mieszko Mazur & Galla Salganik-Shoshan & Maxim Zagonov, 2017. "Comparing performance sensitivity of retail and institutional mutual funds’ investment flows," Post-Print hal-02613697, HAL.
    107. Rossi, Alberto G. & Blake, David & Timmermann, Allan & Tonks, Ian & Wermers, Russ, 2015. "Network centrality and pension fund performance," CFR Working Papers 15-16, University of Cologne, Centre for Financial Research (CFR).
    108. Ayadi, Mohamed A. & Chaibi, Anis & Kryzanowski, Lawrence, 2016. "Performance of Canadian hybrid mutual funds," The North American Journal of Economics and Finance, Elsevier, vol. 38(C), pages 124-147.
    109. Vidal-García, Javier & Vidal, Marta & Boubaker, Sabri & Uddin, Gazi Salah, 2016. "The short-term persistence of international mutual fund performance," Economic Modelling, Elsevier, vol. 52(PB), pages 926-938.
    110. Marcin Kacperczyk & Clemens Sialm & Lu Zheng, 2005. "Unobserved Actions of Mutual Funds," NBER Working Papers 11766, National Bureau of Economic Research, Inc.
    111. Stefano Puddu & Martin Péclat, 2015. "Dangerous Liaisons: Interests groups and politicians' votes. A Swiss perspective," IRENE Working Papers 15-09, IRENE Institute of Economic Research.
    112. Fama, Eugene F. & French, Kenneth R., 2012. "Size, value, and momentum in international stock returns," Journal of Financial Economics, Elsevier, vol. 105(3), pages 457-472.
    113. Sotes-Paladino, Juan & Zapatero, Fernando, 2022. "Carrot and stick: A role for benchmark-adjusted compensation in active fund management," Journal of Financial Intermediation, Elsevier, vol. 52(C).
    114. Abhay Kaushik & Anita K. Pennathur, 2013. "Performance And New Money Cash Flows In Real Estate Mutual Funds," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 36(4), pages 453-470, December.
    115. Francisco Climent & Paula Mollá & Pilar Soriano, 2020. "The Investment Performance of U.S. Islamic Mutual Funds," Sustainability, MDPI, vol. 12(9), pages 1-18, April.
    116. Konstantinov, Gueorgui S. & Fabozzi, Frank J., 2021. "Towards a dead end? EMU bond market exposure and manager performance," Journal of International Money and Finance, Elsevier, vol. 116(C).
    117. Zheng, Yao & Osmer, Eric & Bai, Yidan, 2021. "Timing market confidence in the Chinese domestic security market," The Quarterly Review of Economics and Finance, Elsevier, vol. 82(C), pages 298-311.
    118. Cai, Yu & Lau, Sie Ting, 2015. "Informed trading around earnings and mutual fund alphas," Journal of Banking & Finance, Elsevier, vol. 60(C), pages 168-180.
    119. Bryan D. MacGregor & Rainer Schulz & Yuan Zhao, 2021. "Performance and Market Maturity in Mutual Funds: Is Real Estate Different?," The Journal of Real Estate Finance and Economics, Springer, vol. 63(3), pages 437-492, October.
    120. Sebastian Müller & Martin Weber, 2014. "Evaluating the Rating of Stiftung Warentest: How Good Are Mutual Fund Ratings and Can They Be Improved?," European Financial Management, European Financial Management Association, vol. 20(2), pages 207-235, March.
    121. Berk, Jonathan B. & van Binsbergen, Jules H., 2014. "Measuring Skill in the Mutual Fund Industry," Research Papers 3131, Stanford University, Graduate School of Business.
    122. Mason, Andrew & Agyei-Ampomah, Sam & Skinner, Frank, 2016. "Realism, skill, and incentives: Current and future trends in investment management and investment performance," International Review of Financial Analysis, Elsevier, vol. 43(C), pages 31-40.
    123. Andrea J. Heuson & Mark C. Hutchinson & Alok Kumar, 2020. "Predicting hedge fund performance when fund returns are skewed," Financial Management, Financial Management Association International, vol. 49(4), pages 877-896, December.
    124. Cujean, Julien, 2018. "Idea Sharing and the Performance of Mutual Funds," CEPR Discussion Papers 13111, C.E.P.R. Discussion Papers.
    125. Yong Chen & Bing Han & Jing Pan, 2021. "Sentiment Trading and Hedge Fund Returns," Journal of Finance, American Finance Association, vol. 76(4), pages 2001-2033, August.
    126. Tao Chen & Karen H. Y. Wong & Masayuki Susai, 2016. "Active Management and Price Efficiency of Exchange-traded Funds," Prague Economic Papers, Prague University of Economics and Business, vol. 2016(1), pages 3-18.
    127. Casavecchia, Lorenzo & Hulley, Hardy, 2018. "Are mutual fund investors paying for noise?," International Review of Financial Analysis, Elsevier, vol. 58(C), pages 8-23.
    128. Heidhues, Paul & Köszegi, Botond & Murooka, Takeshi, 2017. "Inferior Products and Profitable Deception," Munich Reprints in Economics 55055, University of Munich, Department of Economics.
    129. Benavides Guillermo, 2020. "Asymmetric Volatility Effects in Risk Management: An Empirical Analysis using a Stock Index Futures," Working Papers 2020-10, Banco de México.
    130. Lehmann, Bruce & Timmermann, Allan, 2007. "Performance measurement and evaluation," LSE Research Online Documents on Economics 24505, London School of Economics and Political Science, LSE Library.
    131. Jiang, George J. & Yao, Tong & Yu, Tong, 2007. "Do mutual funds time the market? Evidence from portfolio holdings," Journal of Financial Economics, Elsevier, vol. 86(3), pages 724-758, December.
    132. Ronald MacDonald & Lukas Menkhoff & Rafael R. Rebitzky, 2009. "Exchange rate forecasters’ performance: evidence of skill?," Working Papers 2009_13, Business School - Economics, University of Glasgow.
    133. Zhang, Junsheng & Peng, Zezhi & Zeng, Yamin & Yang, Haisheng, 2023. "Do big data mutual funds outperform?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 88(C).
    134. Parshakov, Petr, 2015. "Estimation of skill of Russian mutual fund managers," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 37(1), pages 57-66.
    135. Jakusch, Sven Thorsten & Meyer, Steffen & Hackethal, Andreas, 2019. "Taming models of prospect theory in the wild? Estimation of Vlcek and Hens (2011)," SAFE Working Paper Series 146, Leibniz Institute for Financial Research SAFE, revised 2019.
    136. Chang, Danting, 2021. "Fundamental anomalies and the size puzzle in China: A data mining approach," Finance Research Letters, Elsevier, vol. 42(C).
    137. Livingston, Miles & Yao, Ping & Zhou, Lei, 2019. "The volatility of mutual fund performance," Journal of Economics and Business, Elsevier, vol. 104(C), pages 1-1.
    138. Omneya Abdelsalam & Meryem Duygun & Juan Carlos Matallín-Sáez & Emili Tortosa-Ausina, 2017. "Is Ethical Money Sensitive to Past Returns? The Case of Portfolio Constraints and Persistence in Islamic Funds," Journal of Financial Services Research, Springer;Western Finance Association, vol. 51(3), pages 363-384, June.
    139. Keith Cuthbertson & Simon Hayley & Dirk Nitzsche, 2016. "Market and Style Timing: German Equity and Bond Funds," European Financial Management, European Financial Management Association, vol. 22(4), pages 667-696, September.
    140. Kim, Sangbae & In, Francis, 2012. "False discoveries in volatility timing of mutual funds," Journal of Banking & Finance, Elsevier, vol. 36(7), pages 2083-2094.
    141. Azi Ben-Rephael & Ryan D Israelsen, 2018. "Are Some Clients More Equal Than Others? An Analysis of Asset Management Companies’ Execution Costs [An analysis of trade-size clustering and its relation to stealth trading]," Review of Finance, European Finance Association, vol. 22(5), pages 1705-1736.
    142. Bond, Philip & Dow, James, 2021. "Failing to forecast rare events," Journal of Financial Economics, Elsevier, vol. 142(3), pages 1001-1016.
    143. Marcin Kacperczyk & Clemens Sialm & Lu Zheng, 2005. "On the Industry Concentration of Actively Managed Equity Mutual Funds," Journal of Finance, American Finance Association, vol. 60(4), pages 1983-2011, August.
    144. Rodríguez Arnulfo & Rodríguez Pedro N., 2007. "Recursive Thick Modeling and the Choice of Monetary Policy in Mexico," Working Papers 2007-04, Banco de México.
    145. Nathan Goldstein & Ben‐Zion Zilberfarb, 2023. "The closer we get, the better we are?," Economic Inquiry, Western Economic Association International, vol. 61(2), pages 364-376, April.
    146. Li, Xi & Paulson, Nicholas & Schnitkey, Gary, 2015. "Is Farm Management Skill Persistent?," 2015 Conference, August 9-14, 2015, Milan, Italy 212047, International Association of Agricultural Economists.
    147. Francis In & Sangbae Kim, 2012. "An Introduction to Wavelet Theory in Finance:A Wavelet Multiscale Approach," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8431, December.
    148. Kosowski, Robert & Joenväärä, Juha & Tolonen, Pekka, 2018. "The Effect of Investment Constraints on Hedge Fund Investor Returns," CEPR Discussion Papers 12599, C.E.P.R. Discussion Papers.
    149. Gupta-Mukherjee, Swasti, 2013. "When active fund managers deviate from their peers: Implications for fund performance," Journal of Banking & Finance, Elsevier, vol. 37(4), pages 1286-1305.
    150. Elias Cavalcante Junior & Fernando Moraes & Rodrigo De Losso, 2020. "Unskilled Fund Managers: Replicating Active Fund Performance With Few ETFs," Working Papers, Department of Economics 2020_14, University of São Paulo (FEA-USP), revised 15 Sep 2020.
    151. Blake, David & Timmermann, Allan & Tonks, Ian & Wermers, Russ, 2010. "Decentralized investment management: evidence from the pension fund industry," MPRA Paper 35767, University Library of Munich, Germany.
    152. Wolfgang Bessler & Thomas Conlon & Diego Víctor de Mingo‐López & Juan Carlos Matallín‐Sáez, 2022. "Mutual fund performance and changes in factor exposure," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 45(1), pages 17-52, March.
    153. Ratanabanchuen, Roongkiat & Saengchote, Kanis, 2020. "Institutional capital allocation and equity returns: Evidence from Thai mutual funds’ holdings," Finance Research Letters, Elsevier, vol. 32(C).
    154. Ding Du & Karen Craft Denning & Xiaobing Zhao, 2014. "Market states and momentum in sector exchange-traded funds," Journal of Asset Management, Palgrave Macmillan, vol. 15(4), pages 223-237, August.
    155. Anthony Tay, 2008. "Time-Varying Incentives in the Mutual Fund Industry," Finance Working Papers 22484, East Asian Bureau of Economic Research.
    156. Iuliia N. Naidenova & Petr A. Parshakov & Marina A. Zavertiaeva & Eduardo Tome, 2015. "Look For People, Not For Alpha: Mutual Funds Success And Managerial Intellectual Capital," HSE Working papers WP BRP 42/FE/2015, National Research University Higher School of Economics.
    157. M. Maheen & S. Resia Beegam, 2023. "Application of Nonparametric Stochastic Dominance Approach in the Performance Evaluation of Indian Mutual Funds," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 21(3), pages 663-680, September.
    158. Eugene F. Fama, 2014. "Two Pillars of Asset Pricing," American Economic Review, American Economic Association, vol. 104(6), pages 1467-1485, June.
    159. Gazi Salah Uddin & Jose Arreola Hernandez & Chiraz Labidi & Victor Troster & Seong-Min Yoon, 2019. "The impact of financial and economic factors on Islamic mutual fund performance: Evidence from multiple fund categories," Post-Print hal-02468303, HAL.
    160. Anthony Tay & Jacques Olivier, 2008. "Time-Varying Incentives in the Mutual Fund Industry," Working Papers 10-2008, Singapore Management University, School of Economics, revised Jun 2008.
    161. Guillermo Benavides, 2021. "Asymmetric Volatility Relevance in Risk Management: An Empirical Analysis using Stock Index Futures," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(TNEA), pages 1-18, Septiembr.
    162. Francisco Climent & Pilar Soriano, 2011. "Green and Good? The Investment Performance of US Environmental Mutual Funds," Journal of Business Ethics, Springer, vol. 103(2), pages 275-287, October.
    163. Huang, Rong & Pilbeam, Keith & Pouliot, William, 2021. "Do actively managed US mutual funds produce positive alpha?," Journal of Economic Behavior & Organization, Elsevier, vol. 182(C), pages 472-492.
    164. Pi‐Hsia Hung & Donald Lien & Yun‐Ju Chien, 2020. "Portfolio concentration and fund manager performance," Review of Financial Economics, John Wiley & Sons, vol. 38(3), pages 423-451, July.
    165. Huaizhi Chen & Lauren Cohen & Umit Gurun, 2019. "Don’t Take Their Word For It: The Misclassification of Bond Mutual Funds," NBER Working Papers 26423, National Bureau of Economic Research, Inc.
    166. Jonathan Fletcher & Patricia Ntozi‐Obwale, 2008. "Arbitrage Bounds and UK Unit Trust Performance," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 35(3‐4), pages 580-600, April.
    167. Wermers, Russ & Yao, Tong & Zhao, Jane, 2012. "Forecasting stock returns through an efficient aggregation of mutual fund holdings," CFR Working Papers 06-09 [rev.], University of Cologne, Centre for Financial Research (CFR).
    168. Korteweg, Arthur & Sorensen, Morten, 2017. "Skill and luck in private equity performance," Journal of Financial Economics, Elsevier, vol. 124(3), pages 535-562.
    169. Bessler, Wolfgang & Drobetz, Wolfgang & Zimmermann, Heinz, 2007. "Conditional Performance Evaluation for German Mutual Equity Funds," Working papers 2007/22, Faculty of Business and Economics - University of Basel.
    170. Paulo Rogério Faustino Matos & Artur Nave, 2012. "Stock investment funds in Brazil: performance and management expertise," Brazilian Business Review, Fucape Business School, vol. 9(Special I), pages 1-37, March.
    171. Chen Su & Hanxiong Zhang & Robert S. Hudson, 2020. "The time‐varying performance of UK analyst recommendation revisions: Do market conditions matter?," Financial Markets, Institutions & Instruments, John Wiley & Sons, vol. 29(2), pages 65-89, May.
    172. Laurent Barras & Patrick Gagliardini & Olivier Scaillet, 2022. "Skill, Scale, and Value Creation in the Mutual Fund Industry," Journal of Finance, American Finance Association, vol. 77(1), pages 601-638, February.
    173. Luis Ferruz & Luis Vicente & Laura Andreu, 2009. "Performance persistence and its influence on money and investor flows into Spanish pension plans," Review of Quantitative Finance and Accounting, Springer, vol. 32(1), pages 85-100, January.
    174. Yao Zheng & Eric Osmer & Liancun Zheng, 2020. "Can mutual funds time investor sentiment?," Review of Quantitative Finance and Accounting, Springer, vol. 54(4), pages 1449-1486, May.
    175. Kamil, Nazrol K.M. & Alhabshi, Syed O. & Bacha, Obiyathulla I. & Masih, Mansur, 2014. "Heads we win, tails you lose: Is there equity in Islamic equity funds?," Pacific-Basin Finance Journal, Elsevier, vol. 28(C), pages 7-28.
    176. Shaun Bond & Paul Mitchell, 2010. "Alpha and Persistence in Real Estate Fund Performance," The Journal of Real Estate Finance and Economics, Springer, vol. 41(1), pages 53-79, July.
    177. Cao, Charles & Chen, Yong & Liang, Bing & Lo, Andrew W., 2013. "Can hedge funds time market liquidity?," Journal of Financial Economics, Elsevier, vol. 109(2), pages 493-516.
    178. Liao, Li & Zhang, Xueyong & Zhang, Yeqing, 2017. "Mutual fund managers' timing abilities," Pacific-Basin Finance Journal, Elsevier, vol. 44(C), pages 80-96.
    179. Keith Cuthbertson & Dirk Nitzsche & Niall O' Sullivan, 2004. "UK Mutual Fund Performance: Genuine Stock-Picking Ability or Luck," Money Macro and Finance (MMF) Research Group Conference 2004 55, Money Macro and Finance Research Group.
    180. Asal, Maher, 2016. "Testing for the presence of skill in Swedish mutual fund performance: Evidence from a bootstrap analysis," Journal of Economics and Business, Elsevier, vol. 88(C), pages 22-35.
    181. Adriana Gabriela Breaban & Juan Carlos Matallín-Sáez & Iván Barreda-Tarrazona & Mª Rosario Balaguer-Franch, 2012. "The demand for structured products: an experimental approach," Working Papers 2012/15, Economics Department, Universitat Jaume I, Castellón (Spain).
    182. Yi, Li & He, Lei, 2016. "False discoveries in style timing of Chinese mutual funds," Pacific-Basin Finance Journal, Elsevier, vol. 38(C), pages 194-208.
    183. Swasti Gupta‐Mukherjee & Ankur Pareek, 2020. "Limited attention and portfolio choice: The impact of attention allocation on mutual fund performance," Financial Management, Financial Management Association International, vol. 49(4), pages 1083-1125, December.
    184. Feng Li & Venky Nagar, 2013. "Diversity and Performance," Management Science, INFORMS, vol. 59(3), pages 529-544, September.
    185. Bussière, Matthieu & Hoerova, Marie & Klaus, Benjamin, 2015. "Commonality in hedge fund returns: Driving factors and implications," Journal of Banking & Finance, Elsevier, vol. 54(C), pages 266-280.
    186. José Manuel Cueto & Aurea Grané & Ignacio Cascos, 2020. "Models for Expected Returns with Statistical Factors," JRFM, MDPI, vol. 13(12), pages 1-17, December.
    187. Sviatoslav Rosov & F Douglas Foster, 2014. "Customer foreign exchange orders: When timing really does matter," Australian Journal of Management, Australian School of Business, vol. 39(3), pages 351-368, August.
    188. Keith Cuthbertson & Dirk Nitzsche & Niall O'Sullivan, 2012. "False Discoveries in UK Mutual Fund Performance," European Financial Management, European Financial Management Association, vol. 18(3), pages 444-463, June.
    189. Jonathan Fletcher & Patricia Ntozi-Obwale, 2009. "Exploring the Conditional Performance of U.K. Unit Trusts," Journal of Financial Services Research, Springer;Western Finance Association, vol. 36(1), pages 21-44, August.
    190. Dirk Nitzsche & Keith Cuthbertson & Niall O'Sullivan, 2005. "Mutual Fund Performance: Skill Or Luck?," Money Macro and Finance (MMF) Research Group Conference 2005 4, Money Macro and Finance Research Group.
    191. Kothari, S.P. & Ramanna, Karthik & Skinner, Douglas J., 2010. "Implications for GAAP from an analysis of positive research in accounting," Journal of Accounting and Economics, Elsevier, vol. 50(2-3), pages 246-286, December.
    192. Yaping Xiao & Haishu Qiao & Ting Xie, 2019. "Open-End Funds for Sustainable Economic Growth in China: The Relationship between Load Fees, Performance, and Flows," Sustainability, MDPI, vol. 11(22), pages 1-27, November.
    193. Ioannis D Vrontos & Loukia Meligkotsidou & Spyridon D Vrontos, 2011. "Performance evaluation of mutual fund investments: The impact of non-normality and time-varying volatility," Journal of Asset Management, Palgrave Macmillan, vol. 12(4), pages 292-307, September.
    194. Eduardo Sandoval & Claudia Reyes, 2012. "Investment Styles Performance In European Stock Markets Before, During, And After Subprime Financial Crisis, Desempeno De Estilos De Inversion En Los Mercados Accionarios Europeos En Los Periodos Prev," Revista Internacional Administracion & Finanzas, The Institute for Business and Finance Research, vol. 5(3), pages 1-18.
    195. Patton, Andrew J. & Timmermann, Allan, 2010. "Monotonicity in asset returns: New tests with applications to the term structure, the CAPM, and portfolio sorts," Journal of Financial Economics, Elsevier, vol. 98(3), pages 605-625, December.
    196. Matallín-Sáez, Juan Carlos & Soler-Domínguez, Amparo & Tortosa-Ausina, Emili, 2016. "On the robustness of persistence in mutual fund performance," The North American Journal of Economics and Finance, Elsevier, vol. 36(C), pages 192-231.
    197. Raimonds Lieksnis, 2010. "Evaluating the Financial Performance of Latvian and Estonian Second-Pillar Pension Funds," Research in Economics and Business: Central and Eastern Europe, Tallinn School of Economics and Business Administration, Tallinn University of Technology, vol. 2(2).
    198. Gaurav Singh Chauhan, 2019. "Performance attribution of mutual funds in India: outperformance or mis‐representation?," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 59(S1), pages 383-409, April.
    199. Gray, Wesley & Kern, Andrew, 2008. "Fundamental Value Investors: Characteristics and Performance," MPRA Paper 12620, University Library of Munich, Germany.
    200. Timmermann, Allan & Lunde, Asger & Groenborg, Niels & Wermers, Russ, 2017. "Picking Funds with Confidence," CEPR Discussion Papers 11896, C.E.P.R. Discussion Papers.
    201. Klinkowska, Olga & Zhao, Yuan, 2023. "Fund flows and performance: New evidence from retail and institutional SRI mutual funds," International Review of Financial Analysis, Elsevier, vol. 87(C).
    202. Agyei-Ampomah, Sam & Clare, Andrew & Mason, Andrew & Thomas, Stephen, 2015. "On luck versus skill when performance benchmarks are style-consistent," Journal of Banking & Finance, Elsevier, vol. 59(C), pages 127-145.
    203. Veasna Khim & Hery Razafitombo, 2015. "The Impact of UCITS IV Directive on European Mutual Funds Performance," Post-Print hal-01698550, HAL.
    204. Du, Ding, 2013. "Another look at the cross-section and time-series of stock returns: 1951 to 2011," Journal of Empirical Finance, Elsevier, vol. 20(C), pages 130-146.
    205. Papathanasiou, Spyros & Koutsokostas, Drosos, 2024. "Sustainability ratings and fund performance: New evidence from European ESG equity mutual funds," Finance Research Letters, Elsevier, vol. 62(PA).
    206. Roongkiat Ratanabanchuen & Kanis Saengchote, 2018. "Institutional Capital Allocation and Equity Returns: Evidence from Thai Mutual Funds' Holdings," PIER Discussion Papers 97, Puey Ungphakorn Institute for Economic Research.
    207. Jeffrey Hobbs & Vivek Singh & Madhumita Chakraborty, 2021. "Institutional underperformance: Should managers listen to the sell-side before trading?," Review of Quantitative Finance and Accounting, Springer, vol. 57(1), pages 389-410, July.
    208. Praveen K. Das & S. P. Uma Rao & Denis O. Boudreaux, 2015. "Workplace Fund Performance: Luck or Skill?," International Journal of Financial Research, International Journal of Financial Research, Sciedu Press, vol. 6(2), pages 95-100, April.
    209. Hobbs, Jeffrey & Singh, Vivek, 2015. "A comparison of buy-side and sell-side analysts," Review of Financial Economics, Elsevier, vol. 24(C), pages 42-51.
    210. Nik Tuzov & Frederi Viens, 2011. "Mutual fund performance: false discoveries, bias, and power," Annals of Finance, Springer, vol. 7(2), pages 137-169, May.
    211. Federico Nucera & Giorgio Valente, 2013. "Carry Trades and the Performance of Currency Hedge Funds," Working Papers 032013, Hong Kong Institute for Monetary Research.
    212. Couch, Robert & Wu, Wei, 2012. "Private investment and public equity returns," Journal of Economics and Business, Elsevier, vol. 64(2), pages 160-184.
    213. Chen, Qinhua & Chi, Yeguang, 2018. "Smart beta, smart money," Journal of Empirical Finance, Elsevier, vol. 49(C), pages 19-38.
    214. Nain, Amrita & Yao, Tong, 2013. "Mutual fund skill and the performance of corporate acquirers," Journal of Financial Economics, Elsevier, vol. 110(2), pages 437-456.
    215. Francesco Lisi, 2011. "Dicing with the market: randomized procedures for evaluation of mutual funds," Quantitative Finance, Taylor & Francis Journals, vol. 11(2), pages 163-172.
    216. Juhani T. Linnainmaa & Michael R. Roberts, 2016. "The History of the Cross Section of Stock Returns," NBER Working Papers 22894, National Bureau of Economic Research, Inc.
    217. Hung, Pi-Hsia & Lien, Donald & Kuo, Ming-Sin, 2020. "Window dressing in equity mutual funds," The Quarterly Review of Economics and Finance, Elsevier, vol. 78(C), pages 338-354.
    218. Huaizhi Chen & Lauren Cohen & Umit G. Gurun, 2021. "Don't Take Their Word for It: The Misclassification of Bond Mutual Funds," Journal of Finance, American Finance Association, vol. 76(4), pages 1699-1730, August.
    219. Vassilios Babalos & Michael Doumpos & Nikolaos Philippas & Constantin Zopounidis, 2015. "Towards a Holistic Approach for Mutual Fund Performance Appraisal," Computational Economics, Springer;Society for Computational Economics, vol. 46(1), pages 35-53, June.
    220. Roberto Stein, 2022. "‘Smart’ copycat mutual funds: on the performance of partial imitation strategies," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-31, December.
    221. Enoch Cheng & Clemens C. Struck, 2019. "Time-Series Momentum: A Monte-Carlo Approach," Working Papers 201906, School of Economics, University College Dublin.
    222. Moneta, Fabio, 2015. "Measuring bond mutual fund performance with portfolio characteristics," Journal of Empirical Finance, Elsevier, vol. 33(C), pages 223-242.
    223. Verbeek, Marno & Wang, Yu, 2013. "Better than the original? The relative success of copycat funds," Journal of Banking & Finance, Elsevier, vol. 37(9), pages 3454-3471.
    224. Zhangpeng Gao & Shahidur Rahman, 2006. "A New Direction of Fund Rating Based on the Finite Normal Mixture Model," Economic Growth Centre Working Paper Series 0603, Nanyang Technological University, School of Social Sciences, Economic Growth Centre.
    225. Osinga, Albert Jakob & Schauten, Marc B.J. & Zwinkels, Remco C.J., 2021. "Timing is money: The factor timing ability of hedge fund managers," Journal of Empirical Finance, Elsevier, vol. 62(C), pages 266-281.
    226. Urbi Garay & Enrique Ter Horst & German Molina & Abel Rodriguez, 2016. "Bayesian Nonparametric Measurement of Factor Betas and Clustering with Application to Hedge Fund Returns," Econometrics, MDPI, vol. 4(1), pages 1-23, March.
    227. Rodríguez Arnulfo & Zúñiga Gerardo & Rodríguez Pedro N., 2008. "Analysis of the Performance of Mexican Pension Funds: Evidence from a Stationary Bootstrap Application," Working Papers 2008-02, Banco de México.
    228. Cuthbertson, Keith & Nitzsche, Dirk, 2013. "Performance, stock selection and market timing of the German equity mutual fund industry," Journal of Empirical Finance, Elsevier, vol. 21(C), pages 86-101.
    229. Laurini, Márcio Poletti & Sanvicente, Antônio Zoratto & Monteiro, Rogério da Costa, 2011. "Generalized Tests of Investment Fund Performance," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 31(2), December.
    230. Stephen A. Gorman & Frank J. Fabozzi, 2021. "The ABC’s of the alternative risk premium: academic roots," Journal of Asset Management, Palgrave Macmillan, vol. 22(6), pages 405-436, October.
    231. Fulkerson, Jon A. & Riley, Timothy B., 2019. "Portfolio concentration and mutual fund performance," Journal of Empirical Finance, Elsevier, vol. 51(C), pages 1-16.
    232. Yue Xu, 2021. "Spillovers of Senior Mutual Fund Managers’ Capital Raising Ability," CREATES Research Papers 2022-03, Department of Economics and Business Economics, Aarhus University.
    233. M. Imtiaz Mazumder & Edward M. Miller & Oscar A. Varela, 2010. "Market Timing the Trading of International Mutual Funds: Weekend, Weekday and Serial Correlation Strategies," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 37(7‐8), pages 979-1007, July.
    234. Steffen Meyer & Michaela Pagel, 2022. "Fully Closed: Individual Responses to Realized Gains and Losses," Journal of Finance, American Finance Association, vol. 77(3), pages 1529-1585, June.
    235. Manuel Ammann & Otto Huber & Markus Schmid, 2013. "Hedge Fund Characteristics and Performance Persistence," European Financial Management, European Financial Management Association, vol. 19(2), pages 209-250, March.
    236. Alexandros Kostakis, 2009. "Performance measures and incentives: loading negative coskewness to outperform the CAPM," The European Journal of Finance, Taylor & Francis Journals, vol. 15(5-6), pages 463-486.
    237. Adams, John C. & Mansi, Sattar A. & Nishikawa, Takeshi, 2012. "Are mutual fund fees excessive?," Journal of Banking & Finance, Elsevier, vol. 36(8), pages 2245-2259.
    238. Vidal, Marta & Vidal-García, Javier & Lean, Hooi Hooi & Uddin, Gazi Salah, 2015. "The relation between fees and return predictability in the mutual fund industry," Economic Modelling, Elsevier, vol. 47(C), pages 260-270.
    239. Benoît Dewaele, 2013. "Leverage and Alpha: The Case of Funds of Hedge Funds," Working Papers CEB 13-033, ULB -- Universite Libre de Bruxelles.
    240. M. Kabir Hassan & William J. Hippler III, 2014. "Partial Adjustment Toward Equilibrium Mutual Fund Allocations: Evidence from U.S.-based Equity Mutual Funds," NFI Working Papers 2014-WP-01, Indiana State University, Scott College of Business, Networks Financial Institute.
    241. H. J. Turtle & Kainan Wang, 2017. "The Value In Fundamental Accounting Information," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 40(1), pages 113-140, March.
    242. Kaserer Christoph & Hanauer Matthias X., 2017. "25 Jahre Fama-French-Modell: Erklärungsgehalt, Anomalien und praktische Implikationen," Perspektiven der Wirtschaftspolitik, De Gruyter, vol. 18(2), pages 98-116, June.
    243. Monika Mościbrodzka, 2021. "Alternative investment funds – the evaluation of managers’ abilities in the light of the amendments to the Act on Investment Fund," Bank i Kredyt, Narodowy Bank Polski, vol. 52(6), pages 517-544.
    244. Cheng, Tingting & Yan, Cheng, 2017. "Evaluating the size of the bootstrap method for fund performance evaluation," Economics Letters, Elsevier, vol. 156(C), pages 36-41.
    245. Yi, Li & Liu, Zilan & He, Lei & Qin, Zilong & Gan, Shunli, 2018. "Do Chinese mutual funds time the market?," Pacific-Basin Finance Journal, Elsevier, vol. 47(C), pages 1-19.
    246. Aiken, Adam L. & Kang, Minjeong, 2023. "Hedge fund manager timing and selectivity skill over time. A holdings-based estimate," Finance Research Letters, Elsevier, vol. 58(PB).
    247. Keith Pilbeam & Hamish Preston, 2019. "An Empirical Investigation of the Performance of Japanese Mutual Funds: Skill or Luck?," IJFS, MDPI, vol. 7(1), pages 1-16, January.
    248. Nuttall, John, 2007. "Flaw in the fund skill/luck test method of Cuthbertson et al," MPRA Paper 1584, University Library of Munich, Germany.
    249. Günster, N.K. & Kole, H.J.W.G. & Jacobsen, B., 2009. "Riding Bubbles," ERIM Report Series Research in Management ERS-2009-058-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    250. Sandeep Dahiya & David Yermack, 2018. "Investment Returns and Distribution Policies of Non-Profit Endowment Funds," NBER Working Papers 25323, National Bureau of Economic Research, Inc.
    251. Benoît Dewaele & Hugues Pirotte & N. Tuchschmid & E. Wallerstein, 2011. "Assessing the Performance of Funds of Hedge Funds," Working Papers CEB 11-041, ULB -- Universite Libre de Bruxelles.
    252. Campbell R. Harvey & Yan Liu, 2020. "False (and Missed) Discoveries in Financial Economics," Papers 2006.04269, arXiv.org.
    253. Timothy B. Riley, 2021. "Portfolios of actively managed mutual funds," The Financial Review, Eastern Finance Association, vol. 56(2), pages 205-230, May.
    254. Yuan, Jia & Sun, Guang-Zhen & Siu, Ricardo, 2014. "The lure of illusory luck: How much are people willing to pay for random shocks," Journal of Economic Behavior & Organization, Elsevier, vol. 106(C), pages 269-280.
    255. Huang, Jing-Zhi & Wang, Ying, 2013. "Should investors invest in hedge fund-like mutual funds? Evidence from the 2007 financial crisis," Journal of Financial Intermediation, Elsevier, vol. 22(3), pages 482-512.
    256. Abramov, Alexander (Абрамов, Александр) & Akshentseva, Kseniya (Акшенцева, Ксения) & Radygin, Alexander (Радыгин, Александр), 2015. "The effectiveness of mutual funds: theoretical approaches and the experience of Russia [Эффективность Паевых Инвестиционных Фондов: Теоретические Подходы И Опыт России]," Ekonomicheskaya Politika / Economic Policy, Russian Presidential Academy of National Economy and Public Administration, vol. 4, pages 60-86.
    257. Anarkulova, Aizhan & Cederburg, Scott & O’Doherty, Michael S., 2022. "Stocks for the long run? Evidence from a broad sample of developed markets," Journal of Financial Economics, Elsevier, vol. 143(1), pages 409-433.
    258. Terrill Keasler & Chris McNeil, 2010. "Mad Money stock recommendations: market reaction and performance," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 34(1), pages 1-22, January.
    259. Zaremba Adam & Konieczka Przemysław, 2017. "Size, Value, and Momentum in Polish Equity Returns: Local or International Factors?," International Journal of Management and Economics, Warsaw School of Economics, Collegium of World Economy, vol. 53(3), pages 26-47, September.
    260. Benoît Dewaele, 2013. "Portfolio Optimization for Hedge Funds through Time-Varying Coefficients," Working Papers CEB 13-032, ULB -- Universite Libre de Bruxelles.
    261. Onur Kemal Tosun & Liang Jin & Richard Taffler & Arman Eshraghi, 2022. "Fund manager skill: selling matters more!," Review of Quantitative Finance and Accounting, Springer, vol. 59(3), pages 969-994, October.
    262. Alda, Mercedes & Andreu, Laura & Sarto, José Luis, 2017. "Learning about individual managers’ performance in UK pension funds: The importance of specialization," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 654-667.
    263. El Ammari, Anis & Vidal, Marta & Vidal-García, Javier, 2023. "European market timing," The Journal of Economic Asymmetries, Elsevier, vol. 27(C).
    264. Yuan Zhao & Bryan D. Macgregor & Rainer Schulz, 2013. "Can US Real Estate Mutual Funds Beat the Market? New Evidence," ERES eres2013_335, European Real Estate Society (ERES).
    265. Eduardo Sandoval & Paula Urrutia, 2011. "El Efecto De La Crisis Financiera Subprime En Los Mercados Accionarios Desarrollados. Estimaciones Aparentemente No Relacionadas Sur Versus Garch (1,1)," Revista Internacional Administracion & Finanzas, The Institute for Business and Finance Research, vol. 4(1), pages 1-17.
    266. Jonathan Fletcher & Andrew Marshall, 2005. "An Empirical Examination of U.K. International Unit Trust Performance," Journal of Financial Services Research, Springer;Western Finance Association, vol. 27(2), pages 183-206, April.
    267. Stefan Jonsson, 2009. "Refraining from Imitation: Professional Resistance and Limited Diffusion in a Financial Market," Organization Science, INFORMS, vol. 20(1), pages 172-186, February.
    268. Elyasiani, Elyas & Rytchkov, Oleg & Stetsyuk, Ivan, 2022. "Do real estate mutual fund managers create value?," The Quarterly Review of Economics and Finance, Elsevier, vol. 86(C), pages 396-406.
    269. Y. Chung & Thomas Kim, 2015. "The win–loss ratio as an ability signal of mutual fund managers: a measure that is less influenced by luck," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 29(4), pages 301-335, November.
    270. Ekholm, Anders G., 2012. "Portfolio returns and manager activity: How to decompose tracking error into security selection and market timing," Journal of Empirical Finance, Elsevier, vol. 19(3), pages 349-358.
    271. Jonathan B. Berk & Jules H. van Binsbergen, 2012. "Measuring Managerial Skill in the Mutual Fund Industry," NBER Working Papers 18184, National Bureau of Economic Research, Inc.
    272. Broeders, Dirk W.G.A. & van Oord, Arco & Rijsbergen, David R., 2019. "Does it pay to pay performance fees? Empirical evidence from Dutch pension funds," Journal of International Money and Finance, Elsevier, vol. 93(C), pages 299-312.
    273. Zhi Da & Pengjie Gao & Ravi Jagannathan, 2008. "Informed Trading, Liquidity Provision, and Stock Selection by Mutual Funds," NBER Working Papers 14609, National Bureau of Economic Research, Inc.
    274. Ayadi, Mohamed A. & Kryzanowski, Lawrence, 2011. "Fixed-income fund performance: Role of luck and ability in tail membership," Journal of Empirical Finance, Elsevier, vol. 18(3), pages 379-392, June.
    275. Božović, Miloš, 2022. "Recent evidence on the short-term and long-term performance persistence of emerging-market mutual fund returns," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    276. Vidal-García, Javier, 2013. "The persistence of European mutual fund performance," Research in International Business and Finance, Elsevier, vol. 28(C), pages 45-67.
    277. Yue Xu, 2022. "Reallocation of Mutual Fund Managers and Capital Raising Ability," CREATES Research Papers 2022-11, Department of Economics and Business Economics, Aarhus University.
    278. Sermpinis, Georgios & Hassanniakalager, Arman & Stasinakis, Charalampos & Psaradellis, Ioannis, 2021. "Technical analysis profitability and Persistence: A discrete false discovery approach on MSCI indices," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 73(C).
    279. Cumming, Douglas & Johan, Sofia & Zhang, Yelin, 2019. "What is mutual fund flow?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 62(C), pages 222-251.
    280. Barber, Brad M. & Odean, Terrance, 2013. "The Behavior of Individual Investors," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1533-1570, Elsevier.
    281. Stanisław Urbański, 2017. "Short-, medium- and long-run performance persistence of investment funds in Poland," Bank i Kredyt, Narodowy Bank Polski, vol. 48(4), pages 343-374.
    282. Andriy Bodnaruk & Bekhan Chokaev & Andrei Simonov, 2019. "Downside Risk Timing by Mutual Funds," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 9(1), pages 171-196.
    283. Huazhu Zhang & Cheng Yan, 2018. "A skeptical appraisal of the bootstrap approach in fund performance evaluation," Financial Markets, Institutions & Instruments, John Wiley & Sons, vol. 27(2), pages 49-86, May.
    284. Kosowski, Robert & Naik, Narayan Y. & Teo, Melvyn, 2007. "Do hedge funds deliver alpha? A Bayesian and bootstrap analysis," Journal of Financial Economics, Elsevier, vol. 84(1), pages 229-264, April.
    285. Herrmann, Ulf & Rohleder, Martin & Scholz, Hendrik, 2016. "Does style-shifting activity predict performance? Evidence from equity mutual funds," The Quarterly Review of Economics and Finance, Elsevier, vol. 59(C), pages 112-130.
    286. Jorge Sainz & Pilar Grau & Luis Miguel Doncel & Javier Otamendi, 2008. "An evaluation on the true statistical relevance of Jensen's alpha trough simulation: An application for Germany," Economics Bulletin, AccessEcon, vol. 7(10), pages 1-9.
    287. Jun Huang & Albert Y. Wang, 2015. "The Predictability of Managerial Heterogeneities in Mutual Funds," Financial Management, Financial Management Association International, vol. 44(4), pages 947-979, October.
    288. Brooks, Chris & Fernandez-Perez, Adrian & Miffre, Joëlle & Nneji, Ogonna, 2016. "Commodity risks and the cross-section of equity returns," The British Accounting Review, Elsevier, vol. 48(2), pages 134-150.
    289. Chung, San-Lin & Hung, Chi-Hsiou & Yeh, Chung-Ying, 2012. "When does investor sentiment predict stock returns?," Journal of Empirical Finance, Elsevier, vol. 19(2), pages 217-240.
    290. Abdelsalam, Omneya & Duygun, Meryem & Matallín-Sáez, Juan Carlos & Tortosa-Ausina, Emili, 2014. "Do ethics imply persistence? The case of Islamic and socially responsible funds," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 182-194.
    291. Breloer, Bernhard & Scholz, Hendrik & Wilkens, Marco, 2014. "Performance of international and global equity mutual funds: Do country momentum and sector momentum matter?," Journal of Banking & Finance, Elsevier, vol. 43(C), pages 58-77.
    292. Sabbaghi, Omid, 2022. "The impact of news on the volatility of ESG firms," Global Finance Journal, Elsevier, vol. 51(C).
    293. Bangassa, Kenbata & Su, Chen & Joseph, Nathan L., 2012. "Selectivity and timing performance of UK investment trusts," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 22(5), pages 1149-1175.
    294. Jiang, George J. & Zaynutdinova, Gulnara R. & Zhang, Huacheng, 2021. "Stock-selection timing," Journal of Banking & Finance, Elsevier, vol. 125(C).
    295. Yang, Junmin & Cao, Zhiguang & Han, Qiheng & Wang, Qiyu, 2019. "Tactical asset allocation on technical trading rules and data snooping," Pacific-Basin Finance Journal, Elsevier, vol. 57(C).
    296. George Aragon & Bing Liang & Hyuna Park, 2014. "Onshore and Offshore Hedge Funds: Are They Twins?," Management Science, INFORMS, vol. 60(1), pages 74-91, January.

  23. Massimo Guidolin, University of Virginia & Allan Timmermann, 2004. "Strategic Asset Allocation and Consumption Decisions under Multivariate Regime Switching," Econometric Society 2004 Australasian Meetings 349, Econometric Society.

    Cited by:

    1. Massimo Guidolin & Allan Timmerman, 2006. "Asset allocation under multivariate regime switching," Working Papers 2005-002, Federal Reserve Bank of St. Louis.
    2. Fernando Alexandre & Vasco J. Gabriel & Pedro Bação, 2007. "The Consumption-Wealth Ratio Under Asymmetric Adjustment," NIPE Working Papers 15/2007, NIPE - Universidade do Minho.
    3. Guidolin, Massimo & Ono, Sadayuki, 2006. "Are the dynamic linkages between the macroeconomy and asset prices time-varying?," Journal of Economics and Business, Elsevier, vol. 58(5-6), pages 480-518.
    4. J. Sa‐Aadu & James Shilling & Ashish Tiwari, 2010. "On the Portfolio Properties of Real Estate in Good Times and Bad Times1," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 38(3), pages 529-565, September.
    5. Meenagh, David & Minford, Patrick & Peel, David, 2007. "Simulating stock returns under switching regimes - A new test of market efficiency," Economics Letters, Elsevier, vol. 94(2), pages 235-239, February.
    6. Bernd Scherer, 2009. "A note on portfolio choice for sovereign wealth funds," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 23(3), pages 315-327, September.
    7. John Powell & Rubén Roa & Jing Shi & Viliphonh Xayavong, 2007. "A Test for Long-Term Cyclical Clustering of Stock Market Regimes," Australian Journal of Management, Australian School of Business, vol. 32(2), pages 205-221, December.
    8. Asger Lunde & Allan Timmermann, 2005. "Completion time structures of stock price movements," Annals of Finance, Springer, vol. 1(3), pages 293-326, August.
    9. Marie Brière & Ombretta Signori, 2011. "Inflation hedging portfolios in different regimes," BIS Papers chapters, in: Bank for International Settlements (ed.), Portfolio and risk management for central banks and sovereign wealth funds, volume 58, pages 139-163, Bank for International Settlements.
    10. Marie Brière & Ombretta Signori, 2012. "Inflation-Hedging Portfolios : Economic Regimes Matter," Post-Print hal-01494498, HAL.
    11. Dewandaru, Ginanjar & Masih, Rumi & Bacha, Obiyathulla I. & Masih, A. Mansur M., 2014. "The Role of Islamic Asset Classes in the Diversified Portfolios: Mean Variance Spanning Test," MPRA Paper 56857, University Library of Munich, Germany.
    12. Roger Bowden & Jennifer Zhu, 2010. "Multi-scale variation, path risk and long-term portfolio management," Quantitative Finance, Taylor & Francis Journals, vol. 10(7), pages 783-796.
    13. Mark E. Wohar & David E. Rapach, 2005. "Return Predictability and the Implied Intertemporal Hedging Demands for Stocks and Bonds: International Evidence," Computing in Economics and Finance 2005 329, Society for Computational Economics.
    14. Klaus Grobys, 2012. "Active PortofolioManagement in the Presence of Regime Switching: What Are the Benefits of Defensive Asset Allocation Strategies If the Investor Faces Bear Markets?," The Review of Finance and Banking, Academia de Studii Economice din Bucuresti, Romania / Facultatea de Finante, Asigurari, Banci si Burse de Valori / Catedra de Finante, vol. 4(1), pages 015-031, June.

  24. Timmermann, Allan & Catão, Luís, 2004. "Country and Industry Dynamics in Stock Returns," CEPR Discussion Papers 4368, C.E.P.R. Discussion Papers.

    Cited by:

    1. L’Her, Jean-François & Le Moigne, Cécile & Savaria, Patrick, 2007. "Importance relative des effets pays et secteurs dans les marchés développés," L'Actualité Economique, Société Canadienne de Science Economique, vol. 83(2), pages 201-226, juin.
    2. Geert Bekaert & Robert J. Hodrick & Xiaoyan Zhang, 2005. "International Stock Return Comovements," NBER Working Papers 11906, National Bureau of Economic Research, Inc.
    3. Bai, Ye & Green, Christopher J. & Leger, Lawrence, 2012. "Industry and country factors in emerging market returns: Did the Asian crisis make a difference?," Emerging Markets Review, Elsevier, vol. 13(4), pages 559-580.
    4. Carrieri, Francesca & Errunza, Vihang & Sarkissian, Sergei, 2006. "The Dynamics of Geographic versus Sectoral Diversification: Is There a Link to the Real Economy?," Working Papers 06-4, University of Pennsylvania, Wharton School, Weiss Center.
    5. John Ammer & Jon Wongswan, 2007. "Cash Flows and Discount Rates, Industry and Country Effects and Co‐Movement in Stock Returns," The Financial Review, Eastern Finance Association, vol. 42(2), pages 211-226, May.

  25. Pesaran, M.H. & Timmermann, A., 2004. "‘Real Time Econometrics’," Cambridge Working Papers in Economics 0432, Faculty of Economics, University of Cambridge.

    Cited by:

    1. Cécile Denis & Daniel Grenouilleau & Kieran Mc Morrow & Werner Röger, 2006. "Calculating potential growth rates and output gaps - A revised production function approach," European Economy - Economic Papers 2008 - 2015 247, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
    2. Hashem Pesaran & Paolo Zaffaroni & Banca d'Italia), 2004. "Model Averaging and Value-at-Risk based Evaluation of Large Multi Asset Volatility Models for Risk Management," Money Macro and Finance (MMF) Research Group Conference 2004 101, Money Macro and Finance Research Group.
    3. Bernd Brandl & Christian Keber & Matthias Schuster, 2006. "An automated econometric decision support system: forecasts for foreign exchange trades," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 14(4), pages 401-415, December.
    4. Taipalus, Katja, 2012. "Signaling asset price bubbles with time-series methods," Bank of Finland Research Discussion Papers 7/2012, Bank of Finland.
    5. Giovannelli, Alessandro & Massacci, Daniele & Soccorsi, Stefano, 2021. "Forecasting stock returns with large dimensional factor models," Journal of Empirical Finance, Elsevier, vol. 63(C), pages 252-269.
    6. Richard G. Anderson, 2006. "Replicability, real-time data, and the science of economic research: FRED, ALFRED, and VDC," Review, Federal Reserve Bank of St. Louis, vol. 88(Jan), pages 81-93.
    7. Chee Kian Leong, 2016. "Credit Risk Scoring with Bayesian Network Models," Computational Economics, Springer;Society for Computational Economics, vol. 47(3), pages 423-446, March.
    8. Heij, Christiaan & van Dijk, Dick & Groenen, Patrick J.F., 2011. "Real-time macroeconomic forecasting with leading indicators: An empirical comparison," International Journal of Forecasting, Elsevier, vol. 27(2), pages 466-481, April.
    9. Carlos Capistrán & Allan Timmermann, 2008. "Forecast Combination With Entry and Exit of Experts," CREATES Research Papers 2008-55, Department of Economics and Business Economics, Aarhus University.
    10. M. Hashem Pesaran, 2010. "Predictability of Asset Returns and the Efficient Market Hypothesis," CESifo Working Paper Series 3116, CESifo.
    11. Timmermann, Allan & Patton, Andrew, 2007. "Learning in Real Time: Theory and Empirical Evidence from the Term Structure of Survey Forecasts," CEPR Discussion Papers 6526, C.E.P.R. Discussion Papers.
    12. Roberto Golinelli & Giuseppe Parigi, 2013. "Tracking world trade and GDP in real time," Temi di discussione (Economic working papers) 920, Bank of Italy, Economic Research and International Relations Area.
    13. Bahram Pesaran & M. Hashem Pesaran, 2010. "Conditional Volatility and Correlations of Weekly Returns and the VaR Analysis of 2008 Stock Market Crash," CESifo Working Paper Series 3023, CESifo.
    14. Phillips, Peter C.B., 2005. "Automated Discovery In Econometrics," Econometric Theory, Cambridge University Press, vol. 21(1), pages 3-20, February.
    15. A. Girardi & R. Golinelli & C. Pappalardo, 2014. "The Role of Indicator Selection in Nowcasting Euro Area GDP in Pseudo Real Time," Working Papers wp919, Dipartimento Scienze Economiche, Universita' di Bologna.
    16. Geweke, J. & Joel Horowitz & Pesaran, M.H., 2006. "Econometrics: A Bird’s Eye View," Cambridge Working Papers in Economics 0655, Faculty of Economics, University of Cambridge.
    17. M. Hashem Pesaran & Bahram Pesaran, 2007. "Volatilities and Conditional Correlations in Futures Markets with a Multivariate t Distribution," CESifo Working Paper Series 2056, CESifo.
    18. Atsushi Inoue & Barbara Rossi, 2011. "Out-of-sample forecast tests robust to the choice of window size," Working Papers 11-31, Federal Reserve Bank of Philadelphia.
    19. Heij, C. & van Dijk, D.J.C. & Groenen, P.J.F., 2009. "Macroeconomic forecasting with real-time data: an empirical comparison," Econometric Institute Research Papers EI 2009-27, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    20. Golinelli, Roberto & Parigi, Giuseppe, 2008. "Real-time squared: A real-time data set for real-time GDP forecasting," International Journal of Forecasting, Elsevier, vol. 24(3), pages 368-385.
    21. Proaño, Christian R. & Theobald, Thomas, 2014. "Predicting recessions with a composite real-time dynamic probit model," International Journal of Forecasting, Elsevier, vol. 30(4), pages 898-917.
    22. Pesaran, B. & Pesaran, M.H., 2007. "Modelling Volatilities and Conditional Correlations in Futures Markets with a Multivariate t Distribution," Cambridge Working Papers in Economics 0734, Faculty of Economics, University of Cambridge.

  26. Timmermann, Allan & Guidolin, Massimo, 2004. "Term Structure of Risk Under Alternative Econometric Specifications," CEPR Discussion Papers 4645, C.E.P.R. Discussion Papers.

    Cited by:

    1. Thomas Conlon & John Cotter & Chenglu Jin, 2019. "Co-skewness across Return Horizons," Working Papers 201910, Geary Institute, University College Dublin.
    2. C. James Hueng & Ruey Yau, 2006. "Investor preferences and portfolio selection: is diversification an appropriate strategy?," Quantitative Finance, Taylor & Francis Journals, vol. 6(3), pages 255-271.
    3. Okimoto, Tatsuyoshi, 2014. "Asymmetric increasing trends in dependence in international equity markets," Journal of Banking & Finance, Elsevier, vol. 46(C), pages 219-232.
    4. Massimo Guidolin & Allan Timmerman, 2006. "Asset allocation under multivariate regime switching," Working Papers 2005-002, Federal Reserve Bank of St. Louis.
    5. Andrew Ang & Allan Timmermann, 2011. "Regime Changes and Financial Markets," NBER Working Papers 17182, National Bureau of Economic Research, Inc.
    6. Li, Leon, 2017. "Testing and comparing the performance of dynamic variance and correlation models in value-at-risk estimation," The North American Journal of Economics and Finance, Elsevier, vol. 40(C), pages 116-135.
    7. Cathy W. S. Chen & Richard Gerlach & Bruce B. K. Hwang & Michael McAleer, 2011. "Forecasting Value-at-Risk Using Nonlinear Regression Quantiles and the Intra-day Range," KIER Working Papers 775, Kyoto University, Institute of Economic Research.
    8. Erik Kole & Dick Dijk, 2017. "How to Identify and Forecast Bull and Bear Markets?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(1), pages 120-139, January.
    9. Barbara Rossi & Tatevik Sekhposyan, 2013. "Evaluating predictive densities of U.S. output growth and inflation in a large macroeconomic data set," Economics Working Papers 1370, Department of Economics and Business, Universitat Pompeu Fabra.
    10. Fuertes, Ana-Maria & Olmo, Jose, 2013. "Optimally harnessing inter-day and intra-day information for daily value-at-risk prediction," International Journal of Forecasting, Elsevier, vol. 29(1), pages 28-42.
    11. Guidolin, Massimo & Ono, Sadayuki, 2006. "Are the dynamic linkages between the macroeconomy and asset prices time-varying?," Journal of Economics and Business, Elsevier, vol. 58(5-6), pages 480-518.
    12. BOUADDI, Mohammed & ROMBOUTS, Jeroen V.K., 2007. "Mixed exponential power asymmetric conditional heteroskedasticity," LIDAM Discussion Papers CORE 2007097, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    13. Chrétien, Stéphane & Coggins, Frank, 2010. "Performance and conservatism of monthly FHS VaR: An international investigation," International Review of Financial Analysis, Elsevier, vol. 19(5), pages 323-333, December.
    14. Alejandro Bernales & Diether W. Beuermann & Gonzalo Cortazar, 2014. "Thinly traded securities and risk management," Estudios de Economia, University of Chile, Department of Economics, vol. 41(1 Year 20), pages 5-48, June.
    15. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Practical Volatility and Correlation Modeling for Financial Market Risk Management," NBER Working Papers 11069, National Bureau of Economic Research, Inc.
    16. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2011. "Financial Risk Measurement for Financial Risk Management," PIER Working Paper Archive 11-037, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    17. Kuang-Liang Chang, 2011. "The optimal value-at-risk hedging strategy under bivariate regime switching ARCH framework," Applied Economics, Taylor & Francis Journals, vol. 43(21), pages 2627-2640.
    18. Bauwens Luc & Storti Giuseppe, 2009. "A Component GARCH Model with Time Varying Weights," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(2), pages 1-33, May.
    19. Danielsson, Jon & Zigrand, Jean-Pierre, 2006. "On time-scaling of risk and the square-root-of-time rule," Journal of Banking & Finance, Elsevier, vol. 30(10), pages 2701-2713, October.
    20. Lorán Chollete & Andréas Heinen & Alfonso Valdesogo, 2009. "Modeling International Financial Returns with a Multivariate Regime-switching Copula," Journal of Financial Econometrics, Oxford University Press, vol. 7(4), pages 437-480, Fall.
    21. Cees Diks & Valentyn Panchenko & Dick van Dijk, 2008. "Partial Likelihood-Based Scoring Rules for Evaluating Density Forecasts in Tails," Discussion Papers 2008-10, School of Economics, The University of New South Wales.
    22. Huang Dashan & Yu Baimin & Lu Zudi & Fabozzi Frank J. & Focardi Sergio & Fukushima Masao, 2010. "Index-Exciting CAViaR: A New Empirical Time-Varying Risk Model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(2), pages 1-26, March.
    23. Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    24. Massimo Guidolin, 2011. "Markov Switching Models in Empirical Finance," Working Papers 415, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    25. Henryk Gurgul & Robert Syrek, 2010. "Polish stock market and some foreign markets - dependence analysis by regime-switching copulas," Managerial Economics, AGH University of Science and Technology, Faculty of Management, vol. 8, pages 21-39.
    26. Bakshi, Gurdip & Panayotov, George, 2010. "First-passage probability, jump models, and intra-horizon risk," Journal of Financial Economics, Elsevier, vol. 95(1), pages 20-40, January.
    27. Ono, Sadayuki, 2019. "Term structure dynamics in a monetary economy with learning," The North American Journal of Economics and Finance, Elsevier, vol. 48(C), pages 730-745.
    28. Massimo Guidolin & Carrie Fangzhou Na, 2007. "The economic and statistical value of forecast combinations under regime switching: an application to predictable U.S. returns," Working Papers 2006-059, Federal Reserve Bank of St. Louis.
    29. Solange Berstein & Rómulo Chumacero, 2008. "VaR Limits for Pension Funds: An Evaluation," Working Papers 26, Superintendencia de Pensiones, revised May 2008.
    30. Massacci, Daniele, 2014. "A two-regime threshold model with conditional skewed Student t distributions for stock returns," Economic Modelling, Elsevier, vol. 43(C), pages 9-20.
    31. Xu, Yanyan & Liu, Jing & Ma, Feng & Chu, Jielei, 2024. "Liquidity and realized volatility prediction in Chinese stock market: A time-varying transitional dynamic perspective," International Review of Economics & Finance, Elsevier, vol. 89(PA), pages 543-560.
    32. Penaranda, Francisco, 2007. "Portfolio choice beyond the traditional approach," LSE Research Online Documents on Economics 24481, London School of Economics and Political Science, LSE Library.
    33. Cees Diks & Valentyn Panchenko & Dick van Dijk, 2011. "Likelihood-based scoring rules for comparing density forecasts in tails," Post-Print hal-00834423, HAL.
    34. Taamouti, Abderrahim, 2009. "Analytical Value-at-Risk and Expected Shortfall under regime-switching," Finance Research Letters, Elsevier, vol. 6(3), pages 138-151, September.
    35. Bec, Frédérique & Gollier, Christian, 2014. "Cyclicality and term structure of Value-at-Risk within a threshold autoregression setup," IDEI Working Papers 835, Institut d'Économie Industrielle (IDEI), Toulouse.
    36. Polanski, Arnold & Stoja, Evarist, 2012. "Efficient evaluation of multidimensional time-varying density forecasts, with applications to risk management," International Journal of Forecasting, Elsevier, vol. 28(2), pages 343-352.
    37. Agata Gemzik-Salwach, 2012. "The Use Of A Value At Risk Measure For The Analysis Of Bank Interest Margins," "e-Finanse", University of Information Technology and Management, Institute of Financial Research and Analysis, vol. 8(4), pages 15-29, February.
    38. Carolina Fugazza & Massimo Guidolin & Giovanna Nicodano, 2007. "Investing for the Long-run in European Real Estate," The Journal of Real Estate Finance and Economics, Springer, vol. 34(1), pages 35-80, January.
    39. Aliyu, Shehu Usman Rano & Aminu, Abubakar Wambai, 2018. "Economic regimes and stock market performance in Nigeria: Evidence from regime switching model," MPRA Paper 91430, University Library of Munich, Germany, revised 03 Oct 2018.
    40. Kole, Erik & van Dijk, Dick, 2023. "Moments, shocks and spillovers in Markov-switching VAR models," Journal of Econometrics, Elsevier, vol. 236(2).
    41. Dewandaru, Ginanjar & Masih, Rumi & Bacha, Obiyathulla I. & Masih, A. Mansur M., 2014. "The Role of Islamic Asset Classes in the Diversified Portfolios: Mean Variance Spanning Test," MPRA Paper 56857, University Library of Munich, Germany.
    42. Lönnbark, Carl, 2017. "Long vs. short term asymmetry in volatility and the term structure of risk," Finance Research Letters, Elsevier, vol. 23(C), pages 202-209.
    43. Jun Tu, 2010. "Is Regime Switching in Stock Returns Important in Portfolio Decisions?," Management Science, INFORMS, vol. 56(7), pages 1198-1215, July.
    44. Mike K. P. So & Chi-Ming Wong, 2012. "Estimation of multiple period expected shortfall and median shortfall for risk management," Quantitative Finance, Taylor & Francis Journals, vol. 12(5), pages 739-754, March.
    45. Cortazar, Gonzalo & Beuermann, Diether & Bernales, Alejandro, 2013. "Risk Management with Thinly Traded Securities: Methodology and Implementation," IDB Publications (Working Papers) 4647, Inter-American Development Bank.
    46. Taamouti, Abderrahim, 2012. "Moments of multivariate regime switching with application to risk-return trade-off," Journal of Empirical Finance, Elsevier, vol. 19(2), pages 292-308.
    47. Chang, Kuang-Liang, 2010. "House price dynamics, conditional higher-order moments, and density forecasts," Economic Modelling, Elsevier, vol. 27(5), pages 1029-1039, September.
    48. Klaus Grobys, 2012. "Active PortofolioManagement in the Presence of Regime Switching: What Are the Benefits of Defensive Asset Allocation Strategies If the Investor Faces Bear Markets?," The Review of Finance and Banking, Academia de Studii Economice din Bucuresti, Romania / Facultatea de Finante, Asigurari, Banci si Burse de Valori / Catedra de Finante, vol. 4(1), pages 015-031, June.

  27. Timmermann, Allan & Elliott, Graham, 2004. "Optimal Forecast Combination Under Regime Switching," CEPR Discussion Papers 4649, C.E.P.R. Discussion Papers.

    Cited by:

    1. Barbara Rossi, 2011. "Advances in Forecasting Under Instability," Working Papers 11-20, Duke University, Department of Economics.
    2. Krüger Fabian & Pohlmeier Winfried & Mokinski Frieder, 2011. "Combining Survey Forecasts and Time Series Models: The Case of the Euribor," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(1), pages 63-81, February.
    3. Mehmet Pinar & Thanasis Stengos & M. Ege Yazgan, 2018. "Quantile forecast combination using stochastic dominance," Empirical Economics, Springer, vol. 55(4), pages 1717-1755, December.
    4. Benavides, Guillermo & Capistrán, Carlos, 2012. "Forecasting exchange rate volatility: The superior performance of conditional combinations of time series and option implied forecasts," Journal of Empirical Finance, Elsevier, vol. 19(5), pages 627-639.
    5. Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
    6. Davide Pettenuzzo & Francesco Ravazzolo, 2014. "Optimal portfolio choice under decision-based model combinations," Working Paper 2014/15, Norges Bank.
    7. Favero, Carlo A. & Milani, Fabio, 2005. "Parameter Instability, Model Uncertainty and the Choice of Monetary Policy," CEPR Discussion Papers 4909, C.E.P.R. Discussion Papers.
    8. Barrow, Devon K. & Kourentzes, Nikolaos, 2016. "Distributions of forecasting errors of forecast combinations: Implications for inventory management," International Journal of Production Economics, Elsevier, vol. 177(C), pages 24-33.
    9. Valentina Corradi & Norman Swanson, 2013. "A Survey of Recent Advances in Forecast Accuracy Comparison Testing, with an Extension to Stochastic Dominance," Departmental Working Papers 201309, Rutgers University, Department of Economics.
    10. Carlos Capistrán & Allan Timmermann, 2008. "Forecast Combination With Entry and Exit of Experts," CREATES Research Papers 2008-55, Department of Economics and Business Economics, Aarhus University.
    11. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
    12. Jakub Nowotarski, 2013. "Short-term forecasting of electricity spot prices using model averaging (Krótkoterminowe prognozowanie spotowych cen energii elektrycznej z wykorzystaniem uśredniania modeli)," HSC Research Reports HSC/13/17, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    13. Sun, Yuying & Hong, Yongmiao & Wang, Shouyang & Zhang, Xinyu, 2023. "Penalized time-varying model averaging," Journal of Econometrics, Elsevier, vol. 235(2), pages 1355-1377.
    14. Guérin, Pierre & Leiva-Leon, Danilo, 2017. "Model averaging in Markov-switching models: Predicting national recessions with regional data," Economics Letters, Elsevier, vol. 157(C), pages 45-49.
    15. Lees, Kirdan & Matheson, Troy & Smith, Christie, 2011. "Open economy forecasting with a DSGE-VAR: Head to head with the RBNZ published forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 512-528.
    16. Georgios Papadopoulos & Dionysios Chionis & Nikolaos P. Rachaniotis, 2018. "Macro-financial linkages during tranquil and crisis periods: evidence from stressed economies," Risk Management, Palgrave Macmillan, vol. 20(2), pages 142-166, May.
    17. Martinez-Martin Jaime & Morris Richard & Onorante Luca & Piersanti Fabio Massimo, 2024. "Merging Structural and Reduced-Form Models for Forecasting," The B.E. Journal of Macroeconomics, De Gruyter, vol. 24(1), pages 399-437, January.
    18. Antoine Mandel & Amir Sani, 2016. "Learning Time-Varying Forecast Combinations," Documents de travail du Centre d'Economie de la Sorbonne 16036, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    19. Antoine Mandel & Amir Sani, 2017. "A Machine Learning Approach to the Forecast Combination Puzzle," Working Papers halshs-01317974, HAL.
    20. Eo, Yunjong & Kang, Kyu Ho, 2020. "The effects of conventional and unconventional monetary policy on forecasting the yield curve," Journal of Economic Dynamics and Control, Elsevier, vol. 111(C).
    21. Aiolfi Marco & Capistrán Carlos & Timmermann Allan, 2010. "Forecast Combinations," Working Papers 2010-04, Banco de México.
    22. Marcus Cobb, 2009. "Forecasting Chilean Inflation From Disaggregate Components," Working Papers Central Bank of Chile 545, Central Bank of Chile.
    23. A.S.M. Arroyo & A. de Juan Fern¨¢ndez, 2014. "Split-then-Combine Method for out-of-sample Combinations of Forecasts," Journal of Business Administration Research, Journal of Business Administration Research, Sciedu Press, vol. 3(1), pages 19-37, April.
    24. George Athanasopoulos & Rob J Hyndman & Nikolaos Kourentzes & Fotios Petropoulos, 2015. "Forecasting with Temporal Hierarchies," Monash Econometrics and Business Statistics Working Papers 16/15, Monash University, Department of Econometrics and Business Statistics.
    25. Norman Swanson & Valentina Corradi, 2006. "Nonparametric Bootstrap Procedures for Predictive Inference Based on Recursive Estimation Schemes," Departmental Working Papers 200618, Rutgers University, Department of Economics.
    26. Zhe Huang & Franck Martin, 2017. "Optimal pairs trading strategies in a cointegration framework," Working Papers halshs-01566803, HAL.
    27. Rianne Legerstee & Philip Hans Franses, 2010. "Does Disagreement amongst Forecasters have Predictive Value?," Tinbergen Institute Discussion Papers 10-088/4, Tinbergen Institute.
    28. Bin Chen & Kenwin Maung, 2020. "Time-varying Forecast Combination for High-Dimensional Data," Papers 2010.10435, arXiv.org.
    29. Chen, Bin & Maung, Kenwin, 2023. "Time-varying forecast combination for high-dimensional data," Journal of Econometrics, Elsevier, vol. 237(2).
    30. Mehmet Pinar & Thanasis Stengos & M. Ege Yazgan, 2012. "Is there an Optimal Forecast Combination? A Stochastic Dominance Approach to Forecast Combination Puzzle," Working Paper series 17_12, Rimini Centre for Economic Analysis.
    31. Lima, Luiz Renato Regis de Oliveira & Issler, João Victor, 2007. "A panel data approach to economic forecasting: the bias-corrected average forecast," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 650, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    32. Giacomini, Raffaella & Rossi, Barbara, 2008. "Forecast Comparisons in Unstable Environments," Working Papers 08-04, Duke University, Department of Economics.
    33. Lyócsa, Štefan & Todorova, Neda & Výrost, Tomáš, 2021. "Predicting risk in energy markets: Low-frequency data still matter," Applied Energy, Elsevier, vol. 282(PA).
    34. Elena Andreou & Eric Ghysels & Constantinos Kourouyiannis, 2012. "Robust volatility forecasts in the presence of structural breaks," University of Cyprus Working Papers in Economics 08-2012, University of Cyprus Department of Economics.
    35. Gaglianone, Wagner Piazza & Issler, João Victor, 2019. "Microfounded forecasting," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 813, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    36. Yongchen Zhao, 2021. "The robustness of forecast combination in unstable environments: a Monte Carlo study of advanced algorithms," Empirical Economics, Springer, vol. 61(1), pages 173-199, July.
    37. Krüger, Fabian & Nolte, Ingmar, 2016. "Disagreement versus uncertainty: Evidence from distribution forecasts," Journal of Banking & Finance, Elsevier, vol. 72(S), pages 172-186.
    38. Rachidi Kotchoni & Maxime Leroux & Dalibor Stevanovic, 2019. "Macroeconomic Forecast Accuracy in data-rich environment," Post-Print hal-02435757, HAL.
    39. Kenwin Maung, 2021. "Estimating high-dimensional Markov-switching VARs," Papers 2107.12552, arXiv.org.
    40. Valentina Corradi & Norman Swanson, 2004. "Bootstrap Procedures for Recursive Estimation Schemes With Applications to Forecast Model Selection," Departmental Working Papers 200418, Rutgers University, Department of Economics.
    41. Timmermann, Allan & Guidolin, Massimo, 2007. "Forecasts of US Short-term Interest Rates: A Flexible Forecast Combination Approach," CEPR Discussion Papers 6188, C.E.P.R. Discussion Papers.
    42. Steff De Visscher & Markus Eberhardt & Gerdie Everaert, 2017. "Measuring productivity and absorptive capacity evolution," Discussion Papers 2017-11, University of Nottingham, GEP.
    43. Daniel Borup & Martin Thyrsgaard, 2017. "Statistical tests for equal predictive ability across multiple forecasting methods," CREATES Research Papers 2017-19, Department of Economics and Business Economics, Aarhus University.
    44. Ayadi, Mohamed A. & Lazrak, Skander & Liao, Yusui & Welch, Robert, 2018. "Performance of fixed-income mutual funds with regime-switching models," The Quarterly Review of Economics and Finance, Elsevier, vol. 69(C), pages 217-231.
    45. Hyun Hak Kim, 2013. "Forecasting Macroeconomic Variables Using Data Dimension Reduction Methods: The Case of Korea," Working Papers 2013-26, Economic Research Institute, Bank of Korea.
    46. Sylvia Kaufmann, 2016. "Hidden Markov models in time series, with applications in economics," Working Papers 16.06, Swiss National Bank, Study Center Gerzensee.
    47. Chen Zhuo & Yang Yuhong, 2007. "Time Series Models for Forecasting: Testing or Combining?," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 11(1), pages 1-37, March.

  28. Pesaran, M.H. & Pettenuzzo, D. & Timmermann, A., 2004. "‘Forecasting Time Series Subject to Multiple Structural Breaks’," Cambridge Working Papers in Economics 0433, Faculty of Economics, University of Cambridge.

    Cited by:

    1. Bauwens, Luc & Rombouts, Jeroen V.K., 2012. "On marginal likelihood computation in change-point models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3415-3429.
    2. Wang, Yudong & Hao, Xianfeng, 2023. "Forecasting the real prices of crude oil: What is the role of parameter instability?," Energy Economics, Elsevier, vol. 117(C).
    3. Brandon J. Bates & Mikkel Plagborg-Møller & James H. Stock & Mark W. Watson, "undated". "Consistent factor estimation in dynamic factor models with structural instability," Working Paper 84631, Harvard University OpenScholar.
    4. Barbara Rossi, 2011. "Advances in Forecasting Under Instability," Working Papers 11-20, Duke University, Department of Economics.
    5. Francesco Bianchi, 2015. "The Great Depression and the Great Recession: A View from Financial Markets," NBER Working Papers 21056, National Bureau of Economic Research, Inc.
    6. Dimitris, Korobilis, 2013. "Forecasting with Factor Models: A Bayesian Model Averaging Perspective," MPRA Paper 52724, University Library of Munich, Germany.
    7. Kyongwook Choi & Wei-Choun Yu & Eric Zivot, 2008. "Long Memory versus Structural Breaks in Modeling and Forecasting Realized Volatility," Working Papers UWEC-2008-20-FC, University of Washington, Department of Economics.
    8. Jan J. J. Groen & Richard Paap & Francesco Ravazzolo, 2009. "Real-time inflation forecasting in a changing world," Staff Reports 388, Federal Reserve Bank of New York.
    9. Nonejad, Nima, 2014. "Particle Gibbs with Ancestor Sampling Methods for Unobserved Component Time Series Models with Heavy Tails, Serial Dependence and Structural Breaks," MPRA Paper 55664, University Library of Munich, Germany.
    10. Pesaran, M.H. & Pettenuzzo, D. & Timmermann, A., 2006. "Learning, Structural Instability and Present Value Calculations," Cambridge Working Papers in Economics 0602, Faculty of Economics, University of Cambridge.
    11. BELMONTE, Miguel A.G. & KOOP, Gary & KOROBILIS, Dimitris, 2011. "Hierarchical shrinkage in time-varying parameter models," LIDAM Discussion Papers CORE 2011036, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    12. Timmermann, Allan & Pettenuzzo, Davide, 2016. "Forecasting Macroeconomic Variables under Model Instability," CEPR Discussion Papers 11355, C.E.P.R. Discussion Papers.
    13. Ulrich K. Müller & James H. Stock, 2011. "Forecasts in a Slightly Misspecified Finite Order VAR Model," Working Papers 2011-4, Princeton University. Economics Department..
    14. Torben G. Andersen & Rasmus T. Varneskov, 2021. "Testing for Parameter Instability and Structural Change in Persistent Predictive Regressions," NBER Working Papers 28570, National Bureau of Economic Research, Inc.
    15. Luintel, Kul B. & Khan, Mosahid & Leon-Gonzalez, Roberto & Li, Guangjie, 2016. "Financial development, structure and growth: New data, method and results," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 43(C), pages 95-112.
    16. Jia Liu & John M. Maheu & Yong Song, 2024. "Identification and forecasting of bull and bear markets using multivariate returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 723-745, August.
    17. Raffella Giacomini & Barbara Rossi, 2005. "Detecting and Predicting Forecast Breakdowns," UCLA Economics Working Papers 845, UCLA Department of Economics.
    18. Robert Barro & Tao Jin, 2021. "Rare Events and Long-Run Risks," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 39, pages 1-25, January.
    19. Dionne, Georges & Maalaoui Chun, Olfa, 2013. "Default and liquidity regimes in the bond market during the 2002-2012 period," Working Papers 13-4, HEC Montreal, Canada Research Chair in Risk Management.
    20. Karlsson, Sune, 2012. "Forecasting with Bayesian Vector Autoregressions," Working Papers 2012:12, Örebro University, School of Business.
    21. Geweke, John & Jiang, Yu, 2011. "Inference and prediction in a multiple-structural-break model," Journal of Econometrics, Elsevier, vol. 163(2), pages 172-185, August.
    22. Gloria Gonzalez-Rivera & Yingying Sun, 2016. "Density Forecast Evaluation in Unstable Environments," Working Papers 201606, University of California at Riverside, Department of Economics.
    23. Lee, Yoonsuk & Brorsen, B. Wade, 2012. "Impacts of Permanent and Transitory Shocks on Optimal Length of Moving Average to Predict Wheat Basis," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 125001, Agricultural and Applied Economics Association.
    24. David E. Rapach & Jack K. Strauss, 2008. "Structural breaks and GARCH models of exchange rate volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(1), pages 65-90.
    25. Smith, Simon C., 2017. "Equity premium estimates from economic fundamentals under structural breaks," International Review of Financial Analysis, Elsevier, vol. 52(C), pages 49-61.
    26. Mark Fisher & Mark J. Jensen, 2018. "Bayesian Inference and Prediction of a Multiple-Change-Point Panel Model with Nonparametric Priors," FRB Atlanta Working Paper 2018-2, Federal Reserve Bank of Atlanta.
    27. Alessandro Casini & Pierre Perron, 2018. "Structural Breaks in Time Series," Boston University - Department of Economics - Working Papers Series WP2019-02, Boston University - Department of Economics.
    28. Gary Koop & Simon M. Potter, 2009. "Prior Elicitation In Multiple Change-Point Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 50(3), pages 751-772, August.
    29. Shawn C. McKay & Alok Chaturvedi & Douglas E. Adams, 2011. "A process for anticipating and shaping adversarial behavior," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(3), pages 255-280, April.
    30. Maheu, John M & Song, Yong, 2017. "An Efficient Bayesian Approach to Multiple Structural Change in Multivariate Time Series," MPRA Paper 79211, University Library of Munich, Germany.
    31. Daniel Felix Ahelegbey & Monica Billio & Roberto Casarin, 2020. "Modeling Turning Points In Global Equity Market," DEM Working Papers Series 195, University of Pavia, Department of Economics and Management.
    32. John M. Maheu & Stephen Gordon, 2004. "Learning, Forecasting and Structural Breaks," Cahiers de recherche 0422, CIRPEE.
    33. John M. Maheu & Qiao Yang, 2015. "An Infinite Hidden Markov Model for Short-term Interest Rates," Working Paper series 15-05, Rimini Centre for Economic Analysis.
    34. Fokin, Nikita & Polbin, Andrey, 2019. "A Bivariate Forecasting Model For Russian GDP Under Structural Changes In Monetary Policy and Long-Term Growth," MPRA Paper 95306, University Library of Munich, Germany, revised Apr 2019.
    35. David Ardia & Arnaud Dufays & Carlos Ordás Criado, 2024. "Linking Frequentist and Bayesian Change-Point Methods," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(4), pages 1155-1168, October.
    36. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
    37. Song, Yong & Shi, Shuping, 2012. "Identifying speculative bubbles with an in finite hidden Markov model," MPRA Paper 36455, University Library of Munich, Germany.
    38. Dendramis, Yiannis & Kapetanios, George & Tzavalis, Elias, 2014. "Level shifts in stock returns driven by large shocks," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 41-51.
    39. Caterina Forti Grazzini & Massimo Guidolin, 2013. "Forecasting yield spreads under crisis-induced multiple breakpoints," Applied Economics Letters, Taylor & Francis Journals, vol. 20(18), pages 1656-1664, December.
    40. Adriatik Hoxha, 2016. "The Wage-Price Setting Behavior: Comparing The Evidence from EU28 and EMU," Romanian Economic Journal, Department of International Business and Economics from the Academy of Economic Studies Bucharest, vol. 19(60), pages 61-102, June.
    41. Brock,W.A. & Durlauf,S.N. & West,K.D., 2004. "Model uncertainty and policy evaluation : some theory and empirics," Working papers 19, Wisconsin Madison - Social Systems.
    42. Kirsten Thompson & Renee Van Eyden & Rangan Gupta, 2015. "Identifying an index of financial conditions for South Africa," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 32(2), pages 256-274, June.
    43. Chao Du & Chu-Lan Michael Kao & S. C. Kou, 2016. "Stepwise Signal Extraction via Marginal Likelihood," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 314-330, March.
    44. Geweke, J. & Joel Horowitz & Pesaran, M.H., 2006. "Econometrics: A Bird’s Eye View," Cambridge Working Papers in Economics 0655, Faculty of Economics, University of Cambridge.
    45. Jiang, Yu & Song, Zhe & Kusiak, Andrew, 2013. "Very short-term wind speed forecasting with Bayesian structural break model," Renewable Energy, Elsevier, vol. 50(C), pages 637-647.
    46. Eo, Yunjong & Kim, Chang-Jin, 2012. "Markov-Switching Models with Evolving Regime-Specific Parameters: Are Post-War Booms or Recessions All Alike?," Working Papers 2012-04, University of Sydney, School of Economics.
    47. Alessandro Casini, 2018. "Tests for Forecast Instability and Forecast Failure under a Continuous Record Asymptotic Framework," Papers 1803.10883, arXiv.org, revised Dec 2018.
    48. Eran Raviv & Kees E. Bouwman & Dick van Dijk, 2013. "Forecasting Day-Ahead Electricity Prices: Utilizing Hourly Prices," Tinbergen Institute Discussion Papers 13-068/III, Tinbergen Institute.
    49. Chatzitzisi, Evanthia & Fountas, Stilianos & Panagiotidis, Theodore, 2021. "Another look at calendar anomalies," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 823-840.
    50. Joshua G. Maples & B. Wade Brorsen, 2022. "Handling the discontinuity in futures prices when time series modeling of commodity cash and futures prices," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 70(2), pages 139-152, June.
    51. He, Zhongfang & Maheu, John M., 2010. "Real time detection of structural breaks in GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2628-2640, November.
    52. Koop, Gary & Leon-Gonzalez, Roberto & Strachan, Rodney W., 2009. "On the evolution of the monetary policy transmission mechanism," Journal of Economic Dynamics and Control, Elsevier, vol. 33(4), pages 997-1017, April.
    53. Kim, Jaeho, 2015. "Bayesian Inference in a Non-linear/Non-Gaussian Switching State Space Model: Regime-dependent Leverage Effect in the U.S. Stock Market," MPRA Paper 67153, University Library of Munich, Germany.
    54. Raffaella Giacomini & Barbara Rossi, 2014. "Forecasting in Nonstationary Environments: What Works and What Doesn't in Reduced-Form and Structural Models," Working Papers 819, Barcelona School of Economics.
    55. Pesaran, M.H. & Assenmacher-Wesche, K., 2007. "Assessing forecast uncertainties in a VECX* model for Switzerland: an exercise in forecast combination across models and observation windows," Cambridge Working Papers in Economics 0746, Faculty of Economics, University of Cambridge.
    56. Lieven Baele, 2010. "The Determinants of Stock and Bond Return Comovements," The Review of Financial Studies, Society for Financial Studies, vol. 23(6), pages 2374-2428, June.
    57. Jana Eklund & George Kapetanios & Simon Price, 2011. "Forecasting in the presence of recent structural change," CAMA Working Papers 2011-23, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    58. John M Maheu & Thomas H McCurdy, 2007. "How useful are historical data for forecasting the long-run equity return distribution?," Working Papers tecipa-293, University of Toronto, Department of Economics.
    59. Georges Dionne & Olfa Maalaoui Chun, 2013. "Presidential Address: Default and liquidity regimes in the bond market during the 2002–2012 period," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 46(4), pages 1160-1195, November.
    60. Dellas, Harris & Gibson, Heather D. & Hall, Stephen G. & Tavlas, George S., 2018. "The macroeconomic and fiscal implications of inflation forecast errors," Journal of Economic Dynamics and Control, Elsevier, vol. 93(C), pages 203-217.
    61. Maheu, John & Song, Yong, 2012. "A new structural break model with application to Canadian inflation forecasting," MPRA Paper 36870, University Library of Munich, Germany.
    62. Rickard Sandberg, 2016. "Testing for unit roots in nonlinear heterogeneous panels with smoothly changing trends: an application to Scandinavian unemployment rates," Empirical Economics, Springer, vol. 51(3), pages 1053-1083, November.
    63. Mwasi Paza Mboya & Philipp Sibbertsen, 2023. "Optimal forecasts in the presence of discrete structural breaks under long memory," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1889-1908, November.
    64. Bianchi, Francesco, 2016. "Methods for measuring expectations and uncertainty in Markov-switching models," Journal of Econometrics, Elsevier, vol. 190(1), pages 79-99.
    65. Castle, Jennifer L. & Fawcett, Nicholas W.P. & Hendry, David F., 2010. "Forecasting with equilibrium-correction models during structural breaks," Journal of Econometrics, Elsevier, vol. 158(1), pages 25-36, September.
    66. BAUWENS, Luc & DUFAYS, Arnaud & DE BACKER, Bruno, 2011. "Estimating and forecasting structural breaks in financial time series," LIDAM Discussion Papers CORE 2011055, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    67. Dufays, Arnaud & Rombouts, Jeroen V.K., 2020. "Relevant parameter changes in structural break models," Journal of Econometrics, Elsevier, vol. 217(1), pages 46-78.
    68. Davide De Gaetano, 2016. "Forecast Combinations For Realized Volatility In Presence Of Structural Breaks," Departmental Working Papers of Economics - University 'Roma Tre' 0208, Department of Economics - University Roma Tre.
    69. Emilian DOBRESCU, 2017. "Modelling an Emergent Economy and Parameter Instability Problem," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 5-28, June.
    70. Atsushi Inoue & Barbara Rossi, 2011. "Out-of-sample forecast tests robust to the choice of window size," Working Papers 11-31, Federal Reserve Bank of Philadelphia.
    71. Hubrich, Kirstin & González, Andrés & Teräsvirta, Timo, 2011. "Forecasting inflation with gradual regime shifts and exogenous information," Working Paper Series 1363, European Central Bank.
    72. Jin, Xin & Maheu, John M. & Yang, Qiao, 2022. "Infinite Markov pooling of predictive distributions," Journal of Econometrics, Elsevier, vol. 228(2), pages 302-321.
    73. Bauwens, Luc & Korobilis, Dimitris & Koop, Gary & Rombouts, Jeroen V.K., 2011. "A Comparison Of Forecasting Procedures For Macroeconomic Series: The Contribution Of Structural Break Models," SIRE Discussion Papers 2011-25, Scottish Institute for Research in Economics (SIRE).
    74. Chen, Pei-Fen & Lee, Chien-Chiang & Zeng, Jhih-Hong, 2014. "The relationship between spot and futures oil prices: Do structural breaks matter?," Energy Economics, Elsevier, vol. 43(C), pages 206-217.
    75. Raffaella Giacomini & Barbara Rossi, 2013. "Forecasting in macroeconomics," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 17, pages 381-408, Edward Elgar Publishing.
    76. Sylvia Kaufmann, 2011. "K-state switching models with endogenous transition distributions," Working Papers 2011-13, Swiss National Bank.
    77. Jennifer Castle & David Hendry, 2012. "Forecasting by factors, by variables, or both?," Economics Series Working Papers 600, University of Oxford, Department of Economics.
    78. DESCHAMPS, Philippe J., 2016. "Bayesian Semiparametric Forecasts of Real Interest Rate Data," LIDAM Discussion Papers CORE 2016050, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    79. Alessandra Canepa, & Karanasos, Menelaos & Paraskevopoulos, Athanasios & Chini, Emilio Zanetti, 2022. "Forecasting Ination: A GARCH-in-Mean-Level Model with Time Varying Predictability," Department of Economics and Statistics Cognetti de Martiis. Working Papers 202212, University of Turin.
    80. Kapetanios, G. & Tzavalis, E., 2010. "Modeling structural breaks in economic relationships using large shocks," Journal of Economic Dynamics and Control, Elsevier, vol. 34(3), pages 417-436, March.
    81. Davide De Gaetano, 2018. "Forecast Combinations in the Presence of Structural Breaks: Evidence from U.S. Equity Markets," Mathematics, MDPI, vol. 6(3), pages 1-19, March.
    82. Zhongjun Qu & Pierre Perron, 2008. "A Stochastic Volatility Model with Random Level Shifts: Theory and Applications to S&P 500 and NASDAQ Return Indices," Boston University - Department of Economics - Working Papers Series wp2008-007, Boston University - Department of Economics.
    83. Eo, Yunjong, 2015. "Structural Changes in Inflation Dynamics: Multiple Breaks at Different Dates for Different Parameters," Working Papers 2015-18, University of Sydney, School of Economics, revised Nov 2015.
    84. Evzen Kocenda & Michala Moravcova, 2017. "Exchange Rate Co-movements, Hedging and Volatility Spillovers in New EU Forex Markets," Working Papers IES 2017/27, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Nov 2017.
    85. Jochmann, Markus & Koop, Gary & Strachan, Rodney W., 2010. "Bayesian forecasting using stochastic search variable selection in a VAR subject to breaks," International Journal of Forecasting, Elsevier, vol. 26(2), pages 326-347, April.
    86. Gary Koop & Simon M. Potter, 2004. "Forecasting and estimating multiple change-point models with an unknown number of change points," Staff Reports 196, Federal Reserve Bank of New York.
    87. Dufays, A. & Rombouts, V., 2015. "Sparse Change-Point Time Series Models," LIDAM Discussion Papers CORE 2015032, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    88. He, Zhongfang, 2009. "Forecasting output growth by the yield curve: the role of structural breaks," MPRA Paper 28208, University Library of Munich, Germany.
    89. Sancetta, A. & Nikanrova, A., 2005. "Forecasting and Prequential Validation for Time Varying Meta-Elliptical Distributions with a Study of Commodity Futures Prices," Cambridge Working Papers in Economics 0516, Faculty of Economics, University of Cambridge.
    90. S Coleman & K Sirichand, 2015. "Investigating Multiple Changes in Persistence in International Yields," Economic Issues Journal Articles, Economic Issues, vol. 20(1), pages 65-90, March.
    91. Pesaran, M. Hashem & Pick, Andreas & Pranovich, Mikhail, 2013. "Optimal forecasts in the presence of structural breaks," Journal of Econometrics, Elsevier, vol. 177(2), pages 134-152.
    92. Lieven Baele & Geert Bekaert & Koen Inghelbrecht, 2007. "The determinants of stock and bond return comovements," Working Paper Research 119, National Bank of Belgium.
    93. Bulkley, George & Giordani, Paolo, 2011. "Structural breaks, parameter uncertainty, and term structure puzzles," Journal of Financial Economics, Elsevier, vol. 102(1), pages 222-232, October.
    94. Chen, Ying & Niu, Linlin, 2014. "Adaptive dynamic Nelson–Siegel term structure model with applications," Journal of Econometrics, Elsevier, vol. 180(1), pages 98-115.
    95. A. Deshkovski & A. Dzeshkovskaia, 2014. "Is a night better than a day: Empirical evidence," Cogent Economics & Finance, Taylor & Francis Journals, vol. 2(1), pages 1-11, December.
    96. Simeon Coleman Author name: Vitor Leone, 2012. "Time-series characteristics of UK commercial property returns: Testing for multiple changes in persistence," NBS Discussion Papers in Economics 2012/03, Economics, Nottingham Business School, Nottingham Trent University.
    97. Pettenuzzo, Davide & Timmermann, Allan, 2011. "Predictability of stock returns and asset allocation under structural breaks," Journal of Econometrics, Elsevier, vol. 164(1), pages 60-78, September.
    98. Hendry, David F. & Mizon, Grayham E., 2014. "Unpredictability in economic analysis, econometric modeling and forecasting," Journal of Econometrics, Elsevier, vol. 182(1), pages 186-195.
    99. Giordani, Paolo & Kohn, Robert, 2008. "Efficient Bayesian Inference for Multiple Change-Point and Mixture Innovation Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 66-77, January.
    100. Polemis, Michael & Stengos, Thanasis, 2017. "Does Competition Prevent Industrial Pollution? Evidence from a Panel Threshold Model," MPRA Paper 85177, University Library of Munich, Germany.
    101. Castle, Jennifer L. & Clements, Michael P. & Hendry, David F., 2013. "Forecasting by factors, by variables, by both or neither?," Journal of Econometrics, Elsevier, vol. 177(2), pages 305-319.
    102. Davide Pettenuzzo & Halbert White, 2010. "Granger Causality, Exogeneity, Cointegration, and Economic Policy Analysis," Working Papers 36, Brandeis University, Department of Economics and International Business School.
    103. Menelaos Karanasos & Alexandros Paraskevopoulos & Faek Menla Ali & Michail Karoglou & Stavroula Yfanti, 2014. "Modelling Returns and Volatilities During Financial Crises: a Time Varying Coefficient Approach," Papers 1403.7179, arXiv.org.
    104. Stephane Dees & Filippo di Mauro & M. Hashem Pesaran & L. Vanessa Smith, 2006. "Exploring the International Linkages of the Euro Area: a Global VAR Analysis," Computing in Economics and Finance 2006 47, Society for Computational Economics.
    105. Tae-Hwy Lee & Shahnaz Parsaeian & Aman Ullah, 2021. "Efficient Combined Estimation under Structural Breaks," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202107, University of Kansas, Department of Economics.
    106. Kirsten Thompson & Reneé van Eyden & Rangan Gupta, 2015. "Testing the Out-of-Sample Forecasting Ability of a Financial Conditions Index for South Africa," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 51(3), pages 486-501, May.
    107. Yoonsuk Lee & B. Wade Brorsen, 2017. "Permanent Breaks and Temporary Shocks in a Time Series," Computational Economics, Springer;Society for Computational Economics, vol. 49(2), pages 255-270, February.
    108. Jiawen Xu & Pierre Perron, 2017. "Forecasting in the presence of in and out of sample breaks," Boston University - Department of Economics - Working Papers Series WP2018-014, Boston University - Department of Economics, revised Nov 2018.
    109. Arnaud Dufays & Zhuo Li & Jeroen V.K. Rombouts & Yong Song, 2021. "Sparse change‐point VAR models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(6), pages 703-727, September.
    110. Franz Ruch & Mehmet Balcilar Author-Name-First Mehmet & Mampho P. Modise & Rangan Gupta, 2015. "Forecasting Core Inflation: The Case of South Africa," Working Papers 15-08, Eastern Mediterranean University, Department of Economics.
    111. Emi Nakamura & Jón Steinsson & Robert Barro & José Ursúa, 2010. "Crises and Recoveries in an Empirical Model of Consumption Disasters," NBER Working Papers 15920, National Bureau of Economic Research, Inc.
    112. Timmermann, Allan, 2008. "Elusive return predictability," International Journal of Forecasting, Elsevier, vol. 24(1), pages 1-18.
    113. Bianchi, Francesco, 2015. "Rare Events, Financial Crises, and the Cross-Section of Asset Returns," CEPR Discussion Papers 10520, C.E.P.R. Discussion Papers.
    114. Canepa, Alessandra, 2022. "Ination Dynamics and Time-Varying Persistence: The Importance of the Uncertainty Channel," Department of Economics and Statistics Cognetti de Martiis. Working Papers 202211, University of Turin.
    115. Pesaran, M.H. & Pick, A. & Pranovich, M., 2011. "Optimal Forecasts in the Presence of Structural Breaks (Updated 14 November 2011)," Cambridge Working Papers in Economics 1163, Faculty of Economics, University of Cambridge.
    116. Terence C. Mills, 2013. "Trends, cycles and structural breaks," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 3, pages 45-60, Edward Elgar Publishing.
    117. Tobias Adrian & Richard K. Crump & Erik Vogt, 2019. "Nonlinearity and Flight‐to‐Safety in the Risk‐Return Trade‐Off for Stocks and Bonds," Journal of Finance, American Finance Association, vol. 74(4), pages 1931-1973, August.
    118. Matteo Iacopini & Luca Rossini, 2019. "Bayesian nonparametric graphical models for time-varying parameters VAR," Papers 1906.02140, arXiv.org.
    119. Wang, Yudong & Hao, Xianfeng & Wu, Chongfeng, 2021. "Forecasting stock returns: A time-dependent weighted least squares approach," Journal of Financial Markets, Elsevier, vol. 53(C).
    120. Sjoerd van den Hauwe & Richard Paap & Dick J.C. van Dijk, 2011. "An Alternative Bayesian Approach to Structural Breaks in Time Series Models," Tinbergen Institute Discussion Papers 11-023/4, Tinbergen Institute.
    121. Barnett, Alina & Mumtaz, Haroon & Theodoridis, Konstantinos, 2014. "Forecasting UK GDP growth and inflation under structural change. A comparison of models with time-varying parameters," International Journal of Forecasting, Elsevier, vol. 30(1), pages 129-143.
    122. Arnaud Dufays & Jeroen V. K. Rombouts, 2019. "Sparse Change-point HAR Models for Realized Variance," Econometric Reviews, Taylor & Francis Journals, vol. 38(8), pages 857-880, September.
    123. James D. Hamilton, 2016. "Macroeconomic Regimes and Regime Shifts," NBER Working Papers 21863, National Bureau of Economic Research, Inc.
    124. Qu, Zhongjun, 2008. "Testing for structural change in regression quantiles," Journal of Econometrics, Elsevier, vol. 146(1), pages 170-184, September.
    125. Seema Narayan & Russell Smyth, 2015. "The Financial Econometrics of Price Discovery and Predictability," Monash Economics Working Papers 06-15, Monash University, Department of Economics.
    126. Petros Dellaportas & David G. T. Denison & Chris Holmes, 2007. "Flexible Threshold Models for Modelling Interest Rate Volatility," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 419-437.
    127. Smith, Simon C. & Timmermann, Allan & Zhu, Yinchu, 2019. "Variable selection in panel models with breaks," Journal of Econometrics, Elsevier, vol. 212(1), pages 323-344.
    128. Nima Nonejad, 2013. "A Mixture Innovation Heterogeneous Autoregressive Model for Structural Breaks and Long Memory," CREATES Research Papers 2013-24, Department of Economics and Business Economics, Aarhus University.
    129. Markku Lanne, 2006. "Nonlinear dynamics of interest rate and inflation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(8), pages 1157-1168.
    130. Adam Canopius, 2006. "Practitioners' Corner," Journal of Financial Econometrics, Oxford University Press, vol. 4(2), pages 346-351.
    131. White Halbert & Granger Clive W.J., 2011. "Consideration of Trends in Time Series," Journal of Time Series Econometrics, De Gruyter, vol. 3(1), pages 1-40, February.
    132. Haase, Marco & Zimmermann, Heinz & Huss, Matthias, 2023. "Wheat price volatility regimes over 140 years: An analysis of daily price ranges," Journal of Commodity Markets, Elsevier, vol. 31(C).
    133. M. Hashem Pesaran & Ron P. Smith, 2006. "Macroeconometric Modelling with a Global Perspective," CESifo Working Paper Series 1659, CESifo.
    134. Edward N. Gamber & Jeffrey P. Liebner & Julie K. Smith, 2013. "Inflation Persistence: Revisited," Working Papers 2013-002, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    135. Markwat, T.D. & Kole, H.J.W.G. & van Dijk, D.J.C., 2009. "Time Variation in Asset Return Dependence: Strength or Structure?," ERIM Report Series Research in Management ERS-2009-052-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    136. Graziano Moramarco, 2021. "Regime-Switching Density Forecasts Using Economists' Scenarios," Papers 2110.13761, arXiv.org, revised Feb 2024.
    137. Jaehee Kim & Chulwoo Jeong, 2016. "A Bayesian multiple structural change regression model with autocorrelated errors," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(9), pages 1690-1705, July.
    138. Marta Boczoń & Jean-François Richard, 2020. "Balanced Growth Approach to Tracking Recessions," Econometrics, MDPI, vol. 8(2), pages 1-35, April.
    139. Pilar Gargallo & Jesus Miguel & Pilar Olave & Manuel Salvador, 2010. "Evaluating value at risk using selection criteria of the model and the information set," Applied Financial Economics, Taylor & Francis Journals, vol. 20(18), pages 1415-1428.
    140. Jean-François Carpantier & Arnaud Dufays, 2014. "Specific Markov-switching behaviour for ARMA parameters," Working Papers hal-01821134, HAL.
    141. Didier Nibbering & Richard Paap & Michel van der Wel, 2016. "A Bayesian Infinite Hidden Markov Vector Autoregressive Model," Tinbergen Institute Discussion Papers 16-107/III, Tinbergen Institute, revised 13 Oct 2017.
    142. Hultblad, Brigitta & Karlsson, Sune, 2006. "Bayesian simultaneous determination of structural breaks and lag lengths," SSE/EFI Working Paper Series in Economics and Finance 630, Stockholm School of Economics.
    143. Simeon Coleman & Vitor Leone, 2015. "An investigation of regime shifts in UK commercial property returns: a time series analysis," Applied Economics, Taylor & Francis Journals, vol. 47(60), pages 6479-6492, December.
    144. El-Shazly, Alaa, 2016. "Structural breaks and monetary dynamics: A time series analysis," Economic Modelling, Elsevier, vol. 53(C), pages 133-143.
    145. Giraitis, L. & Kapetanios, G. & Yates, T., 2014. "Inference on stochastic time-varying coefficient models," Journal of Econometrics, Elsevier, vol. 179(1), pages 46-65.
    146. Shahnaz Parsaeian, 2023. "Structural Breaks in Seemingly Unrelated Regression Models," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202308, University of Kansas, Department of Economics.
    147. Guhathakurta, Kousik & Dash, Saumya Ranjan & Maitra, Debasish, 2020. "Period specific volatility spillover based connectedness between oil and other commodity prices and their portfolio implications," Energy Economics, Elsevier, vol. 85(C).
    148. Liew, Freddy, 2012. "Forecasting inflation in Asian economies," MPRA Paper 36781, University Library of Munich, Germany.
    149. Simon C. Smith, 2020. "Equity premium prediction and structural breaks," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 25(3), pages 412-429, July.
    150. Bali, Turan G. & Demirtas, K. Ozgur & Levy, Haim, 2008. "Nonlinear mean reversion in stock prices," Journal of Banking & Finance, Elsevier, vol. 32(5), pages 767-782, May.
    151. Cathy W. S. Chen & Bonny Lee, 2021. "Bayesian inference of multiple structural change models with asymmetric GARCH errors," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 1053-1078, September.
    152. Ravazzolo, F. & van Dijk, D.J.C. & Paap, R. & Franses, Ph.H.B.F., 2006. "Bayesian Model Averaging in the Presence of Structural Breaks," Econometric Institute Research Papers EI 2006-33, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    153. Czinkota, Thomas, 2012. "Das Halteproblem bei Strukturbrüchen in Finanzmarktzeitreihen [The Halting Problem applied to Structural Breaks in Financial Time Series]," MPRA Paper 37072, University Library of Munich, Germany.
    154. Li, Chenxing, 2022. "A multivariate GARCH model with an infinite hidden Markov mixture," MPRA Paper 112792, University Library of Munich, Germany.
    155. Adam Check & Jeremy Piger, 2021. "Structural Breaks in U.S. Macroeconomic Time Series: A Bayesian Model Averaging Approach," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 53(8), pages 1999-2036, December.
    156. Yong Song, 2014. "Modelling Regime Switching And Structural Breaks With An Infinite Hidden Markov Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(5), pages 825-842, August.
    157. Blake LeBaron, 2013. "Heterogeneous Agents and Long Horizon Features of Asset Prices," Working Papers 63, Brandeis University, Department of Economics and International Business School, revised Sep 2013.
    158. Jie Lyu & Xiaolei Li, 2019. "Effectiveness and Sustainability of Grain Price Support Policies in China," Sustainability, MDPI, vol. 11(9), pages 1-13, April.
    159. Smith Aaron, 2012. "Markov Breaks in Regression Models," Journal of Time Series Econometrics, De Gruyter, vol. 4(1), pages 1-35, May.
    160. N. Bora Keskin & Yuexing Li & Jing-Sheng Song, 2022. "Data-Driven Dynamic Pricing and Ordering with Perishable Inventory in a Changing Environment," Management Science, INFORMS, vol. 68(3), pages 1938-1958, March.
    161. Giuseppe Pagano Giorgianni & Valeria Patella, 2024. "Belief distortions and Disagreement about Inflation," Working Paper series 24-08, Rimini Centre for Economic Analysis.
    162. Ko, Stanley I. M. & Chong, Terence T. L. & Ghosh, Pulak, 2014. "Dirichlet Process Hidden Markov Multiple Change-point Model," MPRA Paper 57871, University Library of Munich, Germany.
    163. BAUWENS, Luc & DE BACKER, Bruno & DUFAYS, Arnaud, 2014. "A Bayesian method of change-point estimation with recurrent regimes: application to GARCH models," LIDAM Reprints CORE 2641, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    164. Pedro Henrique Melo Albuquerque & Yaohao Peng & João Pedro Fontoura da Silva, 2022. "Making the whole greater than the sum of its parts: A literature review of ensemble methods for financial time series forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(8), pages 1701-1724, December.
    165. Aue, Alexander & Horváth, Lajos & Reimherr, Matthew L., 2009. "Delay times of sequential procedures for multiple time series regression models," Journal of Econometrics, Elsevier, vol. 149(2), pages 174-190, April.
    166. Daniel Borup & Jonas N. Eriksen & Mads M. Kjær & Martin Thyrsgaard, 2024. "Predicting Bond Return Predictability," Management Science, INFORMS, vol. 70(2), pages 931-951, February.
    167. Jiawen Xu & Pierre Perron, 2023. "Forecasting in the presence of in-sample and out-of-sample breaks," Empirical Economics, Springer, vol. 64(6), pages 3001-3035, June.
    168. Yoonsuk Lee & B. Wade Brorsen, 2017. "Permanent shocks and forecasting with moving averages," Applied Economics, Taylor & Francis Journals, vol. 49(12), pages 1213-1225, March.
    169. Atanu Ghoshray, 2013. "Dynamic Persistence of Primary Commodity Prices," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(1), pages 153-164.
    170. Alisa Yusupova & Nicos G. Pavlidis & Efthymios G. Pavlidis, 2019. "Adaptive Dynamic Model Averaging with an Application to House Price Forecasting," Papers 1912.04661, arXiv.org.
    171. Renáta Géczi-Papp, 2018. "Presentation and Testing of the Creeping Trend with Harmonic Weights Method in the Light of Sovereign CDS Prices," Theory Methodology Practice (TMP), Faculty of Economics, University of Miskolc, vol. 14(02), pages 25-37.
    172. Mehmet Balcilar & Riza Demirer & Festus V. Bekun, 2021. "Flexible Time-Varying Betas in a Novel Mixture Innovation Factor Model with Latent Threshold," Mathematics, MDPI, vol. 9(8), pages 1-20, April.
    173. Adriatik Hoxha, 2016. "The Switch to Near-Rational Wage-Price Setting Behaviour: The Case of United Kingdom," EuroEconomica, Danubius University of Galati, issue 1(35), pages 127-148, may.
    174. Alessandra Canepa, & Menelaos G. Karanasos & Alexandros G. Paraskevopoulos,, 2019. "Second Order Time Dependent Inflation Persistence in the United States: a GARCH-in-Mean Model with Time Varying Coefficients," Department of Economics and Statistics Cognetti de Martiis. Working Papers 201911, University of Turin.
    175. Marco Tronzano, 2024. "What Drives Asset Returns Comovements? Some Empirical Evidence from US Dollar and Global Stock Returns (2000–2023)," JRFM, MDPI, vol. 17(4), pages 1-26, April.
    176. Meligkotsidou, Loukia & Tzavalis, Elias & Vrontos, Ioannis, 2017. "On Bayesian analysis and unit root testing for autoregressive models in the presence of multiple structural breaks," Econometrics and Statistics, Elsevier, vol. 4(C), pages 70-90.
    177. Axioglou, Christos & Skouras, Spyros, 2011. "Markets change every day: Evidence from the memory of trade direction," Journal of Empirical Finance, Elsevier, vol. 18(3), pages 423-446, June.
    178. Donya Rahmani & Damien Fay, 2022. "A state‐dependent linear recurrent formula with application to time series with structural breaks," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 43-63, January.

  29. Allan Timmermann & Graham Elliott & Ivana Komunjer, 2004. "Biases in Macroeconomic Forecasts: Irrationality or Asymmetric Loss?," Econometric Society 2004 North American Summer Meetings 601, Econometric Society.

    Cited by:

    1. Clements, Michael P., 2008. "Explanations of the inconsistencies in survey respondents'forecasts," The Warwick Economics Research Paper Series (TWERPS) 870, University of Warwick, Department of Economics.
    2. Pesaran, M. Hashem & Weale, Martin, 2006. "Survey Expectations," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 14, pages 715-776, Elsevier.
    3. Ivana Komunjer & Michael T. Owyang, 2012. "Multivariate Forecast Evaluation and Rationality Testing," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1066-1080, November.
    4. Stan Hurn & Jing Tian & Lina Xu, 2021. "Assessing the Informational Content of Official Australian Bureau of Meteorology Forecasts of Wind Speed," The Economic Record, The Economic Society of Australia, vol. 97(319), pages 525-547, December.
    5. Metodij Hadzi-Vaskov & Mr. Luca A Ricci & Alejandro M. Werner & Rene Zamarripa, 2021. "Authorities’ Fiscal Forecasts in Latin America: Are They Optimistic?," IMF Working Papers 2021/154, International Monetary Fund.
    6. Pratiti Chatterjee & Fabio Milani, 2020. "Perceived Uncertainty Shocks, Excess Optimism-Pessimism, and Learning in the Business Cycle," Working Papers 202101, University of California-Irvine, Department of Economics.
    7. Benjamin Born & Zeno Enders & Manuel Menkhoff & Gernot J. Müller & Knut Niemann, 2023. "Firm Expectations and News: Micro v Macro," ifo Working Paper Series 400, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    8. Reitz, Stefan & Rülke, Jan & Stadtmann, Georg, 2012. "Nonlinear Expectations in Speculative Markets," VfS Annual Conference 2012 (Goettingen): New Approaches and Challenges for the Labor Market of the 21st Century 62045, Verein für Socialpolitik / German Economic Association.
    9. Sinclair, Tara M. & Gamber, Edward N. & Stekler, Herman & Reid, Elizabeth, 2012. "Jointly evaluating the Federal Reserve’s forecasts of GDP growth and inflation," International Journal of Forecasting, Elsevier, vol. 28(2), pages 309-314.
    10. Emmanuel C. Mamatzakis & Mike G. Tsionas, 2020. "Revealing forecaster's preferences: A Bayesian multivariate loss function approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(3), pages 412-437, April.
    11. Carlos Capistrán-Carmona, 2005. "Bias in Federal Reserve Inflation Forecasts: Is the Federal Reserve Irrational or Just Cautious?," Computing in Economics and Finance 2005 127, Society for Computational Economics.
    12. Aretz, Kevin & Bartram, Söhnke M. & Pope, Peter F., 2011. "Asymmetric Loss Functions and the Rationality of Expected Stock Returns," MPRA Paper 47343, University Library of Munich, Germany.
    13. Atsushi Inoue & Lutz Kilian & Fatma Burcu Kiraz, 2009. "Do Actions Speak Louder Than Words? Household Expectations of Inflation Based on Micro Consumption Data," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(7), pages 1331-1363, October.
    14. Reitz, Stefan & Rülke, Jan-Christoph & Stadtmann, Georg, 2012. "Nonlinear expectations in speculative markets: Evidence from the ECB survey of professional forecasters," Discussion Papers 311, European University Viadrina Frankfurt (Oder), Department of Business Administration and Economics.
    15. Pierdzioch, Christian & Rülke, Jan-Christoph & Stadtmann, Georg, 2015. "Central banks’ inflation forecasts under asymmetric loss: Evidence from four Latin-American countries," Economics Letters, Elsevier, vol. 129(C), pages 66-70.
    16. Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2019. "Forecasting Realized Oil-Price Volatility: The Role of Financial Stress and Asymmetric Loss," Working Papers 201903, University of Pretoria, Department of Economics.
    17. Timo Dimitriadis & Andrew J. Patton & Patrick W. Schmidt, 2019. "Testing Forecast Rationality for Measures of Central Tendency," Papers 1910.12545, arXiv.org, revised Jul 2024.
    18. Lutz Kilian & Simone Manganelli, 2008. "The Central Banker as a Risk Manager: Estimating the Federal Reserve's Preferences under Greenspan," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 40(6), pages 1103-1129, September.
    19. Christian Pierdzioch & Jan C Rülke & Georg Stadtmann, 2012. "Forecasting the Dollar/British Pound Exchange Rate: Asymmetric Loss and Forecast Rationality," Economics Bulletin, AccessEcon, vol. 32(3), pages 213-213.
    20. Andrew C. Chang & Trace J. Levinson, 2023. "Raiders of the lost high‐frequency forecasts: New data and evidence on the efficiency of the Fed's forecasting," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(1), pages 88-104, January.
    21. Demirer, Riza & Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2019. "Time-varying risk aversion and realized gold volatility," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    22. Issler, João Victor & Soares, Ana Flávia, 2019. "Central Bank credibility and inflation expectations: a microfounded forecasting approach," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 812, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    23. Tara M. Sinclair & Fred Joutz & Herman O. Stekler, 2009. "Can the Fed Predict the State of the Economy?," Working Papers 2009-001, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting, revised Mar 2010.
    24. Jaroslav Borovicka, 2016. "Identifying ambiguity shocks in business cycle models using survey data," 2016 Meeting Papers 1615, Society for Economic Dynamics.
    25. Conrad, Christian & Lahiri, Kajal, 2023. "Heterogeneous expectations among professional forecasters," ZEW Discussion Papers 23-062, ZEW - Leibniz Centre for European Economic Research.
    26. George A. Christodoulakis & Emmanuel C. Mamatzakis, 2008. "An assessment of the EU growth forecasts under asymmetric preferences," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(6), pages 483-492.
    27. Matteo Iacopini & Francesco Ravazzolo & Luca Rossini, 2020. "Proper scoring rules for evaluating asymmetry in density forecasting," Working Papers No 06/2020, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    28. Charles F. Manski, 2018. "Survey Measurement of Probabilistic Macroeconomic Expectations: Progress and Promise," NBER Macroeconomics Annual, University of Chicago Press, vol. 32(1), pages 411-471.
    29. Bastianin, Andrea & Galeotti, Marzio & Manera, Matteo, 2017. "Statistical and Economic Evaluation of Time Series Models for Forecasting Arrivals at Call Centers," ETA: Economic Theory and Applications 253725, Fondazione Eni Enrico Mattei (FEEM).
    30. Valentina Corradi & Norman Swanson, 2013. "A Survey of Recent Advances in Forecast Accuracy Comparison Testing, with an Extension to Stochastic Dominance," Departmental Working Papers 201309, Rutgers University, Department of Economics.
    31. Christian Pierdzioch & Jan-Christoph Rülke & Georg Stadtmann, 2013. "Oil price forecasting under asymmetric loss," Applied Economics, Taylor & Francis Journals, vol. 45(17), pages 2371-2379, June.
    32. Carlos Capistrán & Allan Timmermann, 2008. "Forecast Combination With Entry and Exit of Experts," CREATES Research Papers 2008-55, Department of Economics and Business Economics, Aarhus University.
    33. Chang, Andrew C. & Hanson, Tyler J., 2016. "The accuracy of forecasts prepared for the Federal Open Market Committee," Journal of Economics and Business, Elsevier, vol. 83(C), pages 23-43.
    34. Michael P. Clements, 2018. "Do Macroforecasters Herd?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(2-3), pages 265-292, March.
    35. Andrea Bastianin & Marzio Galeotti & Matteo Manera, 2011. "Forecast Evaluation in Call Centers: Combined Forecasts, Flexible Loss Functions and Economic Criteria," UNIMI - Research Papers in Economics, Business, and Statistics unimi-1109, Universitá degli Studi di Milano.
    36. Pierdzioch, Christian & Risse, Marian & Rohloff, Sebastian, 2014. "The international business cycle and gold-price fluctuations," The Quarterly Review of Economics and Finance, Elsevier, vol. 54(2), pages 292-305.
    37. Pierdzioch, Christian & Rülke, Jan Christoph & Stadtmann, Georg, 2012. "Housing starts in Canada, Japan, and the United States: Do forecasters herd?," Discussion Papers 320, European University Viadrina Frankfurt (Oder), Department of Business Administration and Economics.
    38. Timmermann Allan & Capistrán Carlos, 2006. "Disagreement and Biases in Inflation Expectations," Working Papers 2006-07, Banco de México.
    39. Pierdzioch, Christian & Risse, Marian & Rohloff, Sebastian, 2016. "A quantile-boosting approach to forecasting gold returns," The North American Journal of Economics and Finance, Elsevier, vol. 35(C), pages 38-55.
    40. Nazaria Solferino & Robert Waldmann, 2010. "Predicting the signs of forecast errors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(5), pages 476-485.
    41. Bas Scheer, 2022. "Addressing Unemployment Rate Forecast Errors in Relation to the Business Cycle," CPB Discussion Paper 434, CPB Netherlands Bureau for Economic Policy Analysis.
    42. Hamid Baghestani, 2022. "Mortgage rate predictability and consumer home-buying assessments," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 46(3), pages 593-603, July.
    43. Michael P. Clements, 2022. "Forecaster Efficiency, Accuracy, and Disagreement: Evidence Using Individual‐Level Survey Data," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 54(2-3), pages 537-568, March.
    44. Sean D. Campbell, 2005. "Stock market volatility and the Great Moderation," Finance and Economics Discussion Series 2005-47, Board of Governors of the Federal Reserve System (U.S.).
    45. Massenot, Baptiste & Pettinicchi, Yuri, 2018. "Can households see into the future? Survey evidence from the Netherlands," SAFE Working Paper Series 233, Leibniz Institute for Financial Research SAFE.
    46. Born, Benjamin & Enders, Zeno & Müller, Gernot, 2023. "On FIRE, news, and expectations," CEPR Discussion Papers 18259, C.E.P.R. Discussion Papers.
      • Born, Benjamin & Enders, Zeno & Müller, Gernot J., 2023. "On FIRE, news, and expectations," Working Papers 42, German Research Foundation's Priority Programme 1859 "Experience and Expectation. Historical Foundations of Economic Behaviour", Humboldt University Berlin.
    47. Brissimis, Sophocles & Migiakis, Petros, 2010. "Inflation persistence and the rationality of inflation expectations," MPRA Paper 29052, University Library of Munich, Germany.
    48. Demetrescu, Matei & Hacioglu Hoke, Sinem, 2018. "Predictive regressions under asymmetric loss: factor augmentation and model selection," Bank of England working papers 723, Bank of England.
    49. Jens J. Krüger, 2014. "A multivariate evaluation of German output growth and inflation forecasts," Economics Bulletin, AccessEcon, vol. 34(3), pages 1410-1418.
    50. Rangan Gupta & Yuvana Jaichand & Christian Pierdzioch & Reneé van Eyden, 2023. "Realized Stock-Market Volatility of the United States and the Presidential Approval Rating," Mathematics, MDPI, vol. 11(13), pages 1-27, July.
    51. Anatolyev, Stanislav, 2009. "Dynamic modeling under linear-exponential loss," Economic Modelling, Elsevier, vol. 26(1), pages 82-89, January.
    52. Reitz, Stefan & Stadtmann, Georg & Taylor, Mark P., 2010. "The effects of Japanese interventions on FX-forecast heterogeneity," Economics Letters, Elsevier, vol. 108(1), pages 62-64, July.
    53. Christian Pierdzioch & Monique B. Reid & Rangan Gupta, 2014. "Forecasting the South African Inflation Rate: On Asymmetric Loss and Forecast Rationality," Working Papers 201475, University of Pretoria, Department of Economics.
    54. Hakan Kara & Hande Kucuk-Tuğer, 2010. "Inflation expectations in Turkey: learning to be rational," Applied Economics, Taylor & Francis Journals, vol. 42(21), pages 2725-2742.
    55. Yanwei Jia & Jussi Keppo & Ville Satopää, 2023. "Herding in Probabilistic Forecasts," Management Science, INFORMS, vol. 69(5), pages 2713-2732, May.
    56. Rybacki Jakub, 2020. "Macroeconomic forecasting in Poland: The role of forecasting competitions," Central European Economic Journal, Sciendo, vol. 7(54), pages 1-11, January.
    57. Avino, Davide & Nneji, Ogonna, 2014. "Are CDS spreads predictable? An analysis of linear and non-linear forecasting models," International Review of Financial Analysis, Elsevier, vol. 34(C), pages 262-274.
    58. Schick, Manuel, 2024. "Real-time Nowcasting Growth-at-Risk using the Survey of Professional Forecasters," Working Papers 0750, University of Heidelberg, Department of Economics.
    59. Baghestani, Hamid & Marchon, Cassia, 2012. "An evaluation of private forecasts of interest rate targets in Brazil," Economics Letters, Elsevier, vol. 115(3), pages 352-355.
    60. Papastamos, Dimitrios & Matysiak, George & Stevenson, Simon, 2015. "Assessing the accuracy and dispersion of real estate investment forecasts," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 141-152.
    61. Meredith Beechey & P�r Österholm, 2014. "Policy interest-rate expectations in Sweden: a forecast evaluation," Applied Economics Letters, Taylor & Francis Journals, vol. 21(14), pages 984-991, September.
    62. Jonsson, Thomas & Österholm, Pär, 2009. "The Properties of Survey-Based Inflation Expectations in Sweden," Working Papers 114, National Institute of Economic Research.
    63. Robert P. Lieli & Augusto Nieto-Barthaburu, 2023. "Forecasting with Feedback," Papers 2308.15062, arXiv.org, revised Aug 2024.
    64. Michael P. Clements, 2014. "US Inflation Expectations and Heterogeneous Loss Functions, 1968–2010," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(1), pages 1-14, January.
    65. Hitesh Doshi & Kris Jacobs & Rui Liu, 2021. "Information in the Term Structure: A Forecasting Perspective," Management Science, INFORMS, vol. 67(8), pages 5255-5277, August.
    66. Isiklar, Gultekin, 2005. "On aggregation bias in fixed-event forecast efficiency tests," Economics Letters, Elsevier, vol. 89(3), pages 312-316, December.
    67. Behrens, Christoph & Pierdzioch, Christian & Risse, Marian, 2018. "Testing the optimality of inflation forecasts under flexible loss with random forests," Economic Modelling, Elsevier, vol. 72(C), pages 270-277.
    68. Ásgeir Daníelsson, 2008. "Accuracy in forecasting macroeconomic variables in Iceland," Economics wp39, Department of Economics, Central bank of Iceland.
    69. Matteo Bonato & Oguzhan Cepni & Rangan Gupta & Christian Pierdzioch, 2024. "Business applications and state‐level stock market realized volatility: A forecasting experiment," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 456-472, March.
    70. Pierdzioch, Christian & Rülke, Jan-Christoph & Stadtmann, Georg, 2012. "On the loss function of the Bank of Canada: A note," Economics Letters, Elsevier, vol. 115(2), pages 155-159.
    71. Clements, Michael P., 2012. "Do professional forecasters pay attention to data releases?," International Journal of Forecasting, Elsevier, vol. 28(2), pages 297-308.
    72. Afees A. Salisu & Christian Pierdzioch & Rangan Gupta & Renee van Eyden, 2021. "Climate Risks and U.S. Stock-Market Tail Risks: A Forecasting Experiment Using over a Century of Data," Working Papers 202165, University of Pretoria, Department of Economics.
    73. Patrick Schmidt & Matthias Katzfuss & Tilmann Gneiting, 2021. "Interpretation of point forecasts with unknown directive," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(6), pages 728-743, September.
    74. Eliana González & Munir Jalil & Jose Vicente Romero Chamorro, 2010. "Inflación y expectativas de inflación en Colombia," Borradores de Economia 7307, Banco de la Republica.
    75. Julie Bennett & Michael T. Owyang, 2022. "On the Relative Performance of Inflation Forecasts," Review, Federal Reserve Bank of St. Louis, vol. 104(2), pages 131-148.
    76. Rangan Gupta & Christian Pierdzioch, 2021. "Climate Risks and the Realized Volatility Oil and Gas Prices: Results of an Out-of-Sample Forecasting Experiment," Working Papers 202175, University of Pretoria, Department of Economics.
    77. Wang, Yiyao & Lee, Tae-Hwy, 2014. "Asymmetric loss in the Greenbook and the Survey of Professional Forecasters," International Journal of Forecasting, Elsevier, vol. 30(2), pages 235-245.
    78. Rohloff, Sebastian & Pierdzioch, Christian & Risse, Marian, 2014. "Fluctuations of the Real Exchange Rate, Real Interest Rates, and the Dynamics of the Price of Gold in a Small Open Economy," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100429, Verein für Socialpolitik / German Economic Association.
    79. Kostas Mouratidis & Dimitris Kenourgios & Aris Samitas, 2010. "Evaluating currency crisis:A multivariate Markov switching approach," Working Papers 2010018, The University of Sheffield, Department of Economics, revised Oct 2010.
    80. Christian Pierdzioch & Jan-Christoph Rülke & Georg Stadtmann, 2012. "Exchange-rate forecasts and asymmetric loss: empirical evidence for the yen/dollar exchange rate," Applied Economics Letters, Taylor & Francis Journals, vol. 19(18), pages 1759-1763, December.
    81. Carlos Capistrán & Allan Timmermann, 2009. "Disagreement and Biases in Inflation Expectations," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(2‐3), pages 365-396, March.
    82. Andrea Bastianin & Matteo Manera & Anil Markandya & Elisa Scarpa, 2011. "Oil Price Forecast Evaluation with Flexible Loss Functions," Working Papers 2011.91, Fondazione Eni Enrico Mattei.
    83. Krol, Robert, 2013. "Evaluating state revenue forecasting under a flexible loss function," International Journal of Forecasting, Elsevier, vol. 29(2), pages 282-289.
    84. Maxime Phillot & Dr. Rina Rosenblatt-Wisch, 2018. "Inflation Expectations: The Effect of Question Ordering on Forecast Inconsistencies," Working Papers 2018-11, Swiss National Bank.
    85. Tsuchiya, Yoichi, 2023. "Assessing the World Bank’s growth forecasts," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 64-84.
    86. Dovern, Jonas & Jannsen, Nils, 2017. "Systematic errors in growth expectations over the business cycle," International Journal of Forecasting, Elsevier, vol. 33(4), pages 760-769.
    87. Jan-Christoph Rülke, 2012. "Are central bank projections rational?," Applied Economics Letters, Taylor & Francis Journals, vol. 19(13), pages 1257-1263, September.
    88. Bonato, Matteo & Çepni, Oğuzhan & Gupta, Rangan & Pierdzioch, Christian, 2021. "Do oil-price shocks predict the realized variance of U.S. REITs?," Energy Economics, Elsevier, vol. 104(C).
    89. Wagner Piazza Gaglianone, 2017. "Empirical Findings on Inflation Expectations in Brazil: a survey," Working Papers Series 464, Central Bank of Brazil, Research Department.
    90. Lieli, Robert P. & Stinchcombe, Maxwell B. & Grolmusz, Viola M., 2019. "Unrestricted and controlled identification of loss functions: Possibility and impossibility results," International Journal of Forecasting, Elsevier, vol. 35(3), pages 878-890.
    91. Conrad, Christian, 2017. "When does information on forecast variance improve the performance of a combined forecast?," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168200, Verein für Socialpolitik / German Economic Association.
    92. Massenot, Baptiste & Pettinicchi, Yuri, 2018. "Can firms see into the future? Survey evidence from Germany," Journal of Economic Behavior & Organization, Elsevier, vol. 145(C), pages 66-79.
    93. Carstensen Kai & Wohlrabe Klaus & Ziegler Christina, 2011. "Predictive Ability of Business Cycle Indicators under Test: A Case Study for the Euro Area Industrial Production," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(1), pages 82-106, February.
    94. Kajal Lahiri & Fushang Liu, 2009. "On the Use of Density Forecasts to Identify Asymmetry in Forecasters' Loss Functions," Discussion Papers 09-03, University at Albany, SUNY, Department of Economics.
    95. Gneiting, Tilmann, 2011. "Quantiles as optimal point forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 197-207, April.
    96. Lukas Menkhoff & Rafael R. Rebitzky & Michael Schröder, 2008. "Heterogeneity in Exchange Rate Expectations: Evidence on the Chartist-Fundamentalist Approach," CESifo Working Paper Series 2502, CESifo.
    97. Joerg Doepke & Ulrich Fritsche & Boriss Siliverstovs, 2009. "Evaluating German Business Cycle Forecasts Under an Asymmetric Loss Function," Macroeconomics and Finance Series 200905, University of Hamburg, Department of Socioeconomics.
    98. Christoph Behrens, 2019. "A Nonparametric Evaluation of the Optimality of German Export and Import Growth Forecasts under Flexible Loss," Economies, MDPI, vol. 7(3), pages 1-23, September.
    99. Tsuchiya, Yoichi, 2015. "Herding behavior and loss functions of exchange rate forecasters over interventions and financial crises," International Review of Economics & Finance, Elsevier, vol. 39(C), pages 266-276.
    100. Rülke, Jan-Christoph & Pierdzioch, Christian, 2014. "Government Forecasts of Budget Balances Under Asymmetric Loss: International Evidence," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100317, Verein für Socialpolitik / German Economic Association.
    101. Andrea Betancor & Pablo Pincheira, 2008. "Forecasting Inflation Forecast Errors," Working Papers Central Bank of Chile 477, Central Bank of Chile.
    102. Koske, Isabell & Stadtmann, Georg, 2009. "Exchange rate expectations: The role of person specific forward looking variables," Economics Letters, Elsevier, vol. 105(3), pages 221-223, December.
    103. Gaglianone, Wagner Piazza & Issler, João Victor, 2019. "Microfounded forecasting," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 813, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    104. Yang Yang & Tae-Hwy Lee, 2004. "Bagging Binary Predictors for Time Series," Econometric Society 2004 Far Eastern Meetings 512, Econometric Society.
    105. Hamid Baghestani & Cassia Marchon, 2015. "On the accuracy of private forecasts of inflation and growth in Brazil," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 39(2), pages 370-381, April.
    106. Yoichi Tsuchiya, 2024. "Conservatism and information rigidity of the European Bank for Reconstruction and Development's growth forecast: Quarter‐century assessment," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1399-1421, August.
    107. Constantin Burgi, 2016. "What Do We Lose When We Average Expectations?," Working Papers 2016-013, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    108. Jia, Pengfei & Shen, Haopeng & Zheng, Shikun, 2023. "Monetary policy rules and opinionated markets," Economics Letters, Elsevier, vol. 223(C).
    109. Higgins, Matthew L. & Mishra, Sagarika, 2012. "State dependent asymmetric loss and the consensus forecast of real U.S. GDP growth," Working Papers fe_2012_10, Deakin University, Department of Economics.
    110. Döpke, Jörg & Fritsche, Ulrich & Müller, Karsten, 2019. "Has macroeconomic forecasting changed after the Great Recession? Panel-based evidence on forecast accuracy and forecaster behavior from Germany," Journal of Macroeconomics, Elsevier, vol. 62(C).
    111. Nakazono, Yoshiyuki, 2013. "Strategic behavior of Federal Open Market Committee board members: Evidence from members’ forecasts," Journal of Economic Behavior & Organization, Elsevier, vol. 93(C), pages 62-70.
    112. Wagner Piazza Gaglianone & João Victor Issler & Silvia Maria Matos, 2017. "Applying a microfounded-forecasting approach to predict Brazilian inflation," Empirical Economics, Springer, vol. 53(1), pages 137-163, August.
    113. Bürgi, Constantin, 2017. "Bias, rationality and asymmetric loss functions," Economics Letters, Elsevier, vol. 154(C), pages 113-116.
    114. Marco Percoco, 2012. "Are project appraisers chiromancers?," Applied Economics Letters, Taylor & Francis Journals, vol. 19(3), pages 237-241, February.
    115. Jörg Döpke & Ulrich Fritsche & Christian Pierdzioch, 2015. "Predicting Recessions With Boosted Regression Trees," Working Papers 2015-004, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    116. De Rezende, Rafael B., 2015. "Risks in macroeconomic fundamentals and excess bond returns predictability," Working Paper Series 295, Sveriges Riksbank (Central Bank of Sweden).
    117. Hamid Baghestani & Mohammad Arzaghi & Ilker Kaya, 2015. "On the accuracy of Blue Chip forecasts of interest rates and country risk premiums," Applied Economics, Taylor & Francis Journals, vol. 47(2), pages 113-122, January.
    118. Boskabadi, Elahe, 2022. "Economic policy uncertainty and forecast bias in the survey of professional forecasters," MPRA Paper 115081, University Library of Munich, Germany.
    119. Kirstin Hubrich & Simone Manganelli, 2014. "Comment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(4), pages 506-509, October.
    120. Christodoulakis, George, 2020. "Estimating the term structure of commodity market preferences," European Journal of Operational Research, Elsevier, vol. 282(3), pages 1146-1163.
    121. Clements, Michael P., 2006. "Internal consistency of survey respondentsíforecasts: Evidence based on the Survey of Professional Forecasters," Economic Research Papers 269742, University of Warwick - Department of Economics.
    122. Afees A. Salisu & Christian Pierdzioch & Rangan Gupta & David Gabauer, 2021. "Forecasting Stock-Market Tail Risk and Connectedness in Advanced Economies Over a Century: The Role of Gold-to-Silver and Gold-to-Platinum Price Ratios," Working Papers 202161, University of Pretoria, Department of Economics.
    123. Michael P Clements, 2014. "Assessing the Evidence of Macro- Forecaster Herding: Forecasts of Inflation and Output Growth," ICMA Centre Discussion Papers in Finance icma-dp2014-12, Henley Business School, University of Reading.
    124. Jörg Döpke & Ulrich Fritsche & Karsten Müller, 2018. "Has Macroeconomic Forecasting changed after the Great Recession? - Panel-based Evidence on Accuracy and Forecaster Behaviour from Germany," Macroeconomics and Finance Series 201803, University of Hamburg, Department of Socioeconomics.
    125. Rülke Jan-Christoph, 2012. "Do Private Sector Forecasters Desire to Deviate From the German Council of Economic Experts?," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 232(4), pages 414-428, August.
    126. Stanislav Anatolyev & Natalia Kryzhanovskaya, 2009. "Directional Prediction of Returns under Asymmetric Loss: Direct and Indirect Approaches," Working Papers w0136, Center for Economic and Financial Research (CEFIR).
    127. Yoichi Tsuchiya, 2022. "Evaluating plant managers’ production plans over business cycles: asymmetric loss and rationality," SN Business & Economics, Springer, vol. 2(8), pages 1-29, August.
    128. Jan-Christoph Rülke, 2011. "Are central bank projections rational?," WHU Working Paper Series - Economics Group 11-05, WHU - Otto Beisheim School of Management.
    129. Valentina Corradi & Sainan Jin & Norman R. Swanson, 2023. "Robust forecast superiority testing with an application to assessing pools of expert forecasters," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(4), pages 596-622, June.
    130. Julieta Caunedo & Riccardo DiCecio & Ivana Komunjer & Michael T. Owyang, 2013. "Asymmetry, Complementarities, and State Dependence in Federal Reserve Forecasts," Working Papers 2013-012, Federal Reserve Bank of St. Louis, revised 29 Dec 2017.
    131. Pierdzioch, Christian & Risse, Marian & Rohloff, Sebastian, 2016. "A boosting approach to forecasting the volatility of gold-price fluctuations under flexible loss," Resources Policy, Elsevier, vol. 47(C), pages 95-107.
    132. Veress, Aron & Kaiser, Lars, 2017. "Forecasting quality of professionals: Does affiliation matter?," The Quarterly Review of Economics and Finance, Elsevier, vol. 66(C), pages 159-168.
    133. Giovannelli, Alessandro & Pericoli, Filippo Maria, 2020. "Are GDP forecasts optimal? Evidence on European countries," International Journal of Forecasting, Elsevier, vol. 36(3), pages 963-973.
    134. Baghestani, Hamid & Khallaf, Ashraf, 2012. "Predictions of growth in U.S. corporate profits: Asymmetric vs. symmetric loss," International Review of Economics & Finance, Elsevier, vol. 22(1), pages 222-229.
    135. Hamid Baghestani, 2014. "On the loss structure of federal reserve forecasts of output growth," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 38(3), pages 518-527, July.
    136. Tsuchiya, Yoichi, 2016. "Assessing macroeconomic forecasts for Japan under an asymmetric loss function," International Journal of Forecasting, Elsevier, vol. 32(2), pages 233-242.
    137. Chen, Heng & Li, Xu & Pei, Guangyu & Xin, Qian, 2024. "Heterogeneous overreaction in expectation formation: Evidence and theory," Journal of Economic Theory, Elsevier, vol. 218(C).
    138. Gneiting, Tilmann, 2011. "Quantiles as optimal point forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 197-207.
    139. Jan-Christoph Rülke, 2011. "Do private sector forecasters desire to deviate from the German council of economic experts?," WHU Working Paper Series - Economics Group 11-04, WHU - Otto Beisheim School of Management.
    140. Krüger, Jens J. & Hoss, Julian, 2012. "German business cycle forecasts, asymmetric loss and financial variables," Economics Letters, Elsevier, vol. 114(3), pages 284-287.
    141. Pierdzioch, Christian & Rülke, Jan-Christoph & Stadtmann, Georg, 2013. "A note on forecasting the prices of gold and silver: Asymmetric loss and forecast rationality," The Quarterly Review of Economics and Finance, Elsevier, vol. 53(3), pages 294-301.
    142. Georg Stadtmann & Christian Pierdzioch & Jan Ruelke, 2011. "Scattered Fiscal Forecasts," Economics Bulletin, AccessEcon, vol. 31(3), pages 2558-2568.
    143. Elliott, Graham & Timmermann, Allan G, 2016. "Forecasting in Economics and Finance," University of California at San Diego, Economics Working Paper Series qt6z55v472, Department of Economics, UC San Diego.
    144. Lee, Tae-Hwy & Yang, Yang, 2006. "Bagging binary and quantile predictors for time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 465-497.
    145. Sergey V. Smirnov & Daria A. Avdeeva, 2016. "Wishful Bias in Predicting Us Recessions: Indirect Evidence," HSE Working papers WP BRP 135/EC/2016, National Research University Higher School of Economics.
    146. Pablo Pincheira, 2010. "A Real Time Evaluation of the Central Bank of Chile GDP Growth Forecasts," Working Papers Central Bank of Chile 556, Central Bank of Chile.
    147. Jonsson, Thomas & Österholm, Pär, 2011. "The forecasting properties of survey-based wage-growth expectations," Economics Letters, Elsevier, vol. 113(3), pages 276-281.
    148. Conrad, Christian & Lahiri, Kajal, 2024. "Heterogeneous Expectations among Professional Forecasters," Working Papers 0754, University of Heidelberg, Department of Economics.
    149. Döpke, Jörg & Müller, Karsten & Tegtmeier, Lars, 2018. "The economic value of business cycle forecasts for potential investors – Evidence from Germany," Research in International Business and Finance, Elsevier, vol. 46(C), pages 445-461.
    150. Pedro Henrique Melo Albuquerque & Yaohao Peng & João Pedro Fontoura da Silva, 2022. "Making the whole greater than the sum of its parts: A literature review of ensemble methods for financial time series forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(8), pages 1701-1724, December.
    151. Jörg Döpke & Ulrich Fritsche & Christian Pierdzioch, 2015. "Predicting Recessions in Germany With Boosted Regression Trees," Macroeconomics and Finance Series 201505, University of Hamburg, Department of Socioeconomics.
    152. Kröger, Sabine & Pierrot, Thibaud, 2019. "What point of a distribution summarises point predictions?," Discussion Papers, Research Unit: Market Behavior SP II 2019-212, WZB Berlin Social Science Center.
    153. Tsuchiya, Yoichi, 2016. "Asymmetric loss and rationality of Chinese renminbi forecasts: An implication for the trade between China and the US," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 44(C), pages 116-127.
    154. Anmol Bhandari & Jaroslav Borovicka & Paul Ho, 2019. "Survey Data and Subjective Beliefs in Business Cycle Models," Working Paper 19-14, Federal Reserve Bank of Richmond.
    155. Tsuchiya, Yoichi, 2012. "Evaluating Japanese corporate executives’ forecasts under an asymmetric loss function," Economics Letters, Elsevier, vol. 116(3), pages 601-603.
    156. P. Schanbacher, 2014. "Measuring and adjusting for overconfidence," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 37(2), pages 423-452, October.
    157. Sergey V. Smirnov, 2014. "Predicting US Recessions: Does a Wishful Bias Exist?," HSE Working papers WP BRP 77/EC/2014, National Research University Higher School of Economics.
    158. Hamid Baghestani, 2013. "Evaluating Federal Reserve predictions of growth in consumer spending," Applied Economics, Taylor & Francis Journals, vol. 45(13), pages 1637-1646, May.
    159. Dean Croushore, 2012. "Forecast bias in two dimensions," Working Papers 12-9, Federal Reserve Bank of Philadelphia.
    160. Fildes, Robert, 2015. "Forecasters and rationality—A comment on Fritsche et al., Forecasting the Brazilian Real and Mexican Peso: Asymmetric loss, forecast rationality and forecaster herding," International Journal of Forecasting, Elsevier, vol. 31(1), pages 140-143.
    161. Young Bin Ahn & Yoichi Tsuchiya, 2022. "Consumer’s perceived and expected inflation in Japan—irrationality or asymmetric loss?," Empirical Economics, Springer, vol. 63(3), pages 1247-1292, September.

  30. Timmermann, Allan & Patton, Andrew, 2003. "Properties of Optimal Forecasts," CEPR Discussion Papers 4037, C.E.P.R. Discussion Papers.

    Cited by:

    1. Carlos Capistrán-Carmona, 2005. "Bias in Federal Reserve Inflation Forecasts: Is the Federal Reserve Irrational or Just Cautious?," Computing in Economics and Finance 2005 127, Society for Computational Economics.
    2. Romulo A. Chumacero, 2004. "Forecasting Chilean Industrial Production with Automated Procedures," Econometric Society 2004 Latin American Meetings 177, Econometric Society.
    3. Capistrán Carlos & López Moctezuma Gabriel, 2008. "Experts' Macroeconomics Expectations: An Evaluation of Mexican Short-Run Forecasts," Working Papers 2008-11, Banco de México.
    4. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    5. Romulo A. Chumacero, 2004. "Forecasting Chilean Industrial Production and Sales with Automated Procedures," Computing in Economics and Finance 2004 112, Society for Computational Economics.
    6. Timmermann Allan & Capistrán Carlos, 2006. "Disagreement and Biases in Inflation Expectations," Working Papers 2006-07, Banco de México.
    7. Timmermann, Allan & Elliott, Graham & Komunjer, Ivana, 2003. "Estimating Loss Function Parameters," CEPR Discussion Papers 3821, C.E.P.R. Discussion Papers.
    8. Anatolyev, Stanislav, 2009. "Dynamic modeling under linear-exponential loss," Economic Modelling, Elsevier, vol. 26(1), pages 82-89, January.
    9. Thomas Jobert & Lionel Persyn, 2012. "Quelques constats sur les prévisions conjoncturelles de la croissance française," Revue d'économie politique, Dalloz, vol. 122(6), pages 833-849.
    10. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Volatility forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies (CFS).
    11. Aiolfi Marco & Capistrán Carlos & Timmermann Allan, 2010. "Forecast Combinations," Working Papers 2010-04, Banco de México.
    12. Gonzalez-Rivera, Gloria & Lee, Tae-Hwy & Mishra, Santosh, 2004. "Forecasting volatility: A reality check based on option pricing, utility function, value-at-risk, and predictive likelihood," International Journal of Forecasting, Elsevier, vol. 20(4), pages 629-645.
    13. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    14. McCracken, Michael W., 2007. "Asymptotics for out of sample tests of Granger causality," Journal of Econometrics, Elsevier, vol. 140(2), pages 719-752, October.
    15. Patton, Andrew J. & Timmermann, Allan, 2005. "Testable implications of forecast optimality," LSE Research Online Documents on Economics 6834, London School of Economics and Political Science, LSE Library.

  31. Timmermann, Allan & Elliott, Graham & Komunjer, Ivana, 2003. "Estimating Loss Function Parameters," CEPR Discussion Papers 3821, C.E.P.R. Discussion Papers.

    Cited by:

    1. Martin Skitmore & Franco K. T. Cheung, 2007. "Explorations in specifying construction price forecast loss functions," Construction Management and Economics, Taylor & Francis Journals, vol. 25(5), pages 449-465.
    2. Graham Elliott & Ivana Komunjer & Allan Timmermann, 2008. "Biases in Macroeconomic Forecasts: Irrationality or Asymmetric Loss?," Journal of the European Economic Association, MIT Press, vol. 6(1), pages 122-157, March.
    3. Stan Hurn & Ralf Becker, 2006. "Testing for nonlinearity in mean in the presence of heteroskedasticity," Stan Hurn Discussion Papers 2006-02, School of Economics and Finance, Queensland University of Technology.
    4. Siliverstovs, Boriss & Engsted, Tom & Haldrup, Niels, 2002. "Long-Run Forecasting in Multicointegrated Systems," Finance Working Papers 02-14, University of Aarhus, Aarhus School of Business, Department of Business Studies.
    5. Basu, Sudipta & Markov, Stanimir, 2004. "Loss function assumptions in rational expectations tests on financial analysts' earnings forecasts," Journal of Accounting and Economics, Elsevier, vol. 38(1), pages 171-203, December.
    6. Yang Yang & Tae-Hwy Lee, 2004. "Bagging Binary Predictors for Time Series," Econometric Society 2004 Far Eastern Meetings 512, Econometric Society.
    7. Lee, Tae-Hwy & Yang, Yang, 2006. "Bagging binary and quantile predictors for time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 465-497.
    8. Allan Timmermann & Andrew J. Patton, 2004. "Properties of Optimal Forecasts," Econometric Society 2004 North American Winter Meetings 234, Econometric Society.
    9. Adrian Pagan & Hashem Pesaran, 2007. "Econometric Analysis of Structural Systems with Permanent and Transitory Shocks. Working paper #7," NCER Working Paper Series 7, National Centre for Econometric Research.
    10. Pedro Henrique Melo Albuquerque & Yaohao Peng & João Pedro Fontoura da Silva, 2022. "Making the whole greater than the sum of its parts: A literature review of ensemble methods for financial time series forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(8), pages 1701-1724, December.
    11. Alexander, Marcus & Christakis, Nicholas A., 2008. "Bias and asymmetric loss in expert forecasts: A study of physician prognostic behavior with respect to patient survival," Journal of Health Economics, Elsevier, vol. 27(4), pages 1095-1108, July.

  32. Timmermann, Allan & Lunde, Asger, 2003. "Duration Dependence in Stock Prices: An Analysis of Bull and Bear Markets," CEPR Discussion Papers 4104, C.E.P.R. Discussion Papers.

    Cited by:

    1. Don Harding & Adrian Pagan, 2009. "An Econometric Analysis of Some Models for Constructed Binary Time Series," NCER Working Paper Series 39, National Centre for Econometric Research, revised 02 Jul 2009.
    2. Scott M. R. Mahadeo & Reinhold Heinlein & Gabriella Deborah Legrenzi, 2018. "Energy Contagion Analysis: A New Perspective with Application to a Small Petroleum Economy," CESifo Working Paper Series 7279, CESifo.
    3. Jo~ao Nicolau & Paulo M. M. Rodrigues, 2024. "A simple but powerful tail index regression," Papers 2409.13531, arXiv.org.
    4. Stelios D. Bekiros, 2013. "Irrational fads, short‐term memory emulation, and asset predictability," Review of Financial Economics, John Wiley & Sons, vol. 22(4), pages 213-219, November.
    5. Marco Marozzi, 2014. "The multisample Cucconi test," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(2), pages 209-227, June.
    6. Rose Cunningham & Ilan Kolet, 2007. "Housing Market Cycles and Duration Dependence in the United States and Canada," Staff Working Papers 07-2, Bank of Canada.
    7. Ashraf, Dawood & Mohammad, Nazeeruddin, 2014. "Matching perception with the reality—Performance of Islamic equity investments," Pacific-Basin Finance Journal, Elsevier, vol. 28(C), pages 175-189.
    8. Jia Liu & John M. Maheu & Yong Song, 2024. "Identification and forecasting of bull and bear markets using multivariate returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 723-745, August.
    9. S. Boubaker & Liu, Z. & Zhan, Y., 2021. "Risk management for crude oil futures: an optimal stopping-timing approach," Post-Print hal-03323674, HAL.
    10. Lu, Tsung-Hsun & Chen, Yi-Chi & Hsu, Yu-Chin, 2015. "Trend definition or holding strategy: What determines the profitability of candlestick charting?," Journal of Banking & Finance, Elsevier, vol. 61(C), pages 172-183.
    11. Laopodis, Nikiforos T., 2016. "Industry returns, market returns and economic fundamentals: Evidence for the United States," Economic Modelling, Elsevier, vol. 53(C), pages 89-106.
    12. Vitor Castro & Boris Fisera, 2022. "Determinants of the Duration of Economic Recoveries: The Role of ´Too Much Finance´," Working Papers IES 2022/33, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Dec 2022.
    13. John M Maheu & Thomas H McCurdy & Yong Song, 2009. "Extracting bull and bear markets from stock returns," Working Papers tecipa-369, University of Toronto, Department of Economics.
    14. Erik Kole & Dick Dijk, 2017. "How to Identify and Forecast Bull and Bear Markets?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(1), pages 120-139, January.
    15. Maheu, John M & McCurdy, Thomas H & Song, Yong, 2020. "Bull and Bear Markets During the COVID-19 Pandemic," MPRA Paper 104504, University Library of Munich, Germany.
    16. Beata Bieszk-Stolorz & Krzysztof Dmytrów, 2021. "Evaluation of Changes on World Stock Exchanges in Connection with the SARS-CoV-2 Pandemic. Survival Analysis Methods," Risks, MDPI, vol. 9(7), pages 1-19, June.
    17. Reinhold Heinlein & Gabriele M. Lepori, 2022. "Do financial markets respond to macroeconomic surprises? Evidence from the UK," Empirical Economics, Springer, vol. 62(5), pages 2329-2371, May.
    18. Ashraf, Dawood & Rizwan, Muhammad Suhail & Ahmad, Ghufran, 2022. "Islamic equity investments and the COVID-19 pandemic," Pacific-Basin Finance Journal, Elsevier, vol. 73(C).
    19. Chen, Shiu-Sheng, 2010. "Do higher oil prices push the stock market into bear territory?," Energy Economics, Elsevier, vol. 32(2), pages 490-495, March.
    20. James D. Hamilton & Oscar Jorda, "undated". "A model for the federal funds rate target," Department of Economics 99-07, California Davis - Department of Economics.
    21. Mendes, Fernando Henrique de Paula e Silva & Caldeira, João Frois & Moura, Guilherme Valle, 2018. "Evidence of Bull and Bear Markets in the Bovespa index: An application of Markovian regime-switching Models with Duration Dependence," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 38(1), May.
    22. Felix Haase & Matthias Neuenkirch, 2020. "Predictability of Bull and Bear Markets: A New Look at Forecasting Stock Market Regimes (and Returns) in the US," Research Papers in Economics 2020-01, University of Trier, Department of Economics.
    23. Shiu-Sheng Chen, 2005. "Does Monetary Policy Have Asymmetric Effects on Stock Returns?," Macroeconomics 0502001, University Library of Munich, Germany, revised 01 Feb 2005.
    24. Alain-Philippe Fortin & Patrick Gagliardini & Olivier Scaillet, 2022. "Eigenvalue tests for the number of latent factors in short panels," Papers 2210.16042, arXiv.org.
    25. Don Harding & Adrian Pagan, 2006. "The Econometric Analysis of Constructed Binary Time Series," Department of Economics - Working Papers Series 963, The University of Melbourne.
    26. Adrian R. Pagan & Kirill A. Sossounov, 2003. "A simple framework for analysing bull and bear markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 23-46.
    27. Claessens, Stijn & Kose, M. Ayhan & Terrones, Marco, 2011. "Financial Cycles: What? How? When?," CEPR Discussion Papers 8379, C.E.P.R. Discussion Papers.
    28. Jarno Tikkanen & Janne Äijö, 2018. "Does the F-score improve the performance of different value investment strategies in Europe?," Journal of Asset Management, Palgrave Macmillan, vol. 19(7), pages 495-506, December.
    29. Linh Nguyen & Vilém Novák & Soheyla Mirshahi, 2020. "Trend‐cycle Estimation Using Fuzzy Transform and Its Application for Identifying Bull and Bear Phases in Markets," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 27(3), pages 111-124, July.
    30. Kirby, Chris, 2023. "A closer look at the regime-switching evidence of bull and bear markets," Finance Research Letters, Elsevier, vol. 52(C).
    31. Mahadeo, Scott M.R. & Heinlein, Reinhold & Legrenzi, Gabriella D., 2022. "Contagion testing in frontier markets under alternative stressful S&P 500 market scenarios," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
    32. Kurov, Alexander & Olson, Eric & Zaynutdinova, Gulnara R., 2022. "When does the fed care about stock prices?," Journal of Banking & Finance, Elsevier, vol. 142(C).
    33. Woodward, George & Brooks, Robert, 2009. "Do realized betas exhibit up/down market tendencies?," International Review of Economics & Finance, Elsevier, vol. 18(3), pages 511-519, June.
    34. Mohammad, Nazeeruddin & Ashraf, Dawood, 2015. "The Market Timing Ability and Return Performance of Islamic Equities: an Empirical Study," Working Papers 1436-6, The Islamic Research and Teaching Institute (IRTI).
    35. Alain-Philippe Fortin & Patrick Gagliardini & Olivier Scaillet, 2023. "Latent Factor Analysis in Short Panels," Papers 2306.14004, arXiv.org, revised May 2024.
    36. Polko-Zając Dominika, 2019. "On Permutation Location–Scale Tests," Statistics in Transition New Series, Statistics Poland, vol. 20(4), pages 153-166, December.
    37. Luca Agnello & Vítor Castro & Ricardo M. Sousa, 2018. "The Legacy and the Tyranny of Time: Exit and Re‐Entry of Sovereigns to International Capital Markets," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(8), pages 1969-1994, December.
    38. Shu-Yi Liao & Sheng-Tung Chen & Mao-Lung Huang, 2016. "Will the oil price change damage the stock market in a bull market? A re-examination of their conditional relationships," Empirical Economics, Springer, vol. 50(3), pages 1135-1169, May.
    39. Dumitriu, Ramona & Stefanescu, Razvan & Nistor, Costel, 2010. "Systematic risks for the financial and for the non-financial Romanian companies," MPRA Paper 41636, University Library of Munich, Germany, revised 28 Feb 2010.
    40. Villena, Marcelo J. & Araneda, Axel A., 2024. "On sectoral market efficiency," Finance Research Letters, Elsevier, vol. 61(C).
    41. Li, Ziran & Sun, Jiajing & Wang, Shouyang, 2013. "Amplitude-Duration-Persistence Trade-off Relationship for Long Term Bear Stock Markets," MPRA Paper 54177, University Library of Munich, Germany.
    42. Yaya, OlaOluwa S. & Gil-Alana, Luis A., 2014. "The persistence and asymmetric volatility in the Nigerian stock bull and bear markets," Economic Modelling, Elsevier, vol. 38(C), pages 463-469.
    43. Candelon, Bertrand & Piplack, Jan & Straetmans, Stefan, 2008. "On measuring synchronization of bulls and bears: The case of East Asia," Journal of Banking & Finance, Elsevier, vol. 32(6), pages 1022-1035, June.
    44. Chong, Terence Tai-Leung & Cao, Bingqing & Wong, Wing Keung, 2017. "A Principal Component Approach to Measuring Investor Sentiment in Hong Kong," MPRA Paper 77147, University Library of Munich, Germany.
    45. Vitor Castro, 2011. "The Portuguese Stock Market Cycle: Chronology and Duration Dependence," GEMF Working Papers 2011-17, GEMF, Faculty of Economics, University of Coimbra.
    46. Liao, Li-Chuan & Chou, Ray Yeutien & Chiu, Banghan, 2013. "Anchoring effect on foreign institutional investors’ momentum trading behavior: Evidence from the Taiwan stock market," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 72-91.
    47. Nicolau, João, 2016. "Structural change test in duration of bull and bear markets," Economics Letters, Elsevier, vol. 146(C), pages 64-67.
    48. Ichkitidze, Yuri, 2018. "Temporary price trends in the stock market with rational agents," The Quarterly Review of Economics and Finance, Elsevier, vol. 68(C), pages 103-117.
    49. Zhang, Chuanhai & Zhang, Zhengjun & Xu, Mengyu & Peng, Zhe, 2023. "Good and bad self-excitation: Asymmetric self-exciting jumps in Bitcoin returns," Economic Modelling, Elsevier, vol. 119(C).
    50. John M Maheu & Thomas H McCurdy & Yong Song, 2010. "Components of bull and bear markets: bull corrections and bear rallies," Working Papers tecipa-402, University of Toronto, Department of Economics.
    51. de Bruijn, L.P. & Franses, Ph.H.B.F., 2015. "Stochastic levels and duration dependence in US unemployment," Econometric Institute Research Papers EI2015-20, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    52. Valeriy Zakamulin & Javier Giner, 2020. "Trend following with momentum versus moving averages: a tale of differences," Quantitative Finance, Taylor & Francis Journals, vol. 20(6), pages 985-1007, June.
    53. Chan, Stephen & Chu, Jeffrey & Zhang, Yuanyuan & Nadarajah, Saralees, 2022. "An extreme value analysis of the tail relationships between returns and volumes for high frequency cryptocurrencies," Research in International Business and Finance, Elsevier, vol. 59(C).
    54. Julian, Inchauspe & Helen, Cabalu, 2013. "What Drives the Shanghai Stock Market? An Examination of its Linkage to Macroeconomic Fundamentals," MPRA Paper 93049, University Library of Munich, Germany.
    55. Maryam Akbari Nasiri, 2020. "How Long Do Housing Cycles Last? A Duration Analysis For Emerging Economies," Bulletin of Monetary Economics and Banking, Bank Indonesia, vol. 23(2), pages 179-200, July.
    56. Bertrand Candelon & Jameel Ahmed & Stefan Straetmans, 2014. "Predicting and Capitalizing on Stock Market Bears in the U.S," Working Papers 2014-409, Department of Research, Ipag Business School.
    57. Ghysels, Eric & Jagannathan, Ravi & Chabot, Benjamin, 2014. "Momentum Trading, Return Chasing, and Predictable Crashes," CEPR Discussion Papers 10234, C.E.P.R. Discussion Papers.
    58. Alexakis, Christos & Dasilas, Apostolos & Grose, Chris, 2013. "Asymmetric dynamic relations between stock prices and mutual fund units in Japan. An application of hidden cointegration technique," International Review of Financial Analysis, Elsevier, vol. 28(C), pages 1-8.
    59. Fan, Jianqing & Gong, Wenyan & Zhu, Ziwei, 2019. "Generalized high-dimensional trace regression via nuclear norm regularization," Journal of Econometrics, Elsevier, vol. 212(1), pages 177-202.
    60. Agnello, Luca & Castro, Vítor & Sousa, Ricardo M., 2021. "On the duration of sovereign ratings cycle phases," Journal of Economic Behavior & Organization, Elsevier, vol. 182(C), pages 512-526.
    61. Asif, Raheel & Frömmel, Michael & Mende, Alexander, 2022. "The crisis alpha of managed futures: Myth or reality?," International Review of Financial Analysis, Elsevier, vol. 80(C).
    62. Mai Shibata, 2014. "The Influence of Japan’s Unsecured Overnight Call Rate on Bull and Bear Markets and Market Turns," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 21(4), pages 331-349, November.
    63. Xiao-Lin Li & Yi-Na Li & Lu Bai, 2019. "Stock Market Cycle and Business Cycle in China: Evidence from a Bootstrap Rolling Window Approach," Review of Economics & Finance, Better Advances Press, Canada, vol. 17, pages 35-50, August.
    64. Fernando López & Mariano Matilla-García & Jesús Mur & Manuel Ruiz Marín, 2021. "Statistical Tests of Symbolic Dynamics," Mathematics, MDPI, vol. 9(8), pages 1-21, April.
    65. Asger Lunde & Allan Timmermann, 2005. "Completion time structures of stock price movements," Annals of Finance, Springer, vol. 1(3), pages 293-326, August.
    66. Yong Song & Tomasz Wo'zniak, 2020. "Markov Switching," Papers 2002.03598, arXiv.org.
    67. Yehong Liu & Guosheng Yin, 2018. "Average Holding Price," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 13(01), pages 1-20, March.
    68. Pätäri, Eero & Ahmed, Sheraz & Luukka, Pasi & Yeomans, Julian Scott, 2023. "Can monthly-return rank order reveal a hidden dimension of momentum? The post-cost evidence from the U.S. stock markets," The North American Journal of Economics and Finance, Elsevier, vol. 65(C).
    69. Luca Agnello & Vitor Castro & Ricardo Sousa, 2019. "The Benevolence of Time, Sound Macroeconomic Environment and Governance Quality on the Duration of Sovereign Ratings Phases," Working Papers 34, European Stability Mechanism.
    70. Valeriy Zakamulin, 2023. "Not all bull and bear markets are alike: insights from a five-state hidden semi-Markov model," Risk Management, Palgrave Macmillan, vol. 25(1), pages 1-25, March.
    71. Li, Ming-Yuan Leon, 2009. "Value or volume strategy?," Finance Research Letters, Elsevier, vol. 6(4), pages 210-218, December.
    72. B M, Lithin & chakraborty, Suman & iyer, Vishwanathan & M N, Nikhil & ledwani, Sanket, 2022. "Modeling asymmetric sovereign bond yield volatility with univariate GARCH models: Evidence from India," MPRA Paper 117067, University Library of Munich, Germany, revised 05 Jan 2023.
    73. Giner, Javier & Zakamulin, Valeriy, 2023. "A regime-switching model of stock returns with momentum and mean reversion," Economic Modelling, Elsevier, vol. 122(C).
    74. Ferrer Fernández, María & Henry, Ólan & Pybis, Sam & Stamatogiannis, Michalis P., 2023. "Can we forecast better in periods of low uncertainty? The role of technical indicators," Journal of Empirical Finance, Elsevier, vol. 71(C), pages 1-12.
    75. He, Qing & Qian, Zongxin & Fei, Zhe & Chong, Terence Tai Leung, 2016. "Do Speculative Bubbles Migrate in the Chinese Stock Market?," MPRA Paper 80575, University Library of Munich, Germany.
    76. Chen, Shiu-Sheng, 2011. "Lack of consumer confidence and stock returns," Journal of Empirical Finance, Elsevier, vol. 18(2), pages 225-236, March.
    77. Fernando Henrique De Paula E Silva Mendes & Guilherme Valle Mour, 2014. "Evidências De Bull E Bear Market No Índice Bovespa: Uma Aplicação De Modelos De Regime Markoviano E Duration Dependence," Anais do XLI Encontro Nacional de Economia [Proceedings of the 41st Brazilian Economics Meeting] 138, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    78. Shyh-Wei Chen & Chung-Hua Shen, 2007. "Evidence of the duration-dependence from the stock markets in the Pacific Rim economies," Applied Economics, Taylor & Francis Journals, vol. 39(11), pages 1461-1474.
    79. Ben Sita, Bernard & Abdallah, Wissam, 2014. "Volatility links between the home and the host market for U.K. dual-listed stocks on U.S. markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 33(C), pages 183-199.
    80. Adrian pagan & Don Harding, 2006. "The Econometric Analysis of Constructed Binary Time Series. Working paper #1," NCER Working Paper Series 1, National Centre for Econometric Research.
    81. Paulo M.M. Rodrigues & João Cruz, 2018. "Structural Changes in the Duration of Bull Markets and Business Cycle Dynamics," Working Papers w201814, Banco de Portugal, Economics and Research Department.
    82. Min‐Hsien Chiang & Tsai‐Yin Lin & Chih‐Hsien Jerry Yu, 2009. "Liquidity Provision of Limit Order Trading in the Futures Market Under Bull and Bear Markets," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 36(7‐8), pages 1007-1038, September.
    83. Mehmet Balcilar & Rangan Gupta & Ricardo M. Sousa & Mark E. Wohar, 2020. "Linking U.S. State-Level Housing Market Returns and the Consumption-(Dis)Aggregate Wealth Ratio," Working Papers 202094, University of Pretoria, Department of Economics.
    84. M. Hashem Pesaran & Allan Timmermann, 2006. "Testing Dependence among Serially Correlated Multi-category Variables," CESifo Working Paper Series 1770, CESifo.
    85. Jia Liu & John M. Maheu, 2018. "Improving Markov switching models using realized variance," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(3), pages 297-318, April.
    86. Woodward, George & Marisetty, Vijaya B., 2005. "Introducing non-linear dynamics to the two-regime market model: Evidence," The Quarterly Review of Economics and Finance, Elsevier, vol. 45(4-5), pages 559-581, September.
    87. Joanna Olbrys & Elzbieta Majewska, 2016. "Crisis periods and contagion effects in the CEE stock markets: the influence of the 2007 US subprime crisis," International Journal of Computational Economics and Econometrics, Inderscience Enterprises Ltd, vol. 6(2), pages 124-137.
    88. Chiang, Min-Hsien & Huang, Hsin-Yi, 2011. "Stock market momentum, business conditions, and GARCH option pricing models," Journal of Empirical Finance, Elsevier, vol. 18(3), pages 488-505, June.
    89. Focardi, Sergio M. & Fabozzi, Frank J. & Mazza, Davide, 2019. "Modeling local trends with regime shifting models with time-varying probabilities," International Review of Financial Analysis, Elsevier, vol. 66(C).
    90. Ntantamis, Christos & Zhou, Jun, 2015. "Bull and bear markets in commodity prices and commodity stocks: Is there a relation?," Resources Policy, Elsevier, vol. 43(C), pages 61-81.
    91. Bejaoui, Azza & Karaa, Adel, 2016. "Revisiting the bull and bear markets notions in the Tunisian stock market: New evidence from multi-state duration-dependence Markov-switching models," Economic Modelling, Elsevier, vol. 59(C), pages 529-545.
    92. Yuanyuan Zhang & Stephen Chan & Jeffrey Chu & Hana Sulieman, 2020. "On the Market Efficiency and Liquidity of High-Frequency Cryptocurrencies in a Bull and Bear Market," JRFM, MDPI, vol. 13(1), pages 1-14, January.
    93. Tran, Thuy Nhung, 2022. "The Volatility of the Stock Market and Financial Cycle: GARCH Family Models," Jurnal Ekonomi Malaysia, Faculty of Economics and Business, Universiti Kebangsaan Malaysia, vol. 56(1), pages 151-168.
    94. Saralees Nadarajah & Emmanuel Afuecheta & Stephen Chan, 2021. "Dependence between bitcoin and African currencies," Quality & Quantity: International Journal of Methodology, Springer, vol. 55(4), pages 1203-1218, August.
    95. Wang, Miao & Wong, M. C. Sunny, 2015. "Rational speculative bubbles in the US stock market and political cycles," Finance Research Letters, Elsevier, vol. 13(C), pages 1-9.
    96. Luca Agnello & Vitor Castro & Ricardo M. Sousa, 2015. "Booms, Busts, and Normal Times in the Housing Market," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 25-45, January.
    97. Pan, Beier, 2023. "The asymmetric dynamics of stock–bond liquidity correlation in China: The role of macro-financial determinants," Economic Modelling, Elsevier, vol. 124(C).
    98. Tommaso Proietti, 2024. "Ups and (Draw)Downs," CEIS Research Paper 576, Tor Vergata University, CEIS, revised 03 May 2024.
    99. Răzvan Ştefănescu & Costel Nistor & Ramona Dumitriu, 2009. "Asymmetric Responses of CAPM - Beta to the Bull and Bear Markets on the Bucharest Stock Exchange," Annals of the University of Petrosani, Economics, University of Petrosani, Romania, vol. 9(4), pages 257-262.
    100. Terence Tai-Leung Chong & Zimu Li & Haiqiang Chen & Melvin Hinich, 2010. "An investigation of duration dependence in the American stock market cycle," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(8), pages 1407-1416.
    101. James Ming Chen & Mobeen Ur Rehman, 2021. "A Pattern New in Every Moment: The Temporal Clustering of Markets for Crude Oil, Refined Fuels, and Other Commodities," Energies, MDPI, vol. 14(19), pages 1-58, September.
    102. Samet Günay, 2014. "Are the Scaling Properties of Bull and Bear Markets Identical? Evidence from Oil and Gold Markets," IJFS, MDPI, vol. 2(4), pages 1-20, October.
    103. Bekiros, S. & Georgoutsos, D., 2006. "Direction-of-Change Forecasting using a Volatility- Based Recurrent Neural Network," CeNDEF Working Papers 06-16, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    104. Marcelo Lewin & Carlos Heitor Campani, 2023. "Constrained portfolio strategies in a regime-switching economy," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 37(1), pages 27-59, March.
    105. Dettoni, Robinson & Gil-Alana, Luis Alberiko, 2023. "Testing the hypothesis of duration dependence in the U.S. housing market," Finance Research Letters, Elsevier, vol. 58(PD).
    106. Klaus Grobys, 2012. "Active PortofolioManagement in the Presence of Regime Switching: What Are the Benefits of Defensive Asset Allocation Strategies If the Investor Faces Bear Markets?," The Review of Finance and Banking, Academia de Studii Economice din Bucuresti, Romania / Facultatea de Finante, Asigurari, Banci si Burse de Valori / Catedra de Finante, vol. 4(1), pages 015-031, June.
    107. Shiu-Sheng Chen, 2012. "Consumer confidence and stock returns over market fluctuations," Quantitative Finance, Taylor & Francis Journals, vol. 12(10), pages 1585-1597, October.
    108. Hanna, Alan J., 2018. "A top-down approach to identifying bull and bear market states," International Review of Financial Analysis, Elsevier, vol. 55(C), pages 93-110.
    109. Beata Bieszk-Stolorz & Krzysztof Dmytrów, 2021. "A survival analysis in the assessment of the influence of the SARS-CoV-2 pandemic on the probability and intensity of decline in the value of stock indices," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 11(2), pages 363-379, June.
    110. Juan Reboredo, 2010. "Nonlinear effects of oil shocks on stock returns: a Markov-switching approach," Applied Economics, Taylor & Francis Journals, vol. 42(29), pages 3735-3744.
    111. Zegadło, Piotr, 2022. "Identifying bull and bear market regimes with a robust rule-based method," Research in International Business and Finance, Elsevier, vol. 60(C).
    112. Scott M. R. Mahadeo & Reinhold Heinlein & Gabriella Deborah Legrenzi, 2019. "Tracing the Genesis of Contagion in the Oil-Finance Nexus," CESifo Working Paper Series 7925, CESifo.
    113. Gert Elaut & Michael Frömmel & Alexander Mende, 2017. "Duration Dependence, Behavioral Restrictions, and the Market Timing Ability of Commodity Trading Advisors," International Review of Finance, International Review of Finance Ltd., vol. 17(3), pages 427-450, September.
    114. Eric Girardin & Zhenya Liu, 2003. "The Chinese Stock Market: A Casino with 'Buffer Zones'?," Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 1(1), pages 57-70.

  33. Pesaran, M.H. & Timmermann, A., 2003. "Small Sample Properties of Forecasts from Autoregressive Models under Structural Breaks," Cambridge Working Papers in Economics 0331, Faculty of Economics, University of Cambridge.

    Cited by:

    1. Brandon J. Bates & Mikkel Plagborg-Møller & James H. Stock & Mark W. Watson, "undated". "Consistent factor estimation in dynamic factor models with structural instability," Working Paper 84631, Harvard University OpenScholar.
    2. Barbara Rossi, 2011. "Advances in Forecasting Under Instability," Working Papers 11-20, Duke University, Department of Economics.
    3. Guillaume Chevillon, 2006. "Multi-step Forecasting in Unstable Economies: Robustness Issues in the Presence of Location Shifts," Economics Series Working Papers 257, University of Oxford, Department of Economics.
    4. Galvão, Ana Beatriz, 2013. "Changes in predictive ability with mixed frequency data," International Journal of Forecasting, Elsevier, vol. 29(3), pages 395-410.
    5. Aslan, Alper & Destek, Mehmet Akif & Okumus, İlyas, 2017. "Sectoral carbon emissions and economic growth in the US: Further evidence from rolling window estimation method," MPRA Paper 106961, University Library of Munich, Germany.
    6. Ke Yang & Langnan Chen & Fengping Tian, 2015. "Realized Volatility Forecast of Stock Index Under Structural Breaks," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(1), pages 57-82, January.
    7. Khan, Khalid & SU, Chi-Wei & Khurshid, Adnan & Rehman, Ashfaq U., 2018. "How Often Does the Exchange Rate Granger Cause the Stock Market in Pakistan? A Bootstrap Rolling Window Approach," Asian Journal of Applied Economics, Kasetsart University, Center for Applied Economics Research, vol. 25(1), October.
    8. Chen, Yan & Zhang, Ruiqian & Lyu, Jiayi & Ma, Xin, 2024. "The butterfly effect of cloud computing on the low-carbon economy," Technological Forecasting and Social Change, Elsevier, vol. 204(C).
    9. Sun, Yanpeng & Song, Yuru & Long, Chi & Qin, Meng & Lobonţ, Oana-Ramona, 2023. "How to improve global environmental governance? Lessons learned from climate risk and climate policy uncertainty," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 1666-1676.
    10. Heinen, Florian & Sibbertsen, Philipp & Kruse, Robinson, 2009. "Forecasting long memory time series under a break in persistence," Hannover Economic Papers (HEP) dp-433, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    11. Mehmet Balcilar & Nico Katzke & Rangan Gupta, 2015. "Identifying Periods of US Housing Market Explosivity," Working Papers 201544, University of Pretoria, Department of Economics.
    12. Kose, M. Ayhan & Ha, Jongrim & Ohnsorge, Franziska, 2021. "One-Stop Source: A Global Database of Inflation," CEPR Discussion Papers 16327, C.E.P.R. Discussion Papers.
    13. Qin, Meng & Su, Chi-Wei & Lobonţ, Oana-Ramona & Umar, Muhammad, 2023. "Blockchain: A carbon-neutral facilitator or an environmental destroyer?," International Review of Economics & Finance, Elsevier, vol. 86(C), pages 604-615.
    14. Tae-Hwy Lee & Shahnaz Parsaeian & Aman Ullah, 2022. "Forecasting under Structural Breaks Using Improved Weighted Estimation," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202212, University of Kansas, Department of Economics.
    15. Karanasos, Menelaos & Paraskevopoulos,Alexandros & Canepa, Alessandra, 2020. "Unified Theory for the Large Family of Time Varying Models with Arma Representations: One Solution Fits All," Department of Economics and Statistics Cognetti de Martiis. Working Papers 202008, University of Turin.
    16. Taniya Ghosh & Soumya Bhadury, 2017. "Money's causal role in exchange rate: Do Divisia monetary aggregates explain more?," Indira Gandhi Institute of Development Research, Mumbai Working Papers 2017-010, Indira Gandhi Institute of Development Research, Mumbai, India.
    17. Wang, Xinghua & Lee, Zhengzheng & Wu, Shuang & Qin, Meng, 2023. "Exploring the vital role of geopolitics in the oil market: The case of Russia," Resources Policy, Elsevier, vol. 85(PB).
    18. Martin Kalthaus, 2020. "Knowledge recombination along the technology life cycle," Journal of Evolutionary Economics, Springer, vol. 30(3), pages 643-704, July.
    19. Wang, Kai-Hua & Liu, Lu & Li, Xin & Oana-Ramona, Lobonţ, 2022. "Do oil price shocks drive unemployment? Evidence from Russia and Canada," Energy, Elsevier, vol. 253(C).
    20. David E. Rapach & Jack K. Strauss, 2008. "Structural breaks and GARCH models of exchange rate volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(1), pages 65-90.
    21. Wendy Nyakabawo & Stephen M. Miller & Mehmet Balcilar & Sonali Das & Rangan Gupta, 2013. "Temporal Causality between House Prices and Output in the U. S.: A Bootstrap Rolling-Window Approach," Working Papers 201329, University of Pretoria, Department of Economics.
    22. Luca Nocciola, "undated". "Finite sample forecast properties and window length under breaks in cointegrated systems," Discussion Papers 19/07, University of Nottingham, Granger Centre for Time Series Econometrics.
    23. Tom Boot & Andreas Pick, 2017. "A near optimal test for structural breaks when forecasting under square error loss," Tinbergen Institute Discussion Papers 17-039/III, Tinbergen Institute.
    24. Marcellino, Massimiliano & Kapetanios, George & Carriero, Andrea, 2009. "Forecasting Large Datasets with Bayesian Reduced Rank Multivariate Models," CEPR Discussion Papers 7446, C.E.P.R. Discussion Papers.
    25. Pesaran, M.H., 2004. "‘General Diagnostic Tests for Cross Section Dependence in Panels’," Cambridge Working Papers in Economics 0435, Faculty of Economics, University of Cambridge.
    26. Hu, Junjie & López Cabrera, Brenda & Melzer, Awdesch, 2021. "Advanced statistical learning on short term load process forecasting," IRTG 1792 Discussion Papers 2021-020, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    27. Liu, Guan-Chun & Lee, Chien-Chiang & Lee, Chi-Chuan, 2016. "The nexus between insurance activity and economic growth: A bootstrap rolling window approach," International Review of Economics & Finance, Elsevier, vol. 43(C), pages 299-319.
    28. Laura Carabotta & Peter Claeys, 2015. "Combine to compete: improving fiscal forecast accuracy over time," UB School of Economics Working Papers 2015/320, University of Barcelona School of Economics.
    29. Zhang, Xiaojing & Chang, Hsu-Ling & Su, Chi-Wei & Qin, Meng & Umar, Muhammad, 2024. "Exploring the dynamic interaction between geopolitical risks and lithium prices: A time-varying analysis," Resources Policy, Elsevier, vol. 90(C).
    30. Caterina Forti Grazzini & Massimo Guidolin, 2013. "Forecasting yield spreads under crisis-induced multiple breakpoints," Applied Economics Letters, Taylor & Francis Journals, vol. 20(18), pages 1656-1664, December.
    31. Junsoo Lee & John A. List & Mark Strazicich, 2005. "Nonrenewable Resource Prices: Deterministic or Stochastic Trends?," NBER Working Papers 11487, National Bureau of Economic Research, Inc.
    32. Pierre Salmon, 2003. "The Assignment of Powers in an Open-ended European Union," CESifo Working Paper Series 993, CESifo.
    33. Wang, Cindy Shin-Huei & Bauwens, Luc & Hsiao, Cheng, 2013. "Forecasting a long memory process subject to structural breaks," Journal of Econometrics, Elsevier, vol. 177(2), pages 171-184.
    34. Zhao, Qian & Qin, Chuan & Ding, Longfei & Cheng, Ying-Yue & Vătavu, Sorana, 2023. "Can green bond improve the investment efficiency of renewable energy?," Energy Economics, Elsevier, vol. 127(PB).
    35. Giorgio Canarella & Stephen M. Miller & Stephen K. Pollard, 2014. "Unemployment Rate Hysteresis and the Great Recession: Exploring the Metropolitan Evidence," Working Papers 1403, University of Nevada, Las Vegas , Department of Economics.
    36. Ilham Haouas & Naceur Kheraief & Arusha Cooray & Syed Jawad Hussain Shahzad, 2019. "Time-Varying Casual Nexuses Between Remittances and Financial Development in Some MENA Countries," Working Papers 1294, Economic Research Forum, revised 2019.
    37. Qin, Meng & Hu, Wei & Qi, Xinzhou & Chang, Tsangyao, 2024. "Do the benefits outweigh the disadvantages? Exploring the role of artificial intelligence in renewable energy," Energy Economics, Elsevier, vol. 131(C).
    38. Jari Hännikäinen, 2016. "Selection of an Estimation Window in the Presence of Data Revisions and Recent Structural Breaks," Working Papers 1692, Tampere University, Faculty of Management and Business, Economics.
    39. M. Hashem Pesaran & Andreas Pick & Allan Timmermann, 2009. "Variable Selection and Inference for Multi-period Forecasting Problems," CESifo Working Paper Series 2543, CESifo.
    40. Pesaran, M. Hashem & Pettenuzzo, Davide & Timmermann, Allan, 2004. "Forecasting Time Series Subject to Multiple Structural Breaks," IZA Discussion Papers 1196, Institute of Labor Economics (IZA).
    41. Adnan Khurshid & Yin Kedong & Adrian Cantemir Calin & Khalid Khan, 2017. "The Effects of Workers’ Remittances on Exchange Rate Volatility and Exports Dynamics - New Evidence from Pakistan," Romanian Economic Journal, Department of International Business and Economics from the Academy of Economic Studies Bucharest, vol. 20(63), pages 29-52, March.
    42. Yifei Cai, 2018. "Predictive Power of us Monetary Policy Uncertainty Shock on Stock Returns in Australia and New Zealand," Australian Economic Papers, Wiley Blackwell, vol. 57(4), pages 470-488, December.
    43. Geweke, J. & Joel Horowitz & Pesaran, M.H., 2006. "Econometrics: A Bird’s Eye View," Cambridge Working Papers in Economics 0655, Faculty of Economics, University of Cambridge.
    44. Kai-Hua WANG & Chi-Wei SU & Hsu-Ling CHANG & Ji MA & Cristina IOVU, 2017. "Purchasing Power Parity In China: An Empirical Investigation Based On Bootstrap Rollingwindow Test," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 166-181, December.
    45. Tomiwa Sunday Adebayo & Kelvin Onyibor & Gbenga Daniel Akinsola, 2021. "The impact of major macroeconomic variables on foreign direct investment in Nigeria: evidence from a wavelet coherence technique," SN Business & Economics, Springer, vol. 1(1), pages 1-24, January.
    46. Cai, Yifei, 2016. "短期资本流动、经济政策不确定性与恐慌指数—基于时变分析框架下的研究 [Short-term Capital Flow, Economic Policy Uncertainty and VIX—Evidence from a Time-varying Analysis Framework]," MPRA Paper 73213, University Library of Munich, Germany.
    47. Li Qiang & Wang Liming & Qiu Fei, 2015. "Detecting the Structural Breaks in GARCH Models Based on Bayesian Method: The Case of China Share Index Rate of Return," Journal of Systems Science and Information, De Gruyter, vol. 3(4), pages 321-333, August.
    48. Wei Su, Chi & Wang, Xiao-Qing & Tao, Ran & Oana-Ramona, Lobonţ, 2019. "Do oil prices drive agricultural commodity prices? Further evidence in a global bio-energy context," Energy, Elsevier, vol. 172(C), pages 691-701.
    49. Sultan Mehmood, 2014. "Terrorism and the macroeconomy: Evidence from Pakistan," Defence and Peace Economics, Taylor & Francis Journals, vol. 25(5), pages 509-534, October.
    50. Tsangyao Chang & Su-Ling Tsai & Kai-yin Allison Haga, 2017. "Uncovering the interrelationship between the U.S. stock and housing markets: a bootstrap rolling window Granger causality approach," Applied Economics, Taylor & Francis Journals, vol. 49(58), pages 5841-5848, December.
    51. Qin, Meng & Su, Yun Hsuan & Zhao, Zhengtang & Mirza, Nawazish, 2023. "The politics of climate: Does factionalism impede U.S. carbon neutrality?," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 954-966.
    52. Hännikäinen, Jari, 2014. "Multi-step forecasting in the presence of breaks," MPRA Paper 55816, University Library of Munich, Germany.
    53. Dervis Kirikkaleli & Hasan Güngör & Tomiwa Sunday Adebayo, 2022. "Consumption‐based carbon emissions, renewable energy consumption, financial development and economic growth in Chile," Business Strategy and the Environment, Wiley Blackwell, vol. 31(3), pages 1123-1137, March.
    54. Goodness C. Aye & Mehmet Balcilar & Rangan Gupta, 2017. "International stock return predictability: Is the role of U.S. time-varying?," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 44(1), pages 121-146, February.
    55. Sun, Ji-Le & Tao, Ran & Wang, Jiao & Wang, Yi-Fei & Li, Jia-Yi, 2024. "Do farmers always choose agricultural insurance against climate change risks?," Economic Analysis and Policy, Elsevier, vol. 81(C), pages 617-628.
    56. Ballinari, Daniele & Behrendt, Simon, 2020. "Structural breaks in online investor sentiment: A note on the nonstationarity of financial chatter," Finance Research Letters, Elsevier, vol. 35(C).
    57. Antoine Mandel & Amir Sani, 2016. "Learning Time-Varying Forecast Combinations," Documents de travail du Centre d'Economie de la Sorbonne 16036, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    58. Antoine Mandel & Amir Sani, 2017. "A Machine Learning Approach to the Forecast Combination Puzzle," Working Papers halshs-01317974, HAL.
    59. Fokin, Nikita, 2021. "The importance of modeling structural breaks in forecasting Russian GDP," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 63, pages 5-29.
    60. Mehmet Balcilar & Rangan Gupta & Charl Jooste & Omid Ranjbar, 2015. "Characterising the South African Business Cycle: Is GDP Difference-Stationary or Trend-Stationary in a Markov-Switching Setup?," Working Papers 201529, University of Pretoria, Department of Economics.
    61. Asif Raihan, 2023. "An econometric evaluation of the effects of economic growth, energy use, and agricultural value added on carbon dioxide emissions in Vietnam," Asia-Pacific Journal of Regional Science, Springer, vol. 7(3), pages 665-696, September.
    62. Barrera, Carlos, 2013. "El sistema de predicción desagregada: Una evaluación de las proyecciones de inflación 2006-2011," Working Papers 2013-009, Banco Central de Reserva del Perú.
    63. Su, Chi-Wei & Qin, Meng & Tao, Ran & Umar, Muhammad, 2020. "Financial implications of fourth industrial revolution: Can bitcoin improve prospects of energy investment?," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    64. Carriero, Andrea & Kapetanios, George & Marcellino, Massimiliano, 2012. "Forecasting government bond yields with large Bayesian vector autoregressions," Journal of Banking & Finance, Elsevier, vol. 36(7), pages 2026-2047.
    65. Aiolfi Marco & Capistrán Carlos & Timmermann Allan, 2010. "Forecast Combinations," Working Papers 2010-04, Banco de México.
    66. Su, Chi-Wei & Qin, Meng & Tao, Ran & Shao, Xue-Feng & Albu, Lucian Liviu & Umar, Muhammad, 2020. "Can Bitcoin hedge the risks of geopolitical events?," Technological Forecasting and Social Change, Elsevier, vol. 159(C).
    67. Zhao, Qian & Ding, Longfei & Pirtea, Marilen Gabriel & Vǎtavu, Sorana, 2023. "Does technological innovation bring better air quality?," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 978-990.
    68. Cheng, Xian & Wu, Peng & Liao, Stephen Shaoyi & Wang, Xuelian, 2023. "An integrated model for crude oil forecasting: Causality assessment and technical efficiency," Energy Economics, Elsevier, vol. 117(C).
    69. Shahzad, Syed Jawad Hussain & Nor, Safwan Mohd & Hammoudeh, Shawkat & Shahbaz, Muhammad, 2017. "Directional and bidirectional causality between U.S. industry credit and stock markets and their determinants," International Review of Economics & Finance, Elsevier, vol. 47(C), pages 46-61.
    70. Antonakakis, Nikolaos & Dragouni, Mina & Filis, George, 2015. "How strong is the linkage between tourism and economic growth in Europe?," Economic Modelling, Elsevier, vol. 44(C), pages 142-155.
    71. Su, Chi Wei & Song, Xin Yue & Qin, Meng & Lobonţ, Oana-Ramona, 2024. "Is copper a safe haven for oil?," Resources Policy, Elsevier, vol. 91(C).
    72. Khalid Khan & Jiluo Sun & Sinem Derindere Koseoglu & Ashfaq U. Rehman, 2021. "Revisiting Bitcoin Price Behavior Under Global Economic Uncertainty," SAGE Open, , vol. 11(3), pages 21582440211, August.
    73. Felix Nutakor & Sylvestre Bizumuremyi & Jinke Li & Wei Liu, 2020. "Does the Environmental Kuznets Curve for CO 2 Emissions Exist for Rwanda? Evidence from Bootstrapped Rolling-Window Granger Causality Test," Sustainability, MDPI, vol. 12(20), pages 1-11, October.
    74. Jennifer Castle & David Hendry, 2012. "Forecasting by factors, by variables, or both?," Economics Series Working Papers 600, University of Oxford, Department of Economics.
    75. Su, Chi Wei & Shao, Xuefeng & Jia, Zhijie & Nepal, Rabindra & Umar, Muhammad & Qin, Meng, 2023. "The rise of green energy metal: Could lithium threaten the status of oil?," Energy Economics, Elsevier, vol. 121(C).
    76. Qin, Meng & Su, Chi-Wei & Tao, Ran, 2021. "BitCoin: A new basket for eggs?," Economic Modelling, Elsevier, vol. 94(C), pages 896-907.
    77. Muhammad Irfan & Tomiwa Sunday Adebayo & Jinyang Cai & Hazar Dördüncü & Farrukh Shahzad, 2024. "Analyzing the mechanism between nuclear energy consumption and carbon emissions: Fresh insights from novel bootstrap rolling-window approach," Energy & Environment, , vol. 35(2), pages 754-778, March.
    78. Chang, Ming-Jen & Su, Che-Yi, 2014. "The dynamic relationship between exchange rates and macroeconomic fundamentals: Evidence from Pacific Rim countries," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 30(C), pages 220-246.
    79. Alessandra Canepa, & Karanasos, Menelaos & Paraskevopoulos, Athanasios & Chini, Emilio Zanetti, 2022. "Forecasting Ination: A GARCH-in-Mean-Level Model with Time Varying Predictability," Department of Economics and Statistics Cognetti de Martiis. Working Papers 202212, University of Turin.
    80. Marcellino, Massimiliano & Kapetanios, George & Carriero, Andrea, 2008. "Forecasting Exchange Rates with a Large Bayesian VAR," CEPR Discussion Papers 7008, C.E.P.R. Discussion Papers.
    81. Mehdi Ben Jebli & Imen Gam, 2024. "The symmetric and asymmetric effects of renewable energy and water investment on environmental quality: evidence for the Chinese economy," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(11), pages 27739-27763, November.
    82. Liu, Jing & Ma, Feng & Yang, Ke & Zhang, Yaojie, 2018. "Forecasting the oil futures price volatility: Large jumps and small jumps," Energy Economics, Elsevier, vol. 72(C), pages 321-330.
    83. Chevillon, Guillaume, 2016. "Multistep forecasting in the presence of location shifts," International Journal of Forecasting, Elsevier, vol. 32(1), pages 121-137.
    84. Ran Tao & Oana Ramona Glonț & Zheng-Zheng Li & Oana Ramona Lobonț & Adina Alexandra Guzun, 2020. "New Evidence for Romania Regarding Dynamic Causality between Military Expenditure and Sustainable Economic Growth," Sustainability, MDPI, vol. 12(12), pages 1-13, June.
    85. Kong, Fanna & Gao, Zhuoqiong & Oprean-Stan, Camelia, 2023. "Green bond in China: An effective hedge against global supply chain pressure?," Energy Economics, Elsevier, vol. 128(C).
    86. Shi, Guangping & Liu, Xiaoxing & Zhang, Xu, 2017. "Time-varying causality between stock and housing markets in China," Finance Research Letters, Elsevier, vol. 22(C), pages 227-232.
    87. Cai, Yifei, 2016. "货币供给数量、结构与经济增长—来自adl门限协整检验与时变格兰杰因果关系检验的证据 [Quantity and Structure of Money Supply and Economic Growth— Evidence from ADL Test for Threshold Cointegration and Time-varying Granger Causality Relation," MPRA Paper 73750, University Library of Munich, Germany.
    88. Mehmet Balcilar & Rangan Gupta & Stephen M. Miller, 2013. "Housing and the Great Depression," Working Papers 1301, University of Nevada, Las Vegas , Department of Economics.
    89. Pesaran, M. Hashem & Pick, Andreas & Pranovich, Mikhail, 2013. "Optimal forecasts in the presence of structural breaks," Journal of Econometrics, Elsevier, vol. 177(2), pages 134-152.
    90. Wang, Kai-Hua & Wen, Cui-Ping & Liu, Hong-Wen & Liu, Lu, 2023. "Promotion or hindrance? Exploring the bidirectional causality between geopolitical risk and green bonds from an energy perspective," Resources Policy, Elsevier, vol. 85(PB).
    91. Liu, Jing & Ma, Feng & Tang, Yingkai & Zhang, Yaojie, 2019. "Geopolitical risk and oil volatility: A new insight," Energy Economics, Elsevier, vol. 84(C).
    92. David Su & Xin Li & Oana-Ramona Lobonþ & Yanping Zhao, 2016. "Economic policy uncertainty and housing returns in Germany: Evidence from a bootstrap rolling window," Zbornik radova Ekonomskog fakulteta u Rijeci/Proceedings of Rijeka Faculty of Economics, University of Rijeka, Faculty of Economics and Business, vol. 34(1), pages 43-61.
    93. Kai-Hua Wang & Chi-Wei Su & Ran Tao, 2019. "Does the Mundell-Fleming model fit in China?," Zbornik radova Ekonomskog fakulteta u Rijeci/Proceedings of Rijeka Faculty of Economics, University of Rijeka, Faculty of Economics and Business, vol. 37(1), pages 11-28.
    94. Veysel Karagol, 2023. "The Effect of Economic Policy Uncertainty on Food Prices: A Time-Varying Causality Analysis for Selected Countries," Journal of Economic Policy Researches, Istanbul University, Faculty of Economics, vol. 10(2), pages 409-433, July.
    95. Cai, Yifei, 2016. "货币增速剪刀差与股票市场收益率的时变格兰杰因果关系研究 [A Study on the Time-varying Granger Causality Relation of Scissors Gap of Money Supply and Stock Market Return]," MPRA Paper 73369, University Library of Munich, Germany.
    96. Chi-Wei Su & Jiao-Jiao Fan & Hsu-Ling Chang & Xiao-Lin Li, 2016. "Is there Causal Relationship between Money Supply Growth and Inflation in China? Evidence from Quantity Theory of Money," Review of Development Economics, Wiley Blackwell, vol. 20(3), pages 702-719, August.
    97. Xue GAO & Hsu-Ling CHANG & Chi-Wei SU, 2018. "Does exchange rate always affect the number of inbound tourists significantly in China?," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(1(614), S), pages 55-72, Spring.
    98. Castle, Jennifer L. & Clements, Michael P. & Hendry, David F., 2013. "Forecasting by factors, by variables, by both or neither?," Journal of Econometrics, Elsevier, vol. 177(2), pages 305-319.
    99. Goodness C. Aye & Mehmet Balcilar Author-Name-First Mehmet & Adel Bosch & Rangan Gupta, 2014. "Housing and the Business Cycle in South Africa," Working Papers 15-22, Eastern Mediterranean University, Department of Economics.
    100. Menelaos Karanasos & Alexandros Paraskevopoulos & Faek Menla Ali & Michail Karoglou & Stavroula Yfanti, 2014. "Modelling Returns and Volatilities During Financial Crises: a Time Varying Coefficient Approach," Papers 1403.7179, arXiv.org.
    101. Balcilar, Mehmet & Katzke, Nico & Gupta, Rangan, 2017. "Date-stamping US housing market explosivity," Economics Discussion Papers 2017-44, Kiel Institute for the World Economy (IfW Kiel).
    102. Tae-Hwy Lee & Shahnaz Parsaeian & Aman Ullah, 2021. "Efficient Combined Estimation under Structural Breaks," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202107, University of Kansas, Department of Economics.
    103. Xiao-Lin Li & Yi-Na Li & Lu Bai, 2019. "Stock Market Cycle and Business Cycle in China: Evidence from a Bootstrap Rolling Window Approach," Review of Economics & Finance, Better Advances Press, Canada, vol. 17, pages 35-50, August.
    104. Elena Andreou & Eric Ghysels & Constantinos Kourouyiannis, 2012. "Robust volatility forecasts in the presence of structural breaks," University of Cyprus Working Papers in Economics 08-2012, University of Cyprus Department of Economics.
    105. Zhang, Wenlong & Zhang, Gaiyan & Helwege, Jean, 2022. "Cross country linkages and transmission of sovereign risk: Evidence from China’s credit default swaps," Journal of Financial Stability, Elsevier, vol. 58(C).
    106. Yingying Xu & Zhi‐Xin Liu & Chi‐Wei Su & Jaime Ortiz, 2019. "Gold and inflation: Expected inflation effect or carrying cost effect?," International Finance, Wiley Blackwell, vol. 22(3), pages 380-398, December.
    107. Su, Chi-Wei & Wang, Dan & Mirza, Nawazish & Zhong, Yifan & Umar, Muhammad, 2023. "The impact of consumer confidence on oil prices," Energy Economics, Elsevier, vol. 124(C).
    108. Khan, Khalid & Khurshid, Adnan & Cifuentes-Faura, Javier, 2023. "Energy security analysis in a geopolitically volatile world: A causal study," Resources Policy, Elsevier, vol. 83(C).
    109. Prasad S Bhattacharya & Dimitrios D Thomakos, 2011. "Improving forecasting performance by window and model averaging," CAMA Working Papers 2011-05, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    110. Yongchen Zhao, 2021. "The robustness of forecast combination in unstable environments: a Monte Carlo study of advanced algorithms," Empirical Economics, Springer, vol. 61(1), pages 173-199, July.
    111. Mehmet Balcilar & Zeynel Ozdemir, 2013. "The export-output growth nexus in Japan: a bootstrap rolling window approach," Empirical Economics, Springer, vol. 44(2), pages 639-660, April.
    112. Su, Chi-Wei & Li, Wenhao & Umar, Muhammad & Lobonţ, Oana-Ramona, 2022. "Can green credit reduce the emissions of pollutants?," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 205-219.
    113. Chevillon, Guillaume, 2009. "Multi-step forecasting in emerging economies: An investigation of the South African GDP," International Journal of Forecasting, Elsevier, vol. 25(3), pages 602-628, July.
    114. Jennifer L. Castle & Jurgen A. Doornik & David F. Hendry, 2024. "Forecasting the UK top 1% income share in a shifting world," Economica, London School of Economics and Political Science, vol. 91(363), pages 1047-1074, July.
    115. Caio Almeida & Kym Ardison & Daniela Kubudi & Axel Simonsen & José Vicente, 2018. "Forecasting Bond Yields with Segmented Term Structure Models," Journal of Financial Econometrics, Oxford University Press, vol. 16(1), pages 1-33.
    116. Goodness C. Aye & Mehmet Balcilar & John P. Dunne & Rangan Gupta & Rene� van Eyden, 2014. "Military expenditure, economic growth and structural instability: a case study of South Africa," Defence and Peace Economics, Taylor & Francis Journals, vol. 25(6), pages 619-633, December.
    117. Khalid KHAN & Chi-Wei SU & Nicoleta - Claudia MOLDOVAN & De-Ping XIONG, 2017. "Distinctive Characteristics of the Causality between the PPI and CPI: Evidence from Romania," ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, Faculty of Economic Cybernetics, Statistics and Informatics, vol. 51(2), pages 103-123.
    118. Ahmed, Shamim & Liu, Xiaoquan & Valente, Giorgio, 2016. "Can currency-based risk factors help forecast exchange rates?," International Journal of Forecasting, Elsevier, vol. 32(1), pages 75-97.
    119. Ting-Ting Sun & Chi-Wei Su & Ran Tao & Meng Qin, 2021. "Are Agricultural Commodity Prices on a Conventional Wisdom with Inflation?," SAGE Open, , vol. 11(3), pages 21582440211, August.
    120. Tae-Hwy Lee & Shahnaz Parsaeian & Aman Ullah, 2022. "Optimal Forecast under Structural Breaks," Working Papers 202208, University of California at Riverside, Department of Economics.
    121. Yingying Xu & Zhixin Liu & Zichao Jia & Chi-Wei Su, 2017. "Is time-variant information stickiness state-dependent?," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 16(3), pages 169-187, December.
    122. Shahbaz, Muhammad & Ferrer, Román & Hussain Shahzad, Syed Jawad & Haouas, Ilham, 2017. "Is the tourism-economic growth nexus time-varying? Bootstrap rolling-window causality analysis for the top ten tourist destinations," MPRA Paper 82713, University Library of Munich, Germany, revised 04 Nov 2017.
    123. Xu Zhang & Xiaoxing Liu & Jianqin Hang & Dengbao Yao, 2018. "The dynamic causality between commodity prices, inflation and output in China: a bootstrap rolling window approach," Applied Economics, Taylor & Francis Journals, vol. 50(4), pages 407-425, January.
    124. Huang, Tao & Fildes, Robert & Soopramanien, Didier, 2019. "Forecasting retailer product sales in the presence of structural change," European Journal of Operational Research, Elsevier, vol. 279(2), pages 459-470.
    125. Zongwu Cai & Gunawan, 2023. "A Combination Forecast for Nonparametric Models with Structural Breaks," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202310, University of Kansas, Department of Economics, revised Sep 2023.
    126. Stephen G. Hall & George S. Tavlas & Yongli Wang & Deborah Gefang, 2024. "Inflation forecasting with rolling windows: An appraisal," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(4), pages 827-851, July.
    127. Wu, Jiawen & Li, Jing-Ping & Su, Chi-Wei, 2024. "Can green bond hedges climate policy uncertainty in the United States: New insights from novel time-varying causality and quantile-on-quantile methods?," Economic Analysis and Policy, Elsevier, vol. 82(C), pages 1158-1176.
    128. Tomiwa Sunday Adebayo & Demet Beton Kalmaz, 2020. "Ongoing Debate Between Foreign Aid and Economic Growth in Nigeria: A Wavelet Analysis," Social Science Quarterly, Southwestern Social Science Association, vol. 101(5), pages 2032-2051, September.
    129. Marcellino, Massimiliano & Kapetanios, George & Carriero, Andrea, 2010. "Forecasting Government Bond Yields with Large Bayesian VARs," CEPR Discussion Papers 7796, C.E.P.R. Discussion Papers.
    130. Evgenidis, Anastasios & Tsagkanos, Athanasios & Siriopoulos, Costas, 2017. "Towards an asymmetric long run equilibrium between stock market uncertainty and the yield spread. A threshold vector error correction approach," Research in International Business and Finance, Elsevier, vol. 39(PA), pages 267-279.
    131. Feng-Li Lin & Mei-Chih Wang & Hsien-Hung Kung, 2020. "Housing and Stock Market Nexus in the US," European Research Studies Journal, European Research Studies Journal, vol. 0(3), pages 114-130.
    132. Liu, Guanchun & He, Lei & Yue, Yiding & Wang, Jiying, 2014. "The linkage between insurance activity and banking credit: Some evidence from dynamic analysis," The North American Journal of Economics and Finance, Elsevier, vol. 29(C), pages 239-265.
    133. Panait, Mirela & Apostu, Simona Andreea & Vasile, Valentina & Vasile, Razvan, 2022. "Is energy efficiency a robust driver for the new normal development model? A Granger causality analysis," Energy Policy, Elsevier, vol. 169(C).
    134. Yingying Xu & Hsu Ling Chang & Chi Wei Su & Adelina Dumitrescu, 2018. "Guns for Butter? Empirical Evidence from China," Defence and Peace Economics, Taylor & Francis Journals, vol. 29(7), pages 809-820, November.
    135. Pesaran, M. Hashem & Pick, Andreas & Timmermann, Allan, 2011. "Variable selection, estimation and inference for multi-period forecasting problems," Journal of Econometrics, Elsevier, vol. 164(1), pages 173-187, September.
    136. Su, Chi-Wei & Qin, Meng & Tao, Ran & Umar, Muhammad, 2020. "Does oil price really matter for the wage arrears in Russia?," Energy, Elsevier, vol. 208(C).
    137. Asif Raihan & Almagul Tuspekova, 2022. "Dynamic impacts of economic growth, energy use, urbanization, tourism, agricultural value-added, and forested area on carbon dioxide emissions in Brazil," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 12(4), pages 794-814, December.
    138. Haroon Mumtaz & Nitin Kumar, 2012. "An application of data-rich environment for policy analysis of the Indian economy," Joint Research Papers 2, Centre for Central Banking Studies, Bank of England.
    139. Tie‐Ying Liu & Chien‐Chiang Lee, 2022. "Exchange rate fluctuations and interest rate policy," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(3), pages 3531-3549, July.
    140. Balcilar, Mehmet & Ozdemir, Zeynel Abidin & Arslanturk, Yalcin, 2010. "Economic growth and energy consumption causal nexus viewed through a bootstrap rolling window," Energy Economics, Elsevier, vol. 32(6), pages 1398-1410, November.
    141. Mohamed Sahbi Nakhli & Abderrazak Dhaoui & Julien Chevallier, 2022. "Bootstrap rolling-window Granger causality dynamics between momentum and sentiment: implications for investors," Annals of Finance, Springer, vol. 18(2), pages 267-283, June.
    142. Junaid Masih & Dongsheng Liu & Javed Pervaiz, 2018. "The Relationship between RMB Exchange Rate and Chinese Trade Balance: Evidence from a Bootstrap Rolling Window Approach," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 10(2), pages 35-47, February.
    143. Liu, Tie-Ying & Su, Chi-Wei, 2021. "Is transportation improving urbanization in China?," Socio-Economic Planning Sciences, Elsevier, vol. 77(C).
    144. Jing-Ping Li & Jiao-Jiao Fan & Chi-Wei Su & Oana-Ramona Lobonţ, 2017. "Investment coordinates in the context of housing and stock markets nexus," Applied Economics Letters, Taylor & Francis Journals, vol. 24(20), pages 1455-1463, November.
    145. Ming-Hsien YANG & Chih-She WU, 2015. "Revisit Export and GDP Nexus in China and Taiwan: A Rolling Window Granger Causality Test," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(3(604), A), pages 75-92, Autumn.
    146. Md. Samsul Alam & Sajid Ali & Naceur Khraief & Syed Jawad Hussain Shahzad, 2021. "Time‐varying causal nexuses between economic growth and CO2 emissions in G‐7 countries: A bootstrap rolling window approach over 1820–2015," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(4), pages 6128-6148, October.
    147. Jing Sun & Jinhui Xu & Xin Cheng & Jichao Miao & Hairong Mu, 2023. "Dynamic causality between PPI and CPI in China: A rolling window bootstrap approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(2), pages 1279-1289, April.
    148. Gantungalag Altansukh & Denise R. Osborn, 2022. "Using structural break inference for forecasting time series," Empirical Economics, Springer, vol. 63(1), pages 1-41, July.
    149. Sun, Ting-Ting & Su, Chi-Wei & Mirza, Nawazish & Umar, Muhammad, 2021. "How does trade policy uncertainty affect agriculture commodity prices?," Pacific-Basin Finance Journal, Elsevier, vol. 66(C).
    150. Ke Yang & Langnan Chen, 2014. "Realized Volatility Forecast: Structural Breaks, Long Memory, Asymmetry, and Day-of-the-Week Effect," International Review of Finance, International Review of Finance Ltd., vol. 14(3), pages 345-392, September.
    151. Chiwei Su & Yingying Xu & Hsu Ling Chang & Oana-Ramona Lobont & Zhixin Liu, 2020. "Dynamic Causalities between Defense Expenditure and Economic Growth in China: Evidence from Rolling Granger Causality Test," Defence and Peace Economics, Taylor & Francis Journals, vol. 31(5), pages 565-582, July.
    152. Khan, Khalid & Su, Chi Wei & Rehman, Ashfaq U. & Ullah, Rahman, 2022. "Is technological innovation a driver of renewable energy?," Technology in Society, Elsevier, vol. 70(C).
    153. Mehmet Akif, Destek & Muhammad, Shahbaz & Ilyas, Okumus & Shawkat, Hammoudeh & Avik, Sinha, 2020. "The relationship between economic growth and carbon emissions in G-7 countries: evidence from time-varying parameters with a long history," MPRA Paper 100514, University Library of Munich, Germany, revised Apr 2020.
    154. Chen, Yan & Zhang, Ruiqian & Lyu, Jiayi & Hou, Yuqi, 2024. "AI and Nuclear: A perfect intersection of danger and potential?," Energy Economics, Elsevier, vol. 133(C).
    155. Song, Yu & Chen, Bo & Hou, Na & Yang, Yi, 2022. "Terrorist attacks and oil prices: A time-varying causal relationship analysis," Energy, Elsevier, vol. 246(C).
    156. Cai, Yifei & Wu, Yanrui, 2019. "Time-varied causality between US partisan conflict shock and crude oil return," Energy Economics, Elsevier, vol. 84(C).
    157. Boot, Tom & Pick, Andreas, 2020. "Does modeling a structural break improve forecast accuracy?," Journal of Econometrics, Elsevier, vol. 215(1), pages 35-59.
    158. Gaglianone, Wagner Piazza & Marins, Jaqueline Terra Moura, 2017. "Evaluation of exchange rate point and density forecasts: An application to Brazil," International Journal of Forecasting, Elsevier, vol. 33(3), pages 707-728.
    159. Qin, Meng & Zhu, Yujie & Xie, Xin & Shao, Xuefeng & Lobonţ, Oana-Ramona, 2024. "The impact of climate risk on technological progress under the fourth industrial era," Technological Forecasting and Social Change, Elsevier, vol. 202(C).
    160. Tomiwa Sunday Adebayo & Abraham Ayobamiji Awosusi & Jamiu Adetola Odugbesan & Gbenga Daniel Akinsola & Wing-Keung Wong & Husam Rjoub, 2021. "Sustainability of Energy-Induced Growth Nexus in Brazil: Do Carbon Emissions and Urbanization Matter?," Sustainability, MDPI, vol. 13(8), pages 1-21, April.
    161. Qin, Meng & Su, Chi-Wei & Pirtea, Marilen Gabriel & Dumitrescu Peculea, Adelina, 2023. "The essential role of Russian geopolitics: A fresh perception into the gold market," Resources Policy, Elsevier, vol. 81(C).
    162. Yingying Xu & Zhi-Xin Liu & Hsu-Ling Chang & Adelina Dumitrescu Peculea & Chi-Wei Su, 2017. "Does self-fulfilment of the inflation expectation exist?," Applied Economics, Taylor & Francis Journals, vol. 49(11), pages 1098-1113, March.
    163. Enrique Moral-Benito, 2015. "Model Averaging In Economics: An Overview," Journal of Economic Surveys, Wiley Blackwell, vol. 29(1), pages 46-75, February.
    164. Hasan Engin Duran & Burak Dindaroğlu, 2021. "Regional inflation persistence in Turkey," Growth and Change, Wiley Blackwell, vol. 52(1), pages 460-491, March.
    165. Yingying Xu & Zhixin Liu & Jingjing Chen & Sultan Salem, 2024. "How official TV news affect public inflation expectations? Evidence from the Chinese national broadcaster China Central Television," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(1), pages 819-831, January.
    166. Heinen, Florian & Willert, Juliane, 2011. "Monitoring a change in persistence of a long range dependent time series," Hannover Economic Papers (HEP) dp-479, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    167. Qin, Meng & Su, Chi-Wei & Tao, Ran & Umar, Muhammad, 2020. "Is factionalism a push for gold price?," Resources Policy, Elsevier, vol. 67(C).
    168. Chen, Pei-Fen & Zeng, Jhih-Hong & Lee, Chien-Chiang, 2018. "Renminbi exchange rate assessment and competitors' exports: New perspective," China Economic Review, Elsevier, vol. 50(C), pages 187-205.
    169. Xiao-lin Li & Mehmet Balcilar & Rangan Gupta & Tsangyao Chang, 2013. "The Causal Relationship between Economic Policy Uncertainty and Stock Returns in China and India: Evidence from a Bootstrap Rolling-Window Approach," Working Papers 201345, University of Pretoria, Department of Economics.
    170. Banerjee, Anindya & Urga, Giovanni, 2005. "Modelling structural breaks, long memory and stock market volatility: an overview," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 1-34.
    171. Muhammad Shahbaz & Román Ferrer & Syed Jawad Hussain Shahzad & Ilham Haouas, 2018. "Is the tourism–economic growth nexus time-varying? Bootstrap rolling-window causality analysis for the top 10 tourist destinations," Applied Economics, Taylor & Francis Journals, vol. 50(24), pages 2677-2697, May.
    172. Daniele Bianchi & Massimo Guidolin & Manuela Pedio, 2020. "Dissecting Time-Varying Risk Exposures in Cryptocurrency Markets," BAFFI CAREFIN Working Papers 20143, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    173. Wang, Lu & Chang, Hsu-Ling & Sari, Arif & Sowah, James Karmoh & Cai, Xu-Yu, 2020. "Resources or development first: An interesting question for a developing country," Resources Policy, Elsevier, vol. 68(C).
    174. Liow, Kim Hiang, 2015. "Volatility spillover dynamics and relationship across G7 financial markets," The North American Journal of Economics and Finance, Elsevier, vol. 33(C), pages 328-365.
    175. Serdar Ongan & Ismet Gocer, 2017. "Testing The Causalities Between Economic Policy Uncertainty And The Us Stock Indices: Applications Of Linear And Nonlinear Approaches," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 12(04), pages 1-20, December.
    176. Christos Avdoulas & Stelios Bekiros, 2018. "Nonlinear Forecasting of Euro Area Industrial Production Using Evolutionary Approaches," Computational Economics, Springer;Society for Computational Economics, vol. 52(2), pages 521-530, August.
    177. Kai-Hua Wang & Jia-Min Kan & Cui-Feng Jiang & Chi-Wei Su, 2022. "Is Geopolitical Risk Powerful Enough to Affect Carbon Dioxide Emissions? Evidence from China," Sustainability, MDPI, vol. 14(13), pages 1-16, June.
    178. Durmuş Çağrı Yıldırım & Seda Yıldırım & Seyfettin Erdoğan & Işıl Demirtaş & Gualter Couto & Rui Alexandre Castanho, 2021. "Time-Varying Convergences of Environmental Footprint Levels between European Countries," Energies, MDPI, vol. 14(7), pages 1-15, March.
    179. Chi-Wei Su & Xian-Li Meng & Ran Tao & Muhammad Umar, 2023. "Chinese consumer confidence: A catalyst for the outbound tourism expenditure?," Tourism Economics, , vol. 29(3), pages 696-717, May.
    180. Alessandra Canepa, & Menelaos G. Karanasos & Alexandros G. Paraskevopoulos,, 2019. "Second Order Time Dependent Inflation Persistence in the United States: a GARCH-in-Mean Model with Time Varying Coefficients," Department of Economics and Statistics Cognetti de Martiis. Working Papers 201911, University of Turin.
    181. Yong Bao, 2013. "On Sample Skewness and Kurtosis," Econometric Reviews, Taylor & Francis Journals, vol. 32(4), pages 415-448, December.
    182. Aye, Goodness C., 2016. "Causality between Oil Price and South Africa's Food Price: Time Varying Approach - Relazione di causalità tra prezzo del petrolio e pr ezzo dei prodotti alimentari in Sud Africa: un approccio time var," Economia Internazionale / International Economics, Camera di Commercio Industria Artigianato Agricoltura di Genova, vol. 69(3), pages 193-212.
    183. Su, Chi-Wei & Wang, Xiao-Qing & Tao, Ran & Chang, Hsu-Ling, 2019. "Does money supply drive housing prices in China?," International Review of Economics & Finance, Elsevier, vol. 60(C), pages 85-94.
    184. Li, Zheng Zheng & Su, Chi-Wei & Moldovan, Nicoleta-Claudia & Umar, Muhammad, 2023. "Energy consumption within policy uncertainty: Considering the climate and economic factors," Renewable Energy, Elsevier, vol. 208(C), pages 567-576.

  34. Pesaran, H.M. & Timmermann, A., 2003. "How Costly is it to Ignore Breaks when Forecasting the Direction of a Time Series?," Cambridge Working Papers in Economics 0306, Faculty of Economics, University of Cambridge.

    Cited by:

    1. Lahiri, Kajal & Yao, Vincent Wenxiong, 2006. "Economic indicators for the US transportation sector," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(10), pages 872-887, December.
    2. Norman R. Swanson & Nii Ayi Armah, 2011. "Predictive Inference Under Model Misspecification with an Application to Assessing the Marginal Predictive Content of Money for Output," Departmental Working Papers 201103, Rutgers University, Department of Economics.
    3. Massacci, Daniele & Kapetanios, George, 2024. "Forecasting in factor augmented regressions under structural change," International Journal of Forecasting, Elsevier, vol. 40(1), pages 62-76.
    4. Fabian Baetje & Lukas Menkhoff, 2016. "Equity Premium Prediction: Are Economic and Technical Indicators Unstable?," Discussion Papers of DIW Berlin 1552, DIW Berlin, German Institute for Economic Research.
    5. Xiaojie Xu, 2017. "Short-run price forecast performance of individual and composite models for 496 corn cash markets," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(14), pages 2593-2620, October.
    6. Joseph P. Byrne & Roger Perman, 2006. "Unit Roots and Structural Breaks: A Survey of the Literature," Working Papers 2006_10, Business School - Economics, University of Glasgow.
    7. Jorah Ramlan & Elsadig Musa Ahmed, 2009. "Information and Communication Technology (ICT) and human capital management trend in Malaysia's economic development," Applied Economics Letters, Taylor & Francis Journals, vol. 16(18), pages 1881-1886.
    8. Chambers, Marcus J. & Ercolani, Joanne S. & Taylor, A.M. Robert, 2014. "Testing for seasonal unit roots by frequency domain regression," Journal of Econometrics, Elsevier, vol. 178(P2), pages 243-258.
    9. Tsuchiya, Yoichi, 2013. "Are government and IMF forecasts useful? An application of a new market-timing test," Economics Letters, Elsevier, vol. 118(1), pages 118-120.
    10. Luca Nocciola, "undated". "Finite sample forecast properties and window length under breaks in cointegrated systems," Discussion Papers 19/07, University of Nottingham, Granger Centre for Time Series Econometrics.
    11. Caterina Forti Grazzini & Massimo Guidolin, 2013. "Forecasting yield spreads under crisis-induced multiple breakpoints," Applied Economics Letters, Taylor & Francis Journals, vol. 20(18), pages 1656-1664, December.
    12. Junsoo Lee & John A. List & Mark Strazicich, 2005. "Nonrenewable Resource Prices: Deterministic or Stochastic Trends?," NBER Working Papers 11487, National Bureau of Economic Research, Inc.
    13. Peter F. Christoffersen & Francis X. Diebold, 2006. "Financial Asset Returns, Direction-of-Change Forecasting, and Volatility Dynamics," Management Science, INFORMS, vol. 52(8), pages 1273-1287, August.
    14. Jiang, Yu & Song, Zhe & Kusiak, Andrew, 2013. "Very short-term wind speed forecasting with Bayesian structural break model," Renewable Energy, Elsevier, vol. 50(C), pages 637-647.
    15. Corradi, Valentina & Swanson, Norman R., 2006. "Predictive density and conditional confidence interval accuracy tests," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 187-228.
    16. Ming-Chih Lee & Chien-Liang Chiu & Wan-Hsiu Cheng, 2007. "Enhancing Forecast Accuracy By Using Long Estimation Periods," The International Journal of Business and Finance Research, The Institute for Business and Finance Research, vol. 1(2), pages 1-9.
    17. Cem Cakmakli & Dick van Dijk, 2010. "Getting the Most out of Macroeconomic Information for Predicting Stock Returns and Volatility," Tinbergen Institute Discussion Papers 10-115/4, Tinbergen Institute.
    18. Young Bin Ahn & Yoichi Tsuchiya, 2016. "Directional analysis of consumers’ forecasts of inflation in a small open economy: evidence from South Korea," Applied Economics, Taylor & Francis Journals, vol. 48(10), pages 854-864, February.
    19. Luis Alberiko Gil-Alaña & Shinhye Chang & Mehmet Balcilar & Goodness C. Aye & Rangan Gupta, 2015. "Persistence of precious metal prices: a fractional integration approach with structural breaks," NCID Working Papers 06/2015, Navarra Center for International Development, University of Navarra.
    20. Cró, Susana & Martins, António Miguel, 2017. "Structural breaks in international tourism demand: Are they caused by crises or disasters?," Tourism Management, Elsevier, vol. 63(C), pages 3-9.
    21. Geoffrey Ngene & Ann Nduati Mungai & Allen K. Lynch, 2018. "Long-Term Dependency Structure and Structural Breaks: Evidence from the U.S. Sector Returns and Volatility," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 1-38, June.
    22. Campos, I. & Cortazar, G. & Reyes, T., 2017. "Modeling and predicting oil VIX: Internet search volume versus traditional mariables," Energy Economics, Elsevier, vol. 66(C), pages 194-204.
    23. Rasika Yatigammana & Shelton Peiris & Richard Gerlach & David Edmund Allen, 2018. "Modelling and Forecasting Stock Price Movements with Serially Dependent Determinants," Risks, MDPI, vol. 6(2), pages 1-22, May.
    24. Cizek, P., 2010. "Modelling Conditional Heteroscedasticity in Nonstationary Series," Other publications TiSEM a5a7b05f-5f1f-46ed-8ce8-5, Tilburg University, School of Economics and Management.
    25. Gutierrez, Luciano & Erickson, Kenneth W. & Westerlund, Joakim, 2005. "The Present Value Model, Farmland Prices and Structural Breaks," 2005 International Congress, August 23-27, 2005, Copenhagen, Denmark 24702, European Association of Agricultural Economists.
    26. Tsuchiya, Yoichi, 2016. "Directional analysis of fiscal sustainability: Revisiting Domar's debt sustainability condition," International Review of Economics & Finance, Elsevier, vol. 41(C), pages 189-201.
    27. Christian M. Hafner & Oliver Linton, 2009. "Efficient Estimation of a Multivariate Multiplicative Volatility Model," STICERD - Econometrics Paper Series 541, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    28. Tara Sinclair & H. O. Stekler & L. Kitzinger, 2010. "Directional forecasts of GDP and inflation: a joint evaluation with an application to Federal Reserve predictions," Applied Economics, Taylor & Francis Journals, vol. 42(18), pages 2289-2297.
    29. Hsu, Shu-Han & Cheng, Po-Keng & Yang, Yiwen, 2024. "Diversification, hedging, and safe-haven characteristics of cryptocurrencies: A structural change approach," International Review of Financial Analysis, Elsevier, vol. 93(C).
    30. Abderrazak Ben Maatoug & Rim Lamouchi & Russell Davidson & Ibrahim Fatnassi, 2018. "Modelling Foreign Exchange Realized Volatility Using High Frequency Data: Long Memory versus Structural Breaks," Post-Print hal-01982032, HAL.
    31. Colino, Evelyn V. & Irwin, Scott H. & Garcia, Philip, 2008. "How Much Can Outlook Forecasts be Improved? An Application to the U.S. Hog Market," 2008 Conference, April 21-22, 2008, St. Louis, Missouri 37620, NCCC-134 Conference on Applied Commodity Price Analysis, Forecasting, and Market Risk Management.
    32. Ariel M. Viale & Jeff Madura, 2014. "Learning Banks' Exposure To Systematic Risk: Evidence From The Financial Crisis Of 2008," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 37(1), pages 75-98, February.
    33. Anatolyev Stanislav, 2009. "Multi-Market Direction-of-Change Modeling Using Dependence Ratios," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(1), pages 1-24, March.
    34. Chevillon, Guillaume, 2016. "Multistep forecasting in the presence of location shifts," International Journal of Forecasting, Elsevier, vol. 32(1), pages 121-137.
    35. Lazzarini, S. G. & Madalozzo, R. C & Artes, R. & Siqueira, J. O., 2004. "Measuring trust: An experiment in Brazil," Insper Working Papers wpe_42, Insper Working Paper, Insper Instituto de Ensino e Pesquisa.
    36. Hyein Shim & Hyeyoen Kim & Sunghyun Kim & Doojin Ryu, 2016. "Testing the relative purchasing power parity hypothesis: the case of Korea," Applied Economics, Taylor & Francis Journals, vol. 48(25), pages 2383-2395, May.
    37. Stanislav Anatolyev, 2006. "Nonparametric retrospection and monitoring of predictability of financial returns," Working Papers w0071, Center for Economic and Financial Research (CEFIR).
    38. Giammarino, Flavia & Barrieu, Pauline, 2009. "A semiparametric model for the systematic factors of portfolio credit risk premia," Journal of Empirical Finance, Elsevier, vol. 16(4), pages 655-670, September.
    39. Y. Tsuchiya, 2014. "A directional evaluation of corporate executives' exchange rate forecasts," Applied Economics, Taylor & Francis Journals, vol. 46(1), pages 95-101, January.
    40. Dungey, Mardi & Jacobs, Jan P.A.M. & Tian, Jing, 2016. "Forecasting output gaps in the G-7 countries: The role of correlated Innovations and structural breaks," Working Papers 2016-04, University of Tasmania, Tasmanian School of Business and Economics.
    41. Yoichi Tsuchiya, 2012. "Is the Purchasing Managers' Index useful for assessing the economy's strength? A directional analysis," Economics Bulletin, AccessEcon, vol. 32(2), pages 1302-1311.
    42. Fan, Jianqing & Gong, Wenyan & Zhu, Ziwei, 2019. "Generalized high-dimensional trace regression via nuclear norm regularization," Journal of Econometrics, Elsevier, vol. 212(1), pages 177-202.
    43. Rossen, Anja, 2011. "On the predictive content of nonlinear transformations of lagged autoregression residuals and time series observations," HWWI Research Papers 113, Hamburg Institute of International Economics (HWWI).
    44. Arnaud Dufays & Zhuo Li & Jeroen V.K. Rombouts & Yong Song, 2021. "Sparse change‐point VAR models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(6), pages 703-727, September.
    45. Koo, Bonsoo & Linton, Oliver, 2012. "Estimation of semiparametric locally stationary diffusion models," Journal of Econometrics, Elsevier, vol. 170(1), pages 210-233.
    46. Manh Cuong Dong & Cathy W. S. Chen & Sangyoel Lee & Songsak Sriboonchitta, 2019. "How Strong is the Relationship Among Gold and USD Exchange Rates? Analytics Based on Structural Change Models," Computational Economics, Springer;Society for Computational Economics, vol. 53(1), pages 343-366, January.
    47. Wael K. Hanna & Nouran M. Radwan, 2021. "Day-Level Forecasting for Coronavirus Disease (COVID-19)," International Journal of Healthcare Information Systems and Informatics (IJHISI), IGI Global, vol. 16(4), pages 1-16, October.
    48. Giuseppe Parigi & Roberto Golinelli, 2007. "The use of monthly indicators to forecast quarterly GDP in the short run: an application to the G7 countries," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(2), pages 77-94.
    49. Yang Yang & Tae-Hwy Lee, 2004. "Bagging Binary Predictors for Time Series," Econometric Society 2004 Far Eastern Meetings 512, Econometric Society.
    50. Gregory E. Givens & Robert R. Reed, 2018. "Monetary Policy and Investment Dynamics: Evidence from Disaggregate Data," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(8), pages 1851-1878, December.
    51. Emilian Dobrescu, 2014. "Attempting to Quantify the Accuracy of Complex Macroeconomic Forecasts," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 5-21, December.
    52. Çakmaklı, Cem & van Dijk, Dick, 2016. "Getting the most out of macroeconomic information for predicting excess stock returns," International Journal of Forecasting, Elsevier, vol. 32(3), pages 650-668.
    53. Ma, Feng & Wu, Hanlin & Zeng, Qing, 2024. "Biodiversity and stock returns," International Review of Financial Analysis, Elsevier, vol. 95(PA).
    54. Valentin Patilea & Hamdi Raïssi, 2014. "Testing Second-Order Dynamics for Autoregressive Processes in Presence of Time-Varying Variance," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1099-1111, September.
    55. Hamid Baghestani, 2010. "Predicting the direction of change in aggregate demand growth and its components," Economics Bulletin, AccessEcon, vol. 30(1), pages 292-302.
    56. Quentin Giai Gianetto & Hamdi Raïssi, 2015. "Testing Instantaneous Causality in Presence of Nonconstant Unconditional Covariance," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 46-53, January.
    57. David Ubilava, 2018. "The Role of El Niño Southern Oscillation in Commodity Price Movement and Predictability," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 100(1), pages 239-263.
    58. Tiago E. Pratas & Filipe R. Ramos & Lihki Rubio, 2023. "Forecasting bitcoin volatility: exploring the potential of deep learning," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 13(2), pages 285-305, June.
    59. Mehmet Balcilar & Zeynel Abidin Ozdemir, 2018. "The volatility effect on precious metals prices in a stochastic volatility in mean model with time-varying parameters," Working Papers 15-34, Eastern Mediterranean University, Department of Economics.
    60. Stanislav Anatolyev & Natalia Kryzhanovskaya, 2009. "Directional Prediction of Returns under Asymmetric Loss: Direct and Indirect Approaches," Working Papers w0136, Center for Economic and Financial Research (CEFIR).
    61. Cizek, P., 2010. "Modelling Conditional Heteroscedasticity in Nonstationary Series," Discussion Paper 2010-84, Tilburg University, Center for Economic Research.
    62. Pilar Gargallo & Jesus Miguel & Pilar Olave & Manuel Salvador, 2010. "Evaluating value at risk using selection criteria of the model and the information set," Applied Financial Economics, Taylor & Francis Journals, vol. 20(18), pages 1415-1428.
    63. Ana Beatriz C. Galvao, 2006. "Structural break threshold VARs for predicting US recessions using the spread," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(4), pages 463-487.
    64. Kajal Lahiri, Wenxiong Yao, and Peg Young, 2003. "Cycles in the Transportation Sector and the Aggregate Economy," Discussion Papers 03-14, University at Albany, SUNY, Department of Economics.
    65. Koki, Constandina & Leonardos, Stefanos & Piliouras, Georgios, 2022. "Exploring the predictability of cryptocurrencies via Bayesian hidden Markov models," Research in International Business and Finance, Elsevier, vol. 59(C).
    66. El-Shazly, Alaa, 2016. "Structural breaks and monetary dynamics: A time series analysis," Economic Modelling, Elsevier, vol. 53(C), pages 133-143.
    67. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    68. Liew, Freddy, 2012. "Forecasting inflation in Asian economies," MPRA Paper 36781, University Library of Munich, Germany.
    69. Cathy W. S. Chen & Bonny Lee, 2021. "Bayesian inference of multiple structural change models with asymmetric GARCH errors," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 1053-1078, September.
    70. Czinkota, Thomas, 2012. "Das Halteproblem bei Strukturbrüchen in Finanzmarktzeitreihen [The Halting Problem applied to Structural Breaks in Financial Time Series]," MPRA Paper 37072, University Library of Munich, Germany.
    71. Ana Beatriz C. Galvão, 2006. "Structural break threshold VARs for predicting US recessions using the spread," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(4), pages 463-487, May.
    72. Gantungalag Altansukh & Denise R. Osborn, 2022. "Using structural break inference for forecasting time series," Empirical Economics, Springer, vol. 63(1), pages 1-41, July.
    73. Cizek, P. & Haerdle, W. & Spokoiny, V., 2007. "Adaptive Pointwise Estimation in Time-Inhomogeneous Time-Series Models," Discussion Paper 2007-35, Tilburg University, Center for Economic Research.
    74. Xiaojie Xu, 2020. "Corn Cash Price Forecasting," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(4), pages 1297-1320, August.
    75. Xu, Bin, 2023. "Exploring the sustainable growth pathway of wind power in China: Using the semiparametric regression model," Energy Policy, Elsevier, vol. 183(C).
    76. Anthony Garratt & Ivan Petrella, 2022. "Commodity prices and inflation risk," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(2), pages 392-414, March.
    77. Lee, Tae-Hwy & Yang, Yang, 2006. "Bagging binary and quantile predictors for time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 465-497.
    78. Luis A. Gil-Alana & Goodness C. Aye & Rangan Gupta, 2012. "Testing for Persistence with Breaks and Outliers in South African House Prices," Faculty Working Papers 20/12, School of Economics and Business Administration, University of Navarra.
    79. Ullrich Heilemann & Herman Stekler, 2010. "Perspectives on Evaluating Macroeconomic Forecasts," Working Papers 2010-002, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    80. Angelos Kanas & George Kouretas, 2001. "A cointegration approach to the lead-lag effect among size-sorted equity portfolios," Working Papers 0101, University of Crete, Department of Economics.
    81. Tsuchiya, Yoichi, 2014. "Purchasing and supply managers provide early clues on the direction of the US economy: An application of a new market-timing test," International Review of Economics & Finance, Elsevier, vol. 29(C), pages 599-618.

  35. Timmermann, Allan & Granger, Clive, 2002. "Efficient Market Hypothesis and Forecasting," CEPR Discussion Papers 3593, C.E.P.R. Discussion Papers.

    Cited by:

    1. Guerard, John, 2023. "Harry Markowitz: An appreciation," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1496-1501.
    2. Gazi Salah Uddin & Jose Areola Hernandez & Syed Jawad Hussain Shahzad & Seong-Min Yoon, 2018. "Time-varying evidence of efficiency, decoupling, and diversification of conventional and Islamic stocks," Post-Print hal-01997844, HAL.
    3. Ülkü, Numan & Prodan, Eugeniu, 2013. "Drivers of technical trend-following rules' profitability in world stock markets," International Review of Financial Analysis, Elsevier, vol. 30(C), pages 214-229.
    4. Bennett, Donyetta & Mekelburg, Erik & Williams, T.H., 2023. "BeFi meets DeFi: A behavioral finance approach to decentralized finance asset pricing," Research in International Business and Finance, Elsevier, vol. 65(C).
    5. Jia Wang & Tong Sun & Benyuan Liu & Yu Cao & Degang Wang, 2021. "Financial Markets Prediction with Deep Learning," Papers 2104.05413, arXiv.org.
    6. Syntetos, Aris A. & Nikolopoulos, Konstantinos & Boylan, John E., 2010. "Judging the judges through accuracy-implication metrics: The case of inventory forecasting," International Journal of Forecasting, Elsevier, vol. 26(1), pages 134-143, January.
    7. Felicia Ramona Birau, 2011. "An Analysis Of Weak-Form Efficiency On The Bucharest Stock Exchange," Annals of University of Craiova - Economic Sciences Series, University of Craiova, Faculty of Economics and Business Administration, vol. 3(39), pages 194-205.
    8. Sohrabi, Babak & Khalili Jafarabad, Ahmad & Hadizadeh, Ardalan, 2020. "Forecasting Stock Price Movements Based on Opinion Mining and Sentiment Analysis: An Application of Support Vector Machine and Twitter Data," Journal of Money and Economy, Monetary and Banking Research Institute, Central Bank of the Islamic Republic of Iran, vol. 15(3), pages 235-251, July.
    9. Jiang, Jiaqi & Gu, Rongbao, 2016. "Using Rényi parameter to improve the predictive power of singular value decomposition entropy on stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 254-264.
    10. De Santis, Paola & Drago, Carlo, 2014. "Asimmetria del rischio sistematico dei titoli immobiliari americani: nuove evidenze econometriche [Systematic Risk Asymmetry of the American Real Estate Securities: Some New Econometric Evidence]," MPRA Paper 59381, University Library of Munich, Germany.
    11. Stefanescu, Răzvan & Dumitriu, Ramona, 2016. "The impact of the Great Lent and of the Nativity Fast on the Bucharest Stock Exchange," MPRA Paper 89023, University Library of Munich, Germany, revised 22 Dec 2016.
    12. Felicia Ramona Birău, 2012. "The Impact Of Behavioral Finance On Stock Markets," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 3, pages 45-50, September.
    13. Felicia Ramona Birău, 2012. "The Implications Of Liquidity Crises In The Context Of Emerging Capital Market," Revista Tinerilor Economisti (The Young Economists Journal), University of Craiova, Faculty of Economics and Business Administration, vol. 1(18), pages 189-193, April.
    14. Pesaran, M. Hashem & Timmermann, Allan, 2004. "How costly is it to ignore breaks when forecasting the direction of a time series?," International Journal of Forecasting, Elsevier, vol. 20(3), pages 411-425.
    15. Ali, Mohammad M. & Boylan, John E. & Syntetos, Aris A., 2012. "Forecast errors and inventory performance under forecast information sharing," International Journal of Forecasting, Elsevier, vol. 28(4), pages 830-841.
    16. Stefan Nagel, 2012. "Empirical Cross-Sectional Asset Pricing," NBER Working Papers 18554, National Bureau of Economic Research, Inc.
    17. Nikolai Dokuchaev, 2015. "Modelling Possibility of Short-Term Forecasting of Market Parameters for Portfolio Selection," Annals of Economics and Finance, Society for AEF, vol. 16(1), pages 143-161, May.
    18. Delavari, Majid & Gandali Alikhani, Nadiya & Naderi, Esmaeil, 2012. "Do Dynamic Neural Networks Stand a Better Chance in Fractionally Integrated Process Forecasting?," MPRA Paper 45977, University Library of Munich, Germany.
    19. Chenyu Han & Yiming Wang & Yingying Xu, 2019. "Efficiency and Multifractality Analysis of the Chinese Stock Market: Evidence from Stock Indices before and after the 2015 Stock Market Crash," Sustainability, MDPI, vol. 11(6), pages 1-15, March.
    20. Kei Takeuchi & Akimichi Takemura & Masayuki Kumon, 2011. "New Procedures for Testing Whether Stock Price Processes are Martingales," Computational Economics, Springer;Society for Computational Economics, vol. 37(1), pages 67-88, January.
    21. Wen-Juan Xu & Li-Xin Zhong, 2022. "Market impact shapes competitive advantage of investment strategies in financial markets," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-23, February.
    22. Rambaccussing, Dooruj, 2010. "A real-time trading rule," MPRA Paper 27148, University Library of Munich, Germany.
    23. Sangram Keshari Jena & Aviral Kumar Tiwari & Buhari Doğan & Shawkat Hammoudeh, 2022. "Are the top six cryptocurrencies efficient? Evidence from time‐varying long memory," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(3), pages 3730-3740, July.
    24. Gurgul, Henryk & Mestel, Roland & Wójtowicz, Tomasz, 2007. "Distribution of Volume on the American Stock Market," MPRA Paper 68572, University Library of Munich, Germany, revised 2007.
    25. OlaOluwa S. Yaya & Oluwasegun B. Adekoya & Xuan Vinh Vo & Mamdouh Abdulaziz Saleh Al‐Faryan, 2024. "Stock Market Efficiency in Asia: Evidence from the Narayan–Liu–Westerlund's GARCH‐based unit root test," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(1), pages 91-101, January.
    26. Massimo Guidolin & Daniel L. Thornton, 2010. "Predictions of short-term rates and the expectations hypothesis," Working Papers 2010-013, Federal Reserve Bank of St. Louis.
    27. Matthew Spiegel & Harry Mamaysky & Hong Zhang, 2005. "Improved Forecasting of Mutual Fund Alphas and Betas," Yale School of Management Working Papers amz2361, Yale School of Management, revised 01 Mar 2006.
    28. Abounoori, Abbas Ali & Mohammadali, Hanieh & Gandali Alikhani, Nadiya & Naderi, Esmaeil, 2012. "Comparative study of static and dynamic neural network models for nonlinear time series forecasting," MPRA Paper 46466, University Library of Munich, Germany.
    29. Nuray Tosunoğlu & Hilal Abacı & Gizem Ateş & Neslihan Saygılı Akkaya, 2023. "Artificial neural network analysis of the day of the week anomaly in cryptocurrencies," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-24, December.
    30. Taylor, Mark & Hsu, Po-Hsuan & Wang, Zigan, 2020. "The Out-of-Sample Performance of Carry Trades," CEPR Discussion Papers 15052, C.E.P.R. Discussion Papers.
    31. Bozos, Konstantinos & Nikolopoulos, Konstantinos, 2011. "Forecasting the value effect of seasoned equity offering announcements," European Journal of Operational Research, Elsevier, vol. 214(2), pages 418-427, October.
    32. Vicente Ruiz Herran & Miguel Angel Perez Martinez & Aitziber Olasolo Sogorb, 2012. "The Weak Form Of The Efficient Market In The Spanish Stock Market: A Study Based On Use Of Active Strategies Management High Frequency Data, La Hipotesis Debil De Eficiencia En El Mercado Bursatil Esp," Revista Internacional Administracion & Finanzas, The Institute for Business and Finance Research, vol. 5(2), pages 1-14.
    33. Haugom, Erik & Ullrich, Carl J., 2012. "Market efficiency and risk premia in short-term forward prices," Energy Economics, Elsevier, vol. 34(6), pages 1931-1941.
    34. Ashok Chanabasangouda Patil & Shailesh Rastogi, 2019. "Time-Varying Price–Volume Relationship and Adaptive Market Efficiency: A Survey of the Empirical Literature," JRFM, MDPI, vol. 12(2), pages 1-18, June.
    35. Kizilaslan, Recep & Freund, Steven & Iseri, Ali, 2016. "A data analytic approach to forecasting daily stock returns in an emerging marketAuthor-Name: Oztekin, Asil," European Journal of Operational Research, Elsevier, vol. 253(3), pages 697-710.
    36. Derick D. Quintino & Sergio A. David & Carlos E. de F. Vian, 2017. "Analysis of the Relationship between Ethanol Spot and Futures Prices in Brazil," IJFS, MDPI, vol. 5(2), pages 1-10, April.
    37. Firat Melih Yilmaz & Engin Yildiztepe, 2024. "Statistical Evaluation of Deep Learning Models for Stock Return Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 63(1), pages 221-244, January.
    38. Batchelor, Roy & Kwan, Tai Yeong, 2007. "Judgemental bootstrapping of technical traders in the bond market," International Journal of Forecasting, Elsevier, vol. 23(3), pages 427-445.
    39. Park, Cheol-Ho & Irwin, Scott H., 2005. "The Profitability of Technical Trading Rules in US Futures Markets: A Data Snooping Free Test," AgMAS Project Research Reports 14771, University of Illinois at Urbana-Champaign, Department of Agricultural and Consumer Economics.
    40. Terence Tai-Leung Chong & Wing-Kam Ng & Venus Khim-Sen Liew, 2014. "Revisiting the Performance of MACD and RSI Oscillators," JRFM, MDPI, vol. 7(1), pages 1-12, February.
    41. Wally Tzara, 2018. "The Evolution of Security Prices Is Not Stochastic but Governed by a Physicomathematical Law," Papers 1807.10114, arXiv.org, revised Jul 2019.
    42. Sheriffdeen A. Tella & Olumuyiwa G. Yinusa & Ayinde Taofeek Olusola & Saban Celik, 2011. "Global Economic Crisis And Stock Markets Efficiency: Evidence From Selected Africa Countries," Bogazici Journal, Review of Social, Economic and Administrative Studies, Bogazici University, Department of Economics, vol. 25(1), pages 139-169.
    43. Dooruj Rambaccussing, 2015. "Revisiting Shiller’s excess volatility hypothesis," Dundee Discussion Papers in Economics 287, Economic Studies, University of Dundee.
    44. Dr. Mehdi Pedram & Maryam Ebrahimi, 2014. "Exchange Rate Model Approximation, Forecast and Sensitivity Analysis by Neural Networks, Case Of Iran," Business and Economic Research, Macrothink Institute, vol. 4(2), pages 49-62, December.
    45. Emmanuel Paroissien, 2020. "Forecasting bulk prices of Bordeaux wines using leading indicators," Post-Print hal-02408202, HAL.
    46. Taufiq Choudhry & Ranadeva Jayasekera, 2015. "Level of efficiency in the UK equity market: empirical study of the effects of the global financial crisis," Review of Quantitative Finance and Accounting, Springer, vol. 44(2), pages 213-242, February.
    47. VDMV Lakshmi & Garima Sisodia & Anto Joseph & Aviral Kumar Tiwari, 2024. "The conditional impact of market conditions, volatility and liquidity shocks on the arbitrage opportunities during pre‐COVID and COVID periods," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(3), pages 3007-3022, July.
    48. Jang, Minchul & Yoon, Soeun & Jung, Seoyoung & Min, Baehyun, 2024. "Simulating and assessing carbon markets: Application to the Korean and the EU ETSs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    49. Tao Yin & Yiming Wang, 2021. "Market Efficiency and Nonlinear Analysis of Soybean Futures," Sustainability, MDPI, vol. 13(2), pages 1-10, January.
    50. Mishra, Sasmita & Padhy, Sudarsan, 2019. "An efficient portfolio construction model using stock price predicted by support vector regression," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    51. Olivier Brandouy & Jean-Paul Delahaye & Lin Ma & Hector Zenil, 2012. "Algorithmic Complexity of Financial Motions," ASSRU Discussion Papers 1204, ASSRU - Algorithmic Social Science Research Unit.
    52. Adrian Taran-Morosan, 2009. "Some Technical Analysis Indicators," Revista Economica, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 46(3), pages 116-121.
    53. Psaradellis, Ioannis & Laws, Jason & Pantelous, Athanasios A. & Sermpinis, Georgios, 2023. "Technical analysis, spread trading, and data snooping control," International Journal of Forecasting, Elsevier, vol. 39(1), pages 178-191.
    54. Colino, Evelyn V. & Irwin, Scott H. & Garcia, Philip, 2008. "How Much Can Outlook Forecasts be Improved? An Application to the U.S. Hog Market," 2008 Conference, April 21-22, 2008, St. Louis, Missouri 37620, NCCC-134 Conference on Applied Commodity Price Analysis, Forecasting, and Market Risk Management.
    55. Gradojevic, Nikola & Gençay, Ramazan, 2013. "Fuzzy logic, trading uncertainty and technical trading," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 578-586.
    56. ANGHEL, Dan-Gabriel, 2021. "A reality check on trading rule performance in the cryptocurrency market: Machine learning vs. technical analysis," Finance Research Letters, Elsevier, vol. 39(C).
    57. James Cust & David Mihalyi, 2017. "Evidence for a Presource Curse? Oil discoveries, Elevated Expectations, and Growth Disappointments," OxCarre Working Papers 193, Oxford Centre for the Analysis of Resource Rich Economies, University of Oxford.
    58. Wenbo Ge & Pooia Lalbakhsh & Leigh Isai & Artem Lensky & Hanna Suominen, 2023. "Comparing Deep Learning Models for the Task of Volatility Prediction Using Multivariate Data," Papers 2306.12446, arXiv.org, revised Jun 2023.
    59. Roland Rothenstein, 2018. "Quantification of market efficiency based on informational-entropy," Papers 1812.02371, arXiv.org.
    60. Ichkitidze, Yuri, 2018. "Temporary price trends in the stock market with rational agents," The Quarterly Review of Economics and Finance, Elsevier, vol. 68(C), pages 103-117.
    61. Stephanie-Carolin Grosche, 2014. "What Does Granger Causality Prove? A Critical Examination of the Interpretation of Granger Causality Results on Price Effects of Index Trading in Agricultural Commodity Markets," Journal of Agricultural Economics, Wiley Blackwell, vol. 65(2), pages 279-302, June.
    62. Rambaccussing, Dooruj, 2015. "Revisiting Shiller’s excess volatility hypothesis," SIRE Discussion Papers 2015-82, Scottish Institute for Research in Economics (SIRE).
    63. Gabriel Frahm, 2016. "Pricing And Valuation Under The Real-World Measure," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(01), pages 1-39, February.
    64. Jun Lu & Shao Yi, 2022. "Autoencoding Conditional GAN for Portfolio Allocation Diversification," Applied Economics and Finance, Redfame publishing, vol. 9(3), pages 55-68, August.
    65. Yaya, OlaOluwa S. & Vo, Xuan Vinh & Adekoya, Oluwasegun B., 2021. "Market Efficiency of Asian Stocks: Evidence based on Narayan-Liu-Westerlund GARCH-based Unit root test," MPRA Paper 109828, University Library of Munich, Germany.
    66. Jun Lu & Shao Yi, 2022. "Autoencoding Conditional GAN for Portfolio Allocation Diversification," Papers 2207.05701, arXiv.org.
    67. Stanislav Anatolyev, 2006. "Nonparametric retrospection and monitoring of predictability of financial returns," Working Papers w0071, Center for Economic and Financial Research (CEFIR).
    68. Anghel, Dan Gabriel, 2021. "Data Snooping Bias in Tests of the Relative Performance of Multiple Forecasting Models," Journal of Banking & Finance, Elsevier, vol. 126(C).
    69. Bachar Fakhry & Christian Richter, 2015. "Is the sovereign debt market efficient? Evidence from the US and German sovereign debt markets," International Economics and Economic Policy, Springer, vol. 12(3), pages 339-357, September.
    70. Shmilovici Armin & Ben-Gal Irad, 2012. "Predicting Stock Returns Using a Variable Order Markov Tree Model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(5), pages 1-33, December.
    71. Doyle, John R. & Chen, Catherine H., 2013. "Patterns in stock market movements tested as random number generators," European Journal of Operational Research, Elsevier, vol. 227(1), pages 122-132.
    72. Fernandes, Leonardo H.S. & de Araújo, Fernando H.A. & Silva, Igor E.M., 2020. "The (in)efficiency of NYMEX energy futures: A multifractal analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    73. Gao, Yan & Li, Honggang, 2011. "A consolidated model of self-fulfilling expectations and self-destroying expectations in financial markets," Journal of Economic Behavior & Organization, Elsevier, vol. 77(3), pages 368-381, March.
    74. Roman Kraeussl & Christian Wiehenkamp, 2012. "A call on art investments," Review of Derivatives Research, Springer, vol. 15(1), pages 1-23, April.
    75. Aatola, Piia & Ollikka, Kimmo & Ollikainen, Markku, 2012. "Informational Efficiency of the EU ETS market – a study of price predictability and profitable trading," Working Papers 28, VATT Institute for Economic Research.
    76. Gabriel Frahm, 2013. "Pricing and Valuation under the Real-World Measure," Papers 1304.3824, arXiv.org, revised Jan 2016.
    77. Yan, Isabel K. & Chong, Terence & Lam, Tau-Hing, 2011. "Is the Chinese Stock Market Really Efficient," MPRA Paper 35219, University Library of Munich, Germany.
    78. CIOACĂ, Sorin-Iulian, 2015. "Liquidity And Informational Inefficiency. The Case Of Romania," Studii Financiare (Financial Studies), Centre of Financial and Monetary Research "Victor Slavescu", vol. 19(1), pages 80-92.
    79. Choudhry, Taufiq & Jayasekera, Ranadeva, 2014. "Market efficiency during the global financial crisis: Empirical evidence from European banks," Journal of International Money and Finance, Elsevier, vol. 49(PB), pages 299-318.
    80. Timmermann, Allan, 2008. "Elusive return predictability," International Journal of Forecasting, Elsevier, vol. 24(1), pages 1-18.
    81. Deniz Ersan & Chifumi Nishioka & Ansgar Scherp, 2020. "Comparison of machine learning methods for financial time series forecasting at the examples of over 10 years of daily and hourly data of DAX 30 and S&P 500," Journal of Computational Social Science, Springer, vol. 3(1), pages 103-133, April.
    82. Nomikos, Nikos K. & Doctor, Kaizad, 2013. "Economic significance of market timing rules in the Forward Freight Agreement markets," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 52(C), pages 77-93.
    83. Chen Su & Hanxiong Zhang & Robert S. Hudson, 2020. "The time‐varying performance of UK analyst recommendation revisions: Do market conditions matter?," Financial Markets, Institutions & Instruments, John Wiley & Sons, vol. 29(2), pages 65-89, May.
    84. Camelia Oprean, 2012. "Testing the financial market informational efficiency in emerging states," Review of Applied Socio-Economic Research, Pro Global Science Association, vol. 4(2), pages 181-190, Decembre.
    85. Krzysztof DRACHAL, 2015. "The Structural Stability of a One-Day Risk Premium in View of the Recent Financial Crisis," Expert Journal of Economics, Sprint Investify, vol. 3(2), pages 136-142.
    86. Cheol‐Ho Park & Scott H. Irwin, 2007. "What Do We Know About The Profitability Of Technical Analysis?," Journal of Economic Surveys, Wiley Blackwell, vol. 21(4), pages 786-826, September.
    87. Xu Gong & Mengjie Li & Keqin Guan & Chuanwang Sun, 2023. "Climate change attention and carbon futures return prediction," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(9), pages 1261-1288, September.
    88. Gabriel Frahm, 2013. "A Modern Approach to the Efficient-Market Hypothesis," Papers 1302.3001, arXiv.org, revised Mar 2014.
    89. Sahar Afshan & Arshian Sharif & Abdelmohsen A. Nassani & Muhammad M. Q. Abro & Rubeena Batool & Khalid Zaman, 2021. "The role of information and communication technology (internet penetration) on Asian stock market efficiency: Evidence from quantile‐on‐quantile cointegration and causality approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 2307-2324, April.
    90. Basak, Suryoday & Kar, Saibal & Saha, Snehanshu & Khaidem, Luckyson & Dey, Sudeepa Roy, 2019. "Predicting the direction of stock market prices using tree-based classifiers," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 552-567.
    91. Crone, Sven F. & Hibon, Michèle & Nikolopoulos, Konstantinos, 2011. "Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction," International Journal of Forecasting, Elsevier, vol. 27(3), pages 635-660.
    92. Asal, Maher, 2016. "Testing for the presence of skill in Swedish mutual fund performance: Evidence from a bootstrap analysis," Journal of Economics and Business, Elsevier, vol. 88(C), pages 22-35.
    93. Ben Moews, 2023. "On random number generators and practical market efficiency," Papers 2305.17419, arXiv.org, revised Jul 2023.
    94. Giovanni Mariani & Yada Zhu & Jianbo Li & Florian Scheidegger & Roxana Istrate & Costas Bekas & A. Cristiano I. Malossi, 2019. "PAGAN: Portfolio Analysis with Generative Adversarial Networks," Papers 1909.10578, arXiv.org.
    95. Stefanescu, Razvan & Dumitriu, Ramona, 2016. "Particularitǎţi ale evoluţiei variabilelor financiare [Some particularities of the financial variables evolution]," MPRA Paper 73481, University Library of Munich, Germany, revised 02 Sep 2016.
    96. Daniel Nicolae Militaru, 2011. "The Impact Of The Economic And Financial Crisis On Pension Systems In The European Union," Revista Tinerilor Economisti (The Young Economists Journal), University of Craiova, Faculty of Economics and Business Administration, vol. 1(17), pages 15-19, November.
    97. Dan Gabriel ANGHEL, 2017. "Intraday Market Efficiency for a Typical Central and Eastern European Stock Market: The Case of Romania," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(3), pages 88-109, September.
    98. Gabriel Frahm, 2015. "A theoretical foundation of portfolio resampling," Theory and Decision, Springer, vol. 79(1), pages 107-132, July.
    99. Strozzi, F. & Zaldívar, J.M., 2005. "Non-linear forecasting in high-frequency financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 353(C), pages 463-479.
    100. Cheol‐Ho Park & Scott H. Irwin, 2010. "A reality check on technical trading rule profits in the U.S. futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 30(7), pages 633-659, July.
    101. Kristoufek, Ladislav, 2019. "Are the crude oil markets really becoming more efficient over time? Some new evidence," Energy Economics, Elsevier, vol. 82(C), pages 253-263.
    102. Emiliano Brancaccio & Fabiana De Cristofaro, 2020. "Inside the IMF Òmea culpaÓ: A panel analysis on growth forecast errors and Keynesian multipliers in Europe," PSL Quarterly Review, Economia civile, vol. 73(294), pages 225-239.
    103. Reboredo, Juan C. & Wen, Xiaoqian, 2015. "Are China’s new energy stock prices driven by new energy policies?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 624-636.
    104. Bernard Njindan Iyke, 2019. "A Test Of The Efficiency Of The Foreign Exchange Market In Indonesia," Bulletin of Monetary Economics and Banking, Bank Indonesia, vol. 21(12th BMEB), pages 439-464, January.
    105. Rechenthin, Michael & Street, W. Nick, 2013. "Using conditional probability to identify trends in intra-day high-frequency equity pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6169-6188.
    106. Chen Su & Hanxiong Zhang & Kenbata Bangassa & Nathan Lael Joseph, 2019. "On the investment value of sell-side analyst recommendation revisions in the UK," Review of Quantitative Finance and Accounting, Springer, vol. 53(1), pages 257-293, July.
    107. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    108. Pedro Pires Ribeiro & José Dias Curto, 2018. "How do zero-coupon inflation swaps predict inflation rates in the euro area? Evidence of efficiency and accuracy on 1-year contracts," Empirical Economics, Springer, vol. 54(4), pages 1451-1475, June.
    109. Abounoori, Abbas Ali & Naderi, Esmaeil & Gandali Alikhani, Nadiya & Amiri, Ashkan, 2013. "Financial Time Series Forecasting by Developing a Hybrid Intelligent System," MPRA Paper 45615, University Library of Munich, Germany.
    110. Kamal, Mona, 2014. "Studying the Validity of the Efficient Market Hypothesis (EMH) in the Egyptian Exchange (EGX) after the 25th of January Revolution," MPRA Paper 54708, University Library of Munich, Germany.
    111. Magdalena Mikolajek-Gocejna & Tomasz Urbas, 2023. "Rational Investors or Rational Expectations in Efficient Market Hypothesis?," International Journal of Finance, Insurance and Risk Management, International Journal of Finance, Insurance and Risk Management, vol. 13(2), pages 167-188.
    112. Babai, M. Zied & Ali, Mohammad M. & Nikolopoulos, Konstantinos, 2012. "Impact of temporal aggregation on stock control performance of intermittent demand estimators: Empirical analysis," Omega, Elsevier, vol. 40(6), pages 713-721.
    113. Parul Bhatia & Priya Gupta, 2020. "Sub-prime Crisis or COVID-19: A Comparative Analysis of Volatility in Indian Banking Sectoral Indices," FIIB Business Review, , vol. 9(4), pages 286-299, December.
    114. Risse, Marian & Ohl, Ludwig, 2017. "Using dynamic model averaging in state space representation with dynamic Occam’s window and applications to the stock and gold market," Journal of Empirical Finance, Elsevier, vol. 44(C), pages 158-176.
    115. Perera, H. Niles & Hurley, Jason & Fahimnia, Behnam & Reisi, Mohsen, 2019. "The human factor in supply chain forecasting: A systematic review," European Journal of Operational Research, Elsevier, vol. 274(2), pages 574-600.
    116. Rambaccussing, Dooruj, 2015. "Revisiting Shiller's excess volatility hypothesis," SIRE Discussion Papers 2015-33, Scottish Institute for Research in Economics (SIRE).
    117. David Ubilava, 2014. "El Niño Southern Oscillation and the fishmeal–soya bean meal price ratio: regime-dependent dynamics revisited," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 41(4), pages 583-604.
    118. Konstandinos Chourmouziadis & Dimitra K. Chourmouziadou & Prodromos D. Chatzoglou, 2021. "Embedding Four Medium-Term Technical Indicators to an Intelligent Stock Trading Fuzzy System for Predicting: A Portfolio Management Approach," Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1183-1216, April.
    119. Darko B. Vuković & Sonja D. Radenković & Ivana Simeunović & Vyacheslav Zinovev & Milan Radovanović, 2024. "Predictive Patterns and Market Efficiency: A Deep Learning Approach to Financial Time Series Forecasting," Mathematics, MDPI, vol. 12(19), pages 1-26, September.
    120. Adriaens, H.P.J.M., 2008. "Financial markets with data-driven investment decisions," Other publications TiSEM cef81b2f-c049-40af-879b-e, Tilburg University, School of Economics and Management.
    121. Ogulcan E. Orsel & Sasha S. Yamada, 2022. "Comparative Study of Machine Learning Models for Stock Price Prediction," Papers 2202.03156, arXiv.org.
    122. Mishra, Sasmita & Padhy, Sudarsan & Mishra, Satya Narayan & Misra, Satya Narayan, 2021. "A novel LASSO – TLBO – SVR hybrid model for an efficient portfolio construction," The North American Journal of Economics and Finance, Elsevier, vol. 55(C).
    123. Strozzi, Fernanda & Comenges, José-Manuel Zaldívar, 2006. "Towards a non-linear trading strategy for financial time series," Chaos, Solitons & Fractals, Elsevier, vol. 28(3), pages 601-615.
    124. Aatola, Piia, 2013. "Putting a Price on Carbon – Econometric Essays on the European Union Emissions Trading Scheme and its Impacts," Research Reports P62, VATT Institute for Economic Research.
    125. Barras, Laurent, 2007. "International conditional asset allocation under specification uncertainty," Journal of Empirical Finance, Elsevier, vol. 14(4), pages 443-464, September.
    126. Jun Lu & Danny Ding, 2022. "A Hybrid Approach on Conditional GAN for Portfolio Analysis," Papers 2208.07159, arXiv.org.
    127. Katusiime, Lorna & Shamsuddin, Abul & Agbola, Frank W., 2015. "Foreign exchange market efficiency and profitability of trading rules: Evidence from a developing country," International Review of Economics & Finance, Elsevier, vol. 35(C), pages 315-332.
    128. Daniel Traian Pele & Miruna Mazurencu-Marinescu & Peter Nijkamp, 2013. "Herding Behaviour, Bubbles and Log Periodic Power Laws in Illiquid Stock Markets. A Case Study on the Bucharest Stock Exchange," Tinbergen Institute Discussion Papers 13-109/VIII, Tinbergen Institute.
    129. Xie Haibin & Zhou Mo & Hu Yi & Yu Mei, 2014. "Forecasting the Crude Oil Price with Extreme Values," Journal of Systems Science and Information, De Gruyter, vol. 2(3), pages 193-205, June.
    130. Becker, Janis & Leschinski, Christian, 2018. "Directional Predictability of Daily Stock Returns," Hannover Economic Papers (HEP) dp-624, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    131. Erol Eğrioğlu & Robert Fildes, 2022. "A New Bootstrapped Hybrid Artificial Neural Network Approach for Time Series Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 59(4), pages 1355-1383, April.
    132. Grosche, Stephanie, 2012. "Limitations of Granger Causality Analysis to assess the price effects from the financialization of agricultural commodity markets under bounded rationality," Discussion Papers 121868, University of Bonn, Institute for Food and Resource Economics.
    133. Abounoori, Esmaiel & Shahrazi, Mahdi & Rasekhi, Saeed, 2012. "An investigation of Forex market efficiency based on detrended fluctuation analysis: A case study for Iran," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3170-3179.
    134. Chen, Min & Zhu, Ke, 2014. "Sign-based specification tests for martingale difference with conditional heteroscedasity," MPRA Paper 56347, University Library of Munich, Germany.
    135. Yao, Juan & Alles, Lakshman, 2006. "Industry return predictability, timing and profitability," Journal of Multinational Financial Management, Elsevier, vol. 16(2), pages 122-141, April.
    136. Duygu Ider & Stefan Lessmann, 2022. "Forecasting Cryptocurrency Returns from Sentiment Signals: An Analysis of BERT Classifiers and Weak Supervision," Papers 2204.05781, arXiv.org, revised Mar 2023.
    137. Rambaccussing, Dooruj, 2009. "Exploiting price misalignements," MPRA Paper 27147, University Library of Munich, Germany.
    138. Lanh Tran, 2017. "How Wave - Wavelet Trading Wins and "Beats" the Market," Papers 1704.00383, arXiv.org.

  36. Paye, Bradley S. & Timmermann, Allan, 2002. "How Stable are Financial Prediction Models? Evidence from US and International Stock Market Data," University of California at San Diego, Economics Working Paper Series qt74v515fr, Department of Economics, UC San Diego.

    Cited by:

    1. Danilov, D.L. & Magnus, J.R., 2002. "Forecast Accuracy after Pretesting with an Application to the Stock Market," Other publications TiSEM cb9b9b63-40a9-4035-924e-d, Tilburg University, School of Economics and Management.
    2. Todd E. Clark & Michael W. McCracken, 2004. "Improving forecast accuracy by combining recursive and rolling forecasts," Research Working Paper RWP 04-10, Federal Reserve Bank of Kansas City.
    3. Marco Aiolfi & Carlo Ambrogio Favero, "undated". "Model Uncertainty, Thick Modelling and the predictability of Stock Returns," Working Papers 221, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    4. Todd E. Clark & Michael W. McCracken, 2002. "Forecast-based model selection in the presence of structural breaks," Research Working Paper RWP 02-05, Federal Reserve Bank of Kansas City.
    5. Clark, Todd E. & McCracken, Michael W., 2005. "The power of tests of predictive ability in the presence of structural breaks," Journal of Econometrics, Elsevier, vol. 124(1), pages 1-31, January.

  37. Blake, David & Timmermann, Allan, 2002. "International Asset Allocation with Time-Varying Investment Opportunities," CEPR Discussion Papers 3464, C.E.P.R. Discussion Papers.

    Cited by:

    1. Rui Albuquerque & Gregory Bauer & Martin Schneider, 2004. "Characterizing Asymmetric Information in International Equity Markets," International Finance 0405005, University Library of Munich, Germany.
    2. Schneider, Martin & Albuquerque, Rui & ,, 2006. "Global Private Information in International Equity Markets," CEPR Discussion Papers 5819, C.E.P.R. Discussion Papers.
    3. Blake, David & Cairns, Andrew & Dowd, Kevin, 2008. "Turning pension plans into pension planes: What investment strategy designers of defined contribution pension plans can learn from commercial aircraft designers," MPRA Paper 33749, University Library of Munich, Germany.
    4. Rossi, Alberto G. & Blake, David & Timmermann, Allan & Tonks, Ian & Wermers, Russ, 2018. "Network centrality and delegated investment performance," Journal of Financial Economics, Elsevier, vol. 128(1), pages 183-206.
    5. Iwatsubo, Kentaro & Watkins, Clinton, 2021. "The changing role of foreign investors in Tokyo stock price formation," Pacific-Basin Finance Journal, Elsevier, vol. 67(C).
    6. Nadima El-Hassan & Paul Kofman, 2003. "Tracking Error and Active Portfolio Management," Australian Journal of Management, Australian School of Business, vol. 28(2), pages 183-207, September.
    7. Rossi, Alberto G. & Blake, David & Timmermann, Allan & Tonks, Ian & Wermers, Russ, 2015. "Network centrality and pension fund performance," CFR Working Papers 15-16, University of Cologne, Centre for Financial Research (CFR).
    8. Kirt Butler & Katsushi Okada, 2007. "Bivariate and higher-order terms in models of international equity returns," Applied Financial Economics, Taylor & Francis Journals, vol. 17(9), pages 725-737.
    9. Blake, David & Timmermann, Allan & Tonks, Ian & Wermers, Russ, 2010. "Decentralized investment management: evidence from the pension fund industry," MPRA Paper 35767, University Library of Munich, Germany.
    10. Korteweg, Arthur & Sorensen, Morten, 2017. "Skill and luck in private equity performance," Journal of Financial Economics, Elsevier, vol. 124(3), pages 535-562.
    11. Blake, David & Sarno, Lucio & Zinna, Gabriele, 2017. "The market for lemmings: The herding behavior of pension funds," Journal of Financial Markets, Elsevier, vol. 36(C), pages 17-39.
    12. Fernández, Pablo & Aguirreamalloa, Javier & Corres, Luis, 2013. "Rentabilidad de los fondos de pensiones en España. 2001-2011," IESE Research Papers D/1060, IESE Business School.
    13. Kamel Laaradh, 2007. "« Investir Sur Le Marche Inernational Des Actions A-T-Il Plus D'Effet Sur La Persistance De La Performance Des Fonds ? Illustration Britannique »," Post-Print halshs-00544930, HAL.
    14. Moosa, Imad A. & Al-Deehani, Talla M., 2009. "The Myth of International Diversification," Economia Internazionale / International Economics, Camera di Commercio Industria Artigianato Agricoltura di Genova, vol. 62(3), pages 383-406.
    15. Dreassi, Alberto & Miani, Stefano & Paltrinieri, Andrea, 2017. "Sovereign pension and social security reserve funds: A portfolio analysis," Global Finance Journal, Elsevier, vol. 34(C), pages 43-53.
    16. Ion Lapteacru, 2019. "Do bank activities and funding strategies of foreign and state‐owned banks have a differential effect on risk‐taking in Central and Eastern Europe?," Economics of Transition and Institutional Change, John Wiley & Sons, vol. 27(2), pages 541-576, February.
    17. Gabriele Zinna, 2014. "Price pressures in the UK index-linked market: an empirical investigation," Temi di discussione (Economic working papers) 968, Bank of Italy, Economic Research and International Relations Area.
    18. Manuel Ammann & Andreas Zingg, 2008. "Investment Performance of Swiss Pension Funds and Investment Foundations," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 144(II), pages 153-195, June.

  38. Allan Timmermann & M. Hashem Pesaran, 2002. "Market Timing and Return Prediction under Model Instability," FMG Discussion Papers dp412, Financial Markets Group.

    Cited by:

    1. Wang, Yudong & Hao, Xianfeng, 2023. "Forecasting the real prices of crude oil: What is the role of parameter instability?," Energy Economics, Elsevier, vol. 117(C).
    2. Barbara Rossi, 2011. "Advances in Forecasting Under Instability," Working Papers 11-20, Duke University, Department of Economics.
    3. Elliott, Graham & Muller, Ulrich K., 2007. "Confidence sets for the date of a single break in linear time series regressions," Journal of Econometrics, Elsevier, vol. 141(2), pages 1196-1218, December.
    4. Massimo Guidolin & Alexei G. Orlov, 2022. "Can Investors Benefit from Hedge Fund Strategies? Utility-Based, Out-of-Sample Evidence," Quarterly Journal of Finance (QJF), World Scientific Publishing Co. Pte. Ltd., vol. 12(03), pages 1-61, September.
    5. Fabian Baetje & Lukas Menkhoff, 2016. "Equity Premium Prediction: Are Economic and Technical Indicators Unstable?," Discussion Papers of DIW Berlin 1552, DIW Berlin, German Institute for Economic Research.
    6. Goodness C. Aye & Rangan Gupta & Mampho P. Modise, 2012. "Structural Breaks and Predictive Regressions Models of South African Equity Premium," Working Papers 201209, University of Pretoria, Department of Economics.
    7. Pesaran, M.H. & Pettenuzzo, D. & Timmermann, A., 2006. "Learning, Structural Instability and Present Value Calculations," Cambridge Working Papers in Economics 0602, Faculty of Economics, University of Cambridge.
    8. Robert A. Hill & Paulo M. M. Rodrigues, 2022. "Forgetting approaches to improve forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(7), pages 1356-1371, November.
    9. Emanuela Ciapanna & Marco Taboga, 2019. "Bayesian Analysis of Coefficient Instability in Dynamic Regressions," Econometrics, MDPI, vol. 7(3), pages 1-32, June.
    10. Xiaojie Xu, 2017. "Short-run price forecast performance of individual and composite models for 496 corn cash markets," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(14), pages 2593-2620, October.
    11. Tian, Jing & Anderson, Heather M., 2014. "Forecast combinations under structural break uncertainty," International Journal of Forecasting, Elsevier, vol. 30(1), pages 161-175.
    12. Tae-Hwy Lee & Shahnaz Parsaeian & Aman Ullah, 2022. "Forecasting under Structural Breaks Using Improved Weighted Estimation," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202212, University of Kansas, Department of Economics.
    13. Geweke, John & Jiang, Yu, 2011. "Inference and prediction in a multiple-structural-break model," Journal of Econometrics, Elsevier, vol. 163(2), pages 172-185, August.
    14. Andrew Ang & Allan Timmermann, 2011. "Regime Changes and Financial Markets," NBER Working Papers 17182, National Bureau of Economic Research, Inc.
    15. Gloria Gonzalez-Rivera & Yingying Sun, 2016. "Density Forecast Evaluation in Unstable Environments," Working Papers 201606, University of California at Riverside, Department of Economics.
    16. Yao, Juan & Gao, Jiti & Alles, Lakshman, 2005. "Dynamic investigation into the predictability of Australian industrial stock returns: Using financial and economic information," Pacific-Basin Finance Journal, Elsevier, vol. 13(2), pages 225-245, March.
    17. Jing Tian & Heather M. Anderson, 2011. "Forecasting Under Strucural Break Uncertainty," Monash Econometrics and Business Statistics Working Papers 8/11, Monash University, Department of Econometrics and Business Statistics.
    18. Ioannis Kyriakou & Parastoo Mousavi & Jens Perch Nielsen & Michael Scholz, 2021. "Forecasting benchmarks of long-term stock returns via machine learning," Annals of Operations Research, Springer, vol. 297(1), pages 221-240, February.
    19. Jaehun Chung & Yongmiao Hong, 2007. "Model-free evaluation of directional predictability in foreign exchange markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(5), pages 855-889.
    20. Pesaran, M. Hashem & Timmermann, Allan, 2004. "How costly is it to ignore breaks when forecasting the direction of a time series?," International Journal of Forecasting, Elsevier, vol. 20(3), pages 411-425.
    21. Kumar, Nikeel Nishkar & Patel, Arvind, 2023. "Nonlinear effect of air travel tourism demand on economic growth in Fiji," Journal of Air Transport Management, Elsevier, vol. 109(C).
    22. Henriques, Irene & Sadorsky, Perry, 2023. "Forecasting rare earth stock prices with machine learning," Resources Policy, Elsevier, vol. 86(PA).
    23. John M. Maheu & Stephen Gordon, 2004. "Learning, Forecasting and Structural Breaks," Cahiers de recherche 0422, CIRPEE.
    24. Todd E. Clark & Michael W. McCracken, 2004. "Improving forecast accuracy by combining recursive and rolling forecasts," Research Working Paper RWP 04-10, Federal Reserve Bank of Kansas City.
    25. Caterina Forti Grazzini & Massimo Guidolin, 2013. "Forecasting yield spreads under crisis-induced multiple breakpoints," Applied Economics Letters, Taylor & Francis Journals, vol. 20(18), pages 1656-1664, December.
    26. Pierdzioch, Christian & Risse, Marian & Rohloff, Sebastian, 2014. "The international business cycle and gold-price fluctuations," The Quarterly Review of Economics and Finance, Elsevier, vol. 54(2), pages 292-305.
    27. Sun, Yuying & Hong, Yongmiao & Wang, Shouyang & Zhang, Xinyu, 2023. "Penalized time-varying model averaging," Journal of Econometrics, Elsevier, vol. 235(2), pages 1355-1377.
    28. Paulo M.M. Rodrigues & Matei Demetrescu, 2019. "Testing for Episodic Predictability in Stock Returns," Working Papers w201906, Banco de Portugal, Economics and Research Department.
    29. Hui Hong & Fergal O'Brien & James Ryan, 2014. "Inflation And The Subsequent Timing Of The Chinese Stock Market," Asian Academy of Management Journal of Accounting and Finance (AAMJAF), Penerbit Universiti Sains Malaysia, vol. 10(2), pages 13-35.
    30. Nyberg, Henri & Pönkä, Harri, 2016. "International sign predictability of stock returns: The role of the United States," Economic Modelling, Elsevier, vol. 58(C), pages 323-338.
    31. Lennart Hoogerheide & Richard Kleijn & Francesco Ravazzolo & Herman K. Van Dijk & Marno Verbeek, 2010. "Forecast accuracy and economic gains from Bayesian model averaging using time-varying weights," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 251-269.
    32. Hanxiong Zhang & Robert Hudson & Hugh Metcalf & Viktor Manahov, 2017. "Investigation of institutional changes in the UK housing market using structural break tests and time-varying parameter models," Empirical Economics, Springer, vol. 53(2), pages 617-640, September.
    33. Pesaran, M. Hashem & Pettenuzzo, Davide & Timmermann, Allan, 2004. "Forecasting Time Series Subject to Multiple Structural Breaks," IZA Discussion Papers 1196, Institute of Labor Economics (IZA).
    34. Alptekin, Aynur & Broadstock, David C. & Chen, Xiaoqi & Wang, Dong, 2019. "Time-varying parameter energy demand functions: Benchmarking state-space methods against rolling-regressions," Energy Economics, Elsevier, vol. 82(C), pages 26-41.
    35. Yannick Hoga, 2024. "Persistence-Robust Break Detection in Predictive Quantile and CoVaR Regressions," Papers 2410.05861, arXiv.org.
    36. Wang, Yudong & Hao, Xianfeng, 2022. "Forecasting the real prices of crude oil: A robust weighted least squares approach," Energy Economics, Elsevier, vol. 116(C).
    37. Chatzitzisi, Evanthia & Fountas, Stilianos & Panagiotidis, Theodore, 2021. "Another look at calendar anomalies," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 823-840.
    38. Michael W. McCracken & Todd E. Clark, 2003. "The Predictive Content of the Output Gap for Inflation: Resolving In-Sample and Out-of-Sample Evidence," Computing in Economics and Finance 2003 183, Society for Computational Economics.
    39. Kuang-Liang Chang, 2012. "Stock return predictability and stationarity of dividend yield," Economics Bulletin, AccessEcon, vol. 32(1), pages 715-729.
    40. Shamsi Zamenjani, Azam, 2021. "Do financial variables help predict the conditional distribution of the market portfolio?," Journal of Empirical Finance, Elsevier, vol. 62(C), pages 327-345.
    41. Raffaella Giacomini & Barbara Rossi, 2014. "Forecasting in Nonstationary Environments: What Works and What Doesn't in Reduced-Form and Structural Models," Working Papers 819, Barcelona School of Economics.
    42. Feiyu Jiang & Zifeng Zhao & Xiaofeng Shao, 2022. "Modelling the COVID‐19 infection trajectory: A piecewise linear quantile trend model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1589-1607, November.
    43. Evzen Kocenda, 1999. "Detecting Structural Breaks: Exchange Rates in Transition Economies," CERGE-EI Working Papers wp149, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    44. Cem Cakmakli & Dick van Dijk, 2010. "Getting the Most out of Macroeconomic Information for Predicting Stock Returns and Volatility," Tinbergen Institute Discussion Papers 10-115/4, Tinbergen Institute.
    45. John M Maheu & Thomas H McCurdy, 2007. "How useful are historical data for forecasting the long-run equity return distribution?," Working Papers tecipa-293, University of Toronto, Department of Economics.
    46. Dellas, Harris & Gibson, Heather D. & Hall, Stephen G. & Tavlas, George S., 2018. "The macroeconomic and fiscal implications of inflation forecast errors," Journal of Economic Dynamics and Control, Elsevier, vol. 93(C), pages 203-217.
    47. Tae-Hwy Lee & Eric Hillebrand & Marcelo Medeiros, 2014. "Bagging Constrained Equity Premium Predictors," Working Papers 201421, University of California at Riverside, Department of Economics, revised Feb 2013.
    48. Russell Davidson & Niels S. Grønborg, 2018. "Time-varying parameters: New test tailored to applications in finance and macroeconomics," CREATES Research Papers 2018-22, Department of Economics and Business Economics, Aarhus University.
    49. Donadelli, Michael & Persha, Lauren, 2014. "Understanding emerging market equity risk premia: Industries, governance and macroeconomic policy uncertainty," Research in International Business and Finance, Elsevier, vol. 30(C), pages 284-309.
    50. Mark E. Wohar & David E. Rapach, 2007. "Forecasting the recent behavior of US business fixed investment spending: an analysis of competing models This is a significantly revised version of our previous paper, 'Forecasting US Business Fixed ," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(1), pages 33-51.
    51. Lozinskaia, Agata & Saltykova, Anastasiia, 2019. "Fundamental Factors Affecting the MOEX Russia Index: Retrospective Analysis," MPRA Paper 97308, University Library of Munich, Germany, revised 23 Sep 2019.
    52. Davide De Gaetano, 2016. "Forecast Combinations For Realized Volatility In Presence Of Structural Breaks," Departmental Working Papers of Economics - University 'Roma Tre' 0208, Department of Economics - University Roma Tre.
    53. Barnhart, Scott W. & Giannetti, Antoine, 2009. "Negative earnings, positive earnings and stock return predictability: An empirical examination of market timing," Journal of Empirical Finance, Elsevier, vol. 16(1), pages 70-86, January.
    54. Boonsoo Koo & Myung Hwan Seo, 2013. "Structural-break models under mis-specification: implications for forecasting," Monash Econometrics and Business Statistics Working Papers 11/13, Monash University, Department of Econometrics and Business Statistics.
    55. Timmermann, Allan & Granger, Clive, 2002. "Efficient Market Hypothesis and Forecasting," CEPR Discussion Papers 3593, C.E.P.R. Discussion Papers.
    56. Marco Aiolfi & Carlo Ambrogio Favero, "undated". "Model Uncertainty, Thick Modelling and the predictability of Stock Returns," Working Papers 221, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    57. Badi H. Baltagi & Qu Feng & Chihwa Kao, 2015. "Estimation of Heterogeneous Panels with Structural Breaks," Center for Policy Research Working Papers 179, Center for Policy Research, Maxwell School, Syracuse University.
    58. Todd E. Clark & Michael W. McCracken, 2009. "Combining Forecasts from Nested Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(3), pages 303-329, June.
    59. Raffaella Giacomini & Barbara Rossi, 2013. "Forecasting in macroeconomics," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 17, pages 381-408, Edward Elgar Publishing.
    60. Colino, Evelyn V. & Irwin, Scott H. & Garcia, Philip, 2008. "How Much Can Outlook Forecasts be Improved? An Application to the U.S. Hog Market," 2008 Conference, April 21-22, 2008, St. Louis, Missouri 37620, NCCC-134 Conference on Applied Commodity Price Analysis, Forecasting, and Market Risk Management.
    61. Gradojevic, Nikola & Gençay, Ramazan, 2013. "Fuzzy logic, trading uncertainty and technical trading," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 578-586.
    62. Ryan Compton & Syeed Khan, 2010. "An examination of the stability of short-run Canadian stock predictability," Economics Bulletin, AccessEcon, vol. 30(2), pages 1293-1306.
    63. Christian Pierdzioch & Daniel Hartmann, 2013. "Forecasting Eurozone real-estate returns," Applied Financial Economics, Taylor & Francis Journals, vol. 23(14), pages 1185-1196, July.
    64. Agata Lozinskaia & Anastasiia Saltykova, 2019. "Fundamental Factors Affecting The Moex Russia Index: Structural Break Detection In A Long-Term Time Series," HSE Working papers WP BRP 77/FE/2019, National Research University Higher School of Economics.
    65. Henkel, Sam James & Martin, J. Spencer & Nardari, Federico, 2011. "Time-varying short-horizon predictability," Journal of Financial Economics, Elsevier, vol. 99(3), pages 560-580, March.
    66. Muhammad Owais Qarni & Saqib Gulzar, 2020. "Intra-EMU and non-EMU, EU stock markets’ return spillover: evidence from ESDC," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 47(3), pages 543-577, August.
    67. Davide De Gaetano, 2018. "Forecast Combinations in the Presence of Structural Breaks: Evidence from U.S. Equity Markets," Mathematics, MDPI, vol. 6(3), pages 1-19, March.
    68. Erik Hillebrand & Tae-Hwy Lee & Marcelo Cunha Medeiros, 2012. "Let´s do it again: bagging equity premium predictors," Textos para discussão 604, Department of Economics PUC-Rio (Brazil).
    69. Stanislav Anatolyev, 2006. "Nonparametric retrospection and monitoring of predictability of financial returns," Working Papers w0071, Center for Economic and Financial Research (CEFIR).
    70. Pesaran, M. Hashem & Pick, Andreas & Pranovich, Mikhail, 2013. "Optimal forecasts in the presence of structural breaks," Journal of Econometrics, Elsevier, vol. 177(2), pages 134-152.
    71. Fan, Jianqing & Gong, Wenyan & Zhu, Ziwei, 2019. "Generalized high-dimensional trace regression via nuclear norm regularization," Journal of Econometrics, Elsevier, vol. 212(1), pages 177-202.
    72. Todd E. Clark & Michael W. McCracken, 2002. "Forecast-based model selection in the presence of structural breaks," Research Working Paper RWP 02-05, Federal Reserve Bank of Kansas City.
    73. Roy P. P. M. Hoevenaars & Roderick D. J. Molenaar & Peter C. Schotman & Tom B. M. Steenkamp, 2014. "Strategic Asset Allocation For Long‐Term Investors: Parameter Uncertainty And Prior Information," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(3), pages 353-376, April.
    74. McKenzie, Michael & Satchell, Stephen & Wongwachara, Warapong, 2012. "Nonlinearity and smoothing in venture capital performance data," Journal of Empirical Finance, Elsevier, vol. 19(5), pages 782-795.
    75. Sander, Magnus, 2018. "Market timing over the business cycle," Journal of Empirical Finance, Elsevier, vol. 46(C), pages 130-145.
    76. Naser, Hanan & Alaali, Fatema, 2015. "Can Oil Prices Help Predict US Stock Market Returns: An Evidence Using a DMA Approach," MPRA Paper 65295, University Library of Munich, Germany, revised 25 Jun 2015.
    77. Campisi, Giovanni & Muzzioli, Silvia & De Baets, Bernard, 2024. "A comparison of machine learning methods for predicting the direction of the US stock market on the basis of volatility indices," International Journal of Forecasting, Elsevier, vol. 40(3), pages 869-880.
    78. Jiawen Xu & Pierre Perron, 2017. "Forecasting in the presence of in and out of sample breaks," Boston University - Department of Economics - Working Papers Series WP2018-014, Boston University - Department of Economics, revised Nov 2018.
    79. Cederburg, Scott & O’Doherty, Michael S. & Wang, Feifei & Yan, Xuemin (Sterling), 2020. "On the performance of volatility-managed portfolios," Journal of Financial Economics, Elsevier, vol. 138(1), pages 95-117.
    80. Pesaran, M.H. & Timmermann, A., 2004. "‘Real Time Econometrics’," Cambridge Working Papers in Economics 0432, Faculty of Economics, University of Cambridge.
    81. Hanan Naser & Fatema Alaali, 2018. "Can oil prices help predict US stock market returns? Evidence using a dynamic model averaging (DMA) approach," Empirical Economics, Springer, vol. 55(4), pages 1757-1777, December.
    82. Mai Dao & Davide Furceri & Prakash Loungani, 2017. "Regional Labor Market Adjustment in the United States: Trend and Cycle," The Review of Economics and Statistics, MIT Press, vol. 99(2), pages 243-257, May.
    83. Timmermann, Allan, 2008. "Elusive return predictability," International Journal of Forecasting, Elsevier, vol. 24(1), pages 1-18.
    84. Yang Yang & Tae-Hwy Lee, 2004. "Bagging Binary Predictors for Time Series," Econometric Society 2004 Far Eastern Meetings 512, Econometric Society.
    85. Allan Timmermann & M. Hashem Pesaran, 2003. "Small Sample Properties of Forecasts from Autoregressive Models under Structural Breaks," CESifo Working Paper Series 990, CESifo.
    86. Patrick McGlenchy & Paul Kofman, 2004. "Structurally Sound Dynamic Index Futures Hedging," Econometric Society 2004 Australasian Meetings 80, Econometric Society.
    87. Daniele Bianchi & Kenichiro McAlinn, 2018. "Large-Scale Dynamic Predictive Regressions," Papers 1803.06738, arXiv.org.
    88. Zhao, Albert Bo & Cheng, Tingting, 2022. "Stock return prediction: Stacking a variety of models," Journal of Empirical Finance, Elsevier, vol. 67(C), pages 288-317.
    89. Wang, Yudong & Hao, Xianfeng & Wu, Chongfeng, 2021. "Forecasting stock returns: A time-dependent weighted least squares approach," Journal of Financial Markets, Elsevier, vol. 53(C).
    90. Pedro N. Rodríguez, & Simón Sosvilla-Rivero, 2006. "Forecasting Stock Price Changes: Is it Possible?," Working Papers 2006-22, FEDEA.
    91. Sjoerd van den Hauwe & Richard Paap & Dick J.C. van Dijk, 2011. "An Alternative Bayesian Approach to Structural Breaks in Time Series Models," Tinbergen Institute Discussion Papers 11-023/4, Tinbergen Institute.
    92. Roch, Oriol, 2013. "Histogram-based prediction of directional price relatives," Finance Research Letters, Elsevier, vol. 10(3), pages 110-115.
    93. Jiang, Feiyu & Zhao, Zifeng & Shao, Xiaofeng, 2023. "Time series analysis of COVID-19 infection curve: A change-point perspective," Journal of Econometrics, Elsevier, vol. 232(1), pages 1-17.
    94. Ioannis Kyriakou & Parastoo Mousavi & Jens Perch Nielsen & Michael Scholz, 2020. "Longer-Term Forecasting of Excess Stock Returns—The Five-Year Case," Mathematics, MDPI, vol. 8(6), pages 1-20, June.
    95. Seema Narayan & Russell Smyth, 2015. "The Financial Econometrics of Price Discovery and Predictability," Monash Economics Working Papers 06-15, Monash University, Department of Economics.
    96. Sharma, Susan Sunila & Narayan, Paresh Kumar, 2022. "Technology shocks and stock returns: A long-term perspective," Journal of Empirical Finance, Elsevier, vol. 68(C), pages 67-83.
    97. Çakmaklı, Cem & van Dijk, Dick, 2016. "Getting the most out of macroeconomic information for predicting excess stock returns," International Journal of Forecasting, Elsevier, vol. 32(3), pages 650-668.
    98. Smith, Simon C. & Timmermann, Allan & Zhu, Yinchu, 2019. "Variable selection in panel models with breaks," Journal of Econometrics, Elsevier, vol. 212(1), pages 323-344.
    99. Tae-Hwy Lee & Shahnaz Parsaeian & Aman Ullah, 2022. "Optimal Forecast under Structural Breaks," Working Papers 202208, University of California at Riverside, Department of Economics.
    100. Demetrescu, Matei & Rodrigues, Paulo M.M., 2022. "Residual-augmented IVX predictive regression," Journal of Econometrics, Elsevier, vol. 227(2), pages 429-460.
    101. Adam Canopius, 2006. "Practitioners' Corner," Journal of Financial Econometrics, Oxford University Press, vol. 4(2), pages 346-351.
    102. Yoontae Jeon & Thomas H. McCurdy, 2017. "Time-Varying Window Length for Correlation Forecasts," Econometrics, MDPI, vol. 5(4), pages 1-29, December.
    103. Pönkä, Harri, 2015. "Real oil prices and the international sign predictability of stock returns," MPRA Paper 68330, University Library of Munich, Germany.
    104. Clark, Todd E. & McCracken, Michael W., 2005. "The power of tests of predictive ability in the presence of structural breaks," Journal of Econometrics, Elsevier, vol. 124(1), pages 1-31, January.
    105. Hong, Hui & Chen, Naiwei & O’Brien, Fergal & Ryan, James, 2018. "Stock return predictability and model instability: Evidence from mainland China and Hong Kong," The Quarterly Review of Economics and Finance, Elsevier, vol. 68(C), pages 132-142.
    106. El-Shazly, Alaa, 2016. "Structural breaks and monetary dynamics: A time series analysis," Economic Modelling, Elsevier, vol. 53(C), pages 133-143.
    107. Syed Abul, Basher & Perry, Sadorsky, 2022. "Forecasting Bitcoin price direction with random forests: How important are interest rates, inflation, and market volatility?," MPRA Paper 113293, University Library of Munich, Germany.
    108. Shahnaz Parsaeian, 2023. "Structural Breaks in Seemingly Unrelated Regression Models," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202308, University of Kansas, Department of Economics.
    109. Campbell, Alrick, 2018. "Price and income elasticities of electricity demand: Evidence from Jamaica," Energy Economics, Elsevier, vol. 69(C), pages 19-32.
    110. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    111. Francesco Battaglia & Mattheos Protopapas, 2012. "Multi–regime models for nonlinear nonstationary time series," Computational Statistics, Springer, vol. 27(2), pages 319-341, June.
    112. Yuqing Feng & Yaojie Zhang & Yudong Wang, 2024. "Out‐of‐sample volatility prediction: Rolling window, expanding window, or both?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(3), pages 567-582, April.
    113. Johnson, Lorne D. & Sakoulis, Georgios, 2008. "Maximizing equity market sector predictability in a Bayesian time-varying parameter model," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3083-3106, February.
    114. Anne Vila Wetherilt & Simon Wells, 2004. "Long-horizon equity return predictability: some new evidence for the United Kingdom," Bank of England working papers 244, Bank of England.
    115. Henriques, Irene & Sadorsky, Perry, 2023. "Forecasting NFT coin prices using machine learning: Insights into feature significance and portfolio strategies," Global Finance Journal, Elsevier, vol. 58(C).
    116. Ravazzolo, F. & van Dijk, D.J.C. & Paap, R. & Franses, Ph.H.B.F., 2006. "Bayesian Model Averaging in the Presence of Structural Breaks," Econometric Institute Research Papers EI 2006-33, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    117. Czinkota, Thomas, 2012. "Das Halteproblem bei Strukturbrüchen in Finanzmarktzeitreihen [The Halting Problem applied to Structural Breaks in Financial Time Series]," MPRA Paper 37072, University Library of Munich, Germany.
    118. Xiaojie Xu, 2020. "Corn Cash Price Forecasting," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(4), pages 1297-1320, August.
    119. Ke Yang & Langnan Chen, 2014. "Realized Volatility Forecast: Structural Breaks, Long Memory, Asymmetry, and Day-of-the-Week Effect," International Review of Finance, International Review of Finance Ltd., vol. 14(3), pages 345-392, September.
    120. Elliott, Graham & Timmermann, Allan G, 2016. "Forecasting in Economics and Finance," University of California at San Diego, Economics Working Paper Series qt6z55v472, Department of Economics, UC San Diego.
    121. Lee, Tae-Hwy & Yang, Yang, 2006. "Bagging binary and quantile predictors for time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 465-497.
    122. Boot, Tom & Pick, Andreas, 2020. "Does modeling a structural break improve forecast accuracy?," Journal of Econometrics, Elsevier, vol. 215(1), pages 35-59.
    123. Hartmann, Daniel & Kempa, Bernd & Pierdzioch, Christian, 2006. "Economic and Financial Crises and the Predictability of U.S. Stock Returns," MPRA Paper 561, University Library of Munich, Germany.
    124. Dichtl, Hubert & Drobetz, Wolfgang & Neuhierl, Andreas & Wendt, Viktoria-Sophie, 2021. "Data snooping in equity premium prediction," International Journal of Forecasting, Elsevier, vol. 37(1), pages 72-94.
    125. Mai Dao & Davide Furceri & Mr. Prakash Loungani, 2014. "Regional Labor Market Adjustments in the United States and Europe," IMF Working Papers 2014/026, International Monetary Fund.
    126. Jan Verbesselt & Achim Zeileis & Martin Herold, 2011. "Near Real-Time Disturbance Detection in Terrestrial Ecosystems Using Satellite Image Time Series: Drought Detection in Somalia," Working Papers 2011-18, Faculty of Economics and Statistics, Universität Innsbruck.
    127. Ioannis Kyriakou & Parastoo Mousavi & Jens Perch Nielsen & Michael Scholz, 2019. "Machine Learning for Forecasting Excess Stock Returns The Five-Year-View," Graz Economics Papers 2019-06, University of Graz, Department of Economics.
    128. Ronald Ravinesh Kumar & Peter Josef Stauvermann & Nikeel Kumar & Syed Jawad Hussain Shahzad, 2019. "Exploring the effect of ICT and tourism on economic growth: a study of Israel," Economic Change and Restructuring, Springer, vol. 52(3), pages 221-254, August.
    129. Jiawen Xu & Pierre Perron, 2023. "Forecasting in the presence of in-sample and out-of-sample breaks," Empirical Economics, Springer, vol. 64(6), pages 3001-3035, June.
    130. Peter Klein & Daryl Purdy & Isaac Schweigert & Alexander Vedrashko, 2015. "The Canadian Hedge Fund Industry: Performance and Market Timing," International Review of Finance, International Review of Finance Ltd., vol. 15(3), pages 283-320, September.
    131. Jing Tian & Qing Zhou, 2018. "Improving equity premium forecasts by incorporating structural break uncertainty," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 58(S1), pages 619-656, November.
    132. Muhammad Owais Qarni & Saiqb Gulzar, 2021. "Portfolio diversification benefits of alternative currency investment in Bitcoin and foreign exchange markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-37, December.
    133. Paye, Bradley S. & Timmermann, Allan, 2006. "Instability of return prediction models," Journal of Empirical Finance, Elsevier, vol. 13(3), pages 274-315, June.
    134. Giannetti, A., 2007. "The short term predictive ability of earnings-price ratios: The recent evidence (1994-2003)," The Quarterly Review of Economics and Finance, Elsevier, vol. 47(1), pages 26-39, March.
    135. Prakash Loungani & Davide Furceri & Mai Dao, 2015. "Regional labor market adjustment in the United States," 2015 Meeting Papers 733, Society for Economic Dynamics.
    136. Hong, Hui & Jiang, Lijun & Zhang, Cheng & Yue, Zhonggang, 2024. "Do conventional and new energy stock markets herd differently? Evidence from China," Research in International Business and Finance, Elsevier, vol. 67(PA).
    137. Yao, Juan & Alles, Lakshman, 2006. "Industry return predictability, timing and profitability," Journal of Multinational Financial Management, Elsevier, vol. 16(2), pages 122-141, April.
    138. Thobeka Ncanywa & Marius Mamokgaetji Masoga, 2018. "Can public debt stimulate public investment and economic growth in South Africa?," Cogent Economics & Finance, Taylor & Francis Journals, vol. 6(1), pages 1516483-151, January.

  39. Bruce N. Lehmann & Allan Timmermann, 2002. "(UBS Pensions Series 3) Performance Clustering and Incentives in the UK Pension Fund Industry," FMG Discussion Papers dp425, Financial Markets Group.

    Cited by:

    1. Bijapur, Mohan & Croci, Manuela & Zaidi, Rida, 2012. "Do asset regulations impede portfolio diversification? evidence from European life insurance funds," LSE Research Online Documents on Economics 56618, London School of Economics and Political Science, LSE Library.
    2. Blake, David & Cairns, Andrew & Dowd, Kevin, 2008. "Turning pension plans into pension planes: What investment strategy designers of defined contribution pension plans can learn from commercial aircraft designers," MPRA Paper 33749, University Library of Munich, Germany.
    3. Martin Gold, 2010. "Fiduciary Finance," Books, Edward Elgar Publishing, number 13813.
    4. Lawrence Kryzanowski & Abdul Rahman, 2008. "Portfolio performance ambiguity and benchmark inefficiency revisited," Journal of Asset Management, Palgrave Macmillan, vol. 9(5), pages 321-332, December.
    5. Svitlana Voronkova & Martin T. Bohl, 2005. "Institutional Traders’ Behavior in an Emerging Stock Market: Empirical Evidence on Polish Pension Fund Investors," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 32(7‐8), pages 1537-1560, September.
    6. Agarwal, Vikas & Gómez, Juan-Pedro & Priestley, Richard, 2012. "Management compensation and market timing under portfolio constraints," Journal of Economic Dynamics and Control, Elsevier, vol. 36(10), pages 1600-1625.
    7. Raddatz, Claudio & Schmukler, Sergio L., 2011. "Deconstructing herding : evidence from pension fund investment behavior," Policy Research Working Paper Series 5700, The World Bank.
    8. Paul Cox & Stephen Brammer & Andrew Millington, 2007. "Pension Fund Manager Tournaments and Attitudes Towards Corporate Characteristics," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 34(7‐8), pages 1307-1326, September.
    9. Christoph Gort & Mei Wang, 2010. "Overconfidence and Active Management," Chapters, in: Brian Bruce (ed.), Handbook of Behavioral Finance, chapter 12, Edward Elgar Publishing.
    10. John Watson & James Delaney & Michael Dempsey & J. Wickramanayake, 2016. "Australian superannuation (pension) fund product ratings and performance: A guide for fund managers," Australian Journal of Management, Australian School of Business, vol. 41(2), pages 189-211, May.
    11. Jem Tugwell, 2011. "Skill or luck? The role of strategies and scenario analysis as a competitive differentiator for fund management firms," Journal of Asset Management, Palgrave Macmillan, vol. 12(4), pages 281-291, September.

  40. Elliott, Graham & Timmermann, Allan, 2002. "Optimal Forecast Combination Under General Loss Functions and Forecast Error Distributions," University of California at San Diego, Economics Working Paper Series qt15r9t2q2, Department of Economics, UC San Diego.

    Cited by:

    1. Barbara Rossi, 2011. "Advances in Forecasting Under Instability," Working Papers 11-20, Duke University, Department of Economics.
    2. Clements, Michael P., 2008. "Explanations of the inconsistencies in survey respondents'forecasts," The Warwick Economics Research Paper Series (TWERPS) 870, University of Warwick, Department of Economics.
    3. Carlos Capistrán-Carmona, 2005. "Bias in Federal Reserve Inflation Forecasts: Is the Federal Reserve Irrational or Just Cautious?," Computing in Economics and Finance 2005 127, Society for Computational Economics.
    4. Aretz, Kevin & Bartram, Söhnke M. & Pope, Peter F., 2011. "Asymmetric Loss Functions and the Rationality of Expected Stock Returns," MPRA Paper 47343, University Library of Munich, Germany.
    5. Mehmet Pinar & Thanasis Stengos & M. Ege Yazgan, 2018. "Quantile forecast combination using stochastic dominance," Empirical Economics, Springer, vol. 55(4), pages 1717-1755, December.
    6. Jiang Wu & Jianzhong Zhou & Lu Chen & Lei Ye, 2015. "Coupling Forecast Methods of Multiple Rainfall–Runoff Models for Improving the Precision of Hydrological Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5091-5108, November.
    7. Golosnoy, Vasyl & Hamid, Alain & Okhrin, Yarema, 2014. "The empirical similarity approach for volatility prediction," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 321-329.
    8. Cecilia Frale & Libero Monteforte, "undated". "FaMIDAS: A Mixed Frequency Factor Model with MIDAS structure," Working Papers 3, Department of the Treasury, Ministry of the Economy and of Finance.
    9. Barrow, Devon K. & Kourentzes, Nikolaos, 2016. "Distributions of forecasting errors of forecast combinations: Implications for inventory management," International Journal of Production Economics, Elsevier, vol. 177(C), pages 24-33.
    10. Giacomini, Raffaella & Komunjer, Ivana, 2002. "Evaluation and Combination of Conditional Quantile Forecasts," University of California at San Diego, Economics Working Paper Series qt4n99t4wz, Department of Economics, UC San Diego.
    11. Jan R. Magnus & Wendun Wang & Xinyu Zhang, 2016. "Weighted-Average Least Squares Prediction," Econometric Reviews, Taylor & Francis Journals, vol. 35(6), pages 1040-1074, June.
    12. Patton, Andrew J. & Timmermann, Allan, 2007. "Properties of optimal forecasts under asymmetric loss and nonlinearity," Journal of Econometrics, Elsevier, vol. 140(2), pages 884-918, October.
    13. Wagner Piazza Gaglianone & Luiz Renato Lima, 2014. "Constructing Optimal Density Forecasts From Point Forecast Combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(5), pages 736-757, August.
    14. Matteo Iacopini & Francesco Ravazzolo & Luca Rossini, 2020. "Proper scoring rules for evaluating asymmetry in density forecasting," Working Papers No 06/2020, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    15. Heather M. Anderson & Farshid Vahid, 2005. "Nonlinear Correlograms and Partial Autocorrelograms," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 957-982, December.
    16. Valentina Corradi & Norman Swanson, 2013. "A Survey of Recent Advances in Forecast Accuracy Comparison Testing, with an Extension to Stochastic Dominance," Departmental Working Papers 201309, Rutgers University, Department of Economics.
    17. Todd E. Clark & Michael W. McCracken, 2004. "Improving forecast accuracy by combining recursive and rolling forecasts," Research Working Paper RWP 04-10, Federal Reserve Bank of Kansas City.
    18. Jakub Nowotarski, 2013. "Short-term forecasting of electricity spot prices using model averaging (Krótkoterminowe prognozowanie spotowych cen energii elektrycznej z wykorzystaniem uśredniania modeli)," HSC Research Reports HSC/13/17, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    19. Xing, Li-Min & Zhang, Yue-Jun, 2022. "Forecasting crude oil prices with shrinkage methods: Can nonconvex penalty and Huber loss help?," Energy Economics, Elsevier, vol. 110(C).
    20. Coshall, John T. & Charlesworth, Richard, 2011. "A management orientated approach to combination forecasting of tourism demand," Tourism Management, Elsevier, vol. 32(4), pages 759-769.
    21. Jana Eklund & Sune Karlsson, 2007. "Forecast Combination and Model Averaging Using Predictive Measures," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 329-363.
    22. Demetrescu, Matei & Hacioglu Hoke, Sinem, 2018. "Predictive regressions under asymmetric loss: factor augmentation and model selection," Bank of England working papers 723, Bank of England.
    23. Coroneo, Laura & Iacone, Fabrizio & Paccagnini, Alessia & Santos Monteiro, Paulo, 2023. "Testing the predictive accuracy of COVID-19 forecasts," International Journal of Forecasting, Elsevier, vol. 39(2), pages 606-622.
    24. Barbara Będowska-Sójka, 2018. "Is intraday data useful for forecasting VaR? The evidence from EUR/PLN exchange rate," Risk Management, Palgrave Macmillan, vol. 20(4), pages 326-346, November.
    25. Aiolfi, Marco & Timmermann, Allan, 2006. "Persistence in forecasting performance and conditional combination strategies," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 31-53.
    26. Sainan Jin & Valentina Corradi & Norman Swanson, 2015. "Robust Forecast Comparison," Departmental Working Papers 201502, Rutgers University, Department of Economics.
    27. Timmermann, Allan & Elliott, Graham, 2007. "Economic Forecasting," CEPR Discussion Papers 6158, C.E.P.R. Discussion Papers.
    28. Viviano, Davide & Bradic, Jelena, 2023. "Synthetic Learner: Model-free inference on treatments over time," Journal of Econometrics, Elsevier, vol. 234(2), pages 691-713.
    29. Ekaterina V. Astafyeva & Maria Yu. Turuntseva, 2023. "Analysis of Opportunities to Improve the Quality of Natural Resource Price by Combining Forecasts Resulting from Methods Based on Regression Estimates of Weights [Анализ Возможностей Улучшения Каче," Russian Economic Development, Gaidar Institute for Economic Policy, issue 12, pages 24-33, December.
    30. Wei, Xiaoqiao & Yang, Yuhong, 2012. "Robust forecast combinations," Journal of Econometrics, Elsevier, vol. 166(2), pages 224-236.
    31. Heijmans, Roweno J.R.K. & Gerlagh, Reyer, 2019. "Regulating Global Externalities," Other publications TiSEM 9a0a6f7a-f8d0-4495-8aed-4, Tilburg University, School of Economics and Management.
    32. Norman R. Swanson & Weiqi Xiong, 2018. "Big data analytics in economics: What have we learned so far, and where should we go from here?," Canadian Journal of Economics, Canadian Economics Association, vol. 51(3), pages 695-746, August.
    33. Xu, Yexiao, 2004. "Small levels of predictability and large economic gains," Journal of Empirical Finance, Elsevier, vol. 11(2), pages 247-275, March.
    34. Aiolfi Marco & Capistrán Carlos & Timmermann Allan, 2010. "Forecast Combinations," Working Papers 2010-04, Banco de México.
    35. Massimo Guidolin, 2011. "Markov Switching Models in Empirical Finance," Working Papers 415, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    36. Marco Aiolfi & Carlo Ambrogio Favero, "undated". "Model Uncertainty, Thick Modelling and the predictability of Stock Returns," Working Papers 221, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    37. Groen, Jan J.J. & Kapetanios, George, 2016. "Revisiting useful approaches to data-rich macroeconomic forecasting," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 221-239.
    38. Todd E. Clark & Michael W. McCracken, 2009. "Combining Forecasts from Nested Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(3), pages 303-329, June.
    39. Cheng, Gang & Yang, Yuhong, 2015. "Forecast combination with outlier protection," International Journal of Forecasting, Elsevier, vol. 31(2), pages 223-237.
    40. Sancetta, A., 2007. "Online Forecast Combination for Dependent Heterogeneous Data," Cambridge Working Papers in Economics 0718, Faculty of Economics, University of Cambridge.
    41. George Athanasopoulos & Rob J Hyndman & Nikolaos Kourentzes & Fotios Petropoulos, 2015. "Forecasting with Temporal Hierarchies," Monash Econometrics and Business Statistics Working Papers 16/15, Monash University, Department of Econometrics and Business Statistics.
    42. Norman Swanson & Valentina Corradi, 2006. "Nonparametric Bootstrap Procedures for Predictive Inference Based on Recursive Estimation Schemes," Departmental Working Papers 200618, Rutgers University, Department of Economics.
    43. Massimiliano Giacalone, 2022. "Optimal forecasting accuracy using Lp-norm combination," METRON, Springer;Sapienza Università di Roma, vol. 80(2), pages 187-230, August.
    44. Sancetta, A. & Satchell, S.E., 2004. "Cost of Capital and Regulator’s Preferences: Investigation into a new method of estimating regulatory bias," Cambridge Working Papers in Economics 0441, Faculty of Economics, University of Cambridge.
    45. Martin Baumgärtner & Jens Klose, 2019. "Forecasting exchange rates with commodity prices—a global country analysis," The World Economy, Wiley Blackwell, vol. 42(9), pages 2546-2565, September.
    46. Massimo Guidolin & Carrie Fangzhou Na, 2007. "The economic and statistical value of forecast combinations under regime switching: an application to predictable U.S. returns," Working Papers 2006-059, Federal Reserve Bank of St. Louis.
    47. Gneiting, Tilmann, 2011. "Quantiles as optimal point forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 197-207, April.
    48. Alessandro Riboni & Francisco Ruge-Murcia, 2020. "The Power of the Federal Reserve Chair," Cahiers de recherche 20-2020, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    49. Chanont Banternghansa & Michael W. McCracken, 2010. "Real-time forecast averaging with ALFRED," Working Papers 2010-033, Federal Reserve Bank of St. Louis.
    50. Lima, Luiz Renato Regis de Oliveira & Issler, João Victor, 2007. "A panel data approach to economic forecasting: the bias-corrected average forecast," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 650, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    51. Elena Andreou & Eric Ghysels & Constantinos Kourouyiannis, 2012. "Robust volatility forecasts in the presence of structural breaks," University of Cyprus Working Papers in Economics 08-2012, University of Cyprus Department of Economics.
    52. Gaglianone, Wagner Piazza & Issler, João Victor, 2019. "Microfounded forecasting," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 813, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    53. Clements, Michael P. & Harvey, David I., 2011. "Combining probability forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 208-223, April.
    54. Xiaohong Chen & Yanqin Fan, 2004. "Estimation and Model Selection of Semiparametric Copula-Based Multivariate Dynamic Models under Copula Misspecification," Vanderbilt University Department of Economics Working Papers 0419, Vanderbilt University Department of Economics, revised Sep 2004.
    55. Magnus, J.R. & Wang, W. & Zhang, Xinyu, 2012. "WALS Prediction," Discussion Paper 2012-043, Tilburg University, Center for Economic Research.
    56. Heijmans, Roweno J.R.K. & Gerlagh, Reyer, 2019. "Regulating Global Externalities," Discussion Paper 2019-001, Tilburg University, Center for Economic Research.
    57. Qing Zhou & Robert Faff, 2017. "The complementary role of cross-sectional and time-series information in forecasting stock returns," Australian Journal of Management, Australian School of Business, vol. 42(1), pages 113-139, February.
    58. Taylor, James W., 2020. "Forecast combinations for value at risk and expected shortfall," International Journal of Forecasting, Elsevier, vol. 36(2), pages 428-441.
    59. Gomez, Miguel I. & Gonzalez, Eliana & Melo, Luis F. & Torres, Jose L., 2006. "Forecasting Food Price Inflation, Challenges for Central Banks in Developing Countries using an Inflation Targeting Framework: the Case of Colombia," 2006 Annual meeting, July 23-26, Long Beach, CA 21181, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    60. Wagner Piazza Gaglianone & João Victor Issler & Silvia Maria Matos, 2017. "Applying a microfounded-forecasting approach to predict Brazilian inflation," Empirical Economics, Springer, vol. 53(1), pages 137-163, August.
    61. Laborda, Ricardo, 2018. "Optimal combination of currency strategies," The North American Journal of Economics and Finance, Elsevier, vol. 43(C), pages 129-140.
    62. Valentina Corradi & Norman Swanson, 2004. "Bootstrap Procedures for Recursive Estimation Schemes With Applications to Forecast Model Selection," Departmental Working Papers 200418, Rutgers University, Department of Economics.
    63. Luke Hartigan, 2016. "Alternative HAC Covariance Matrix Estimators with Improved Finite Sample Properties," Discussion Papers 2016-06, School of Economics, The University of New South Wales.
    64. Elena Andreou & Constantinos Kourouyiannis & Andros Kourtellos, 2012. "Volatility Forecast Combinations using Asymmetric Loss Functions," University of Cyprus Working Papers in Economics 07-2012, University of Cyprus Department of Economics.
    65. Xinyu Zhang & Alan T. K. Wan & Sherry Z. Zhou, 2011. "Focused Information Criteria, Model Selection, and Model Averaging in a Tobit Model With a Nonzero Threshold," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 132-142, June.
    66. Chotikapanich, D. & Griffiths, W.E. & Rao, D.S.P., 2001. "Averaging Income Distributions," Department of Economics - Working Papers Series 798, The University of Melbourne.
    67. Gneiting, Tilmann, 2011. "Quantiles as optimal point forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 197-207.
    68. Björn Fastrich & Peter Winker, 2014. "Combining Forecasts with Missing Data: Making Use of Portfolio Theory," Computational Economics, Springer;Society for Computational Economics, vol. 44(2), pages 127-152, August.
    69. Ulrich Gunter & Irem Önder & Egon Smeral, 2020. "Are Combined Tourism Forecasts Better at Minimizing Forecasting Errors?," Forecasting, MDPI, vol. 2(3), pages 1-19, June.
    70. Egorov, Alexei V. & Hong, Yongmiao & Li, Haitao, 2006. "Validating forecasts of the joint probability density of bond yields: Can affine models beat random walk?," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 255-284.
    71. Gary Cornwall & Jeff Chen & Beau Sauley, 2021. "Standing on the Shoulders of Machine Learning: Can We Improve Hypothesis Testing?," Papers 2103.01368, arXiv.org.
    72. Matei Demetrescu, 2007. "Optimal forecast intervals under asymmetric loss," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(4), pages 227-238.
    73. Andrea Carriero & Raffaella Giacomini, 2011. "How useful are no-arbitrage restrictions for forecasting the term structure of interest rates?," Post-Print hal-00844809, HAL.
    74. John Galbraith & Greg Tkacz, 2007. "How Far Can Forecasting Models Forecast? Forecast Content Horizons for Some Important Macroeconomic Variables," Staff Working Papers 07-1, Bank of Canada.
    75. Kocięcki, Andrzej & Kolasa, Marcin & Rubaszek, Michał, 2012. "A Bayesian method of combining judgmental and model-based density forecasts," Economic Modelling, Elsevier, vol. 29(4), pages 1349-1355.
    76. Zongwu Cai & Chaoqun Ma & Xianhua Mi, 2020. "Realized Volatility Forecasting Based on Dynamic Quantile Model Averaging," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202016, University of Kansas, Department of Economics, revised Sep 2020.
    77. Capistrán Carlos, 2007. "Optimality Tests for Multi-Horizon Forecasts," Working Papers 2007-14, Banco de México.
    78. Kevin Aretz & David Peel, 2007. "Some implications of a quartic loss function," Economics Bulletin, AccessEcon, vol. 7(13), pages 1-7.
    79. Alexander, Marcus & Christakis, Nicholas A., 2008. "Bias and asymmetric loss in expert forecasts: A study of physician prognostic behavior with respect to patient survival," Journal of Health Economics, Elsevier, vol. 27(4), pages 1095-1108, July.
    80. Sancetta, Alessio, 2007. "Online forecast combinations of distributions: Worst case bounds," Journal of Econometrics, Elsevier, vol. 141(2), pages 621-651, December.
    81. Magnus, J.R. & Wang, W. & Zhang, Xinyu, 2012. "WALS Prediction," Other publications TiSEM 7715e942-b446-4985-8216-f, Tilburg University, School of Economics and Management.

  41. Timmermann, Allan & Guidolin, Massimo, 2001. "Option Prices under Bayesian Learning: Implied Volatility Dynamics and Predictive Densities," CEPR Discussion Papers 3005, C.E.P.R. Discussion Papers.

    Cited by:

    1. Fearghal Kearney & Han Lin Shang & Lisa Sheenan, 2019. "Implied volatility surface predictability: the case of commodity markets," Papers 1909.11009, arXiv.org.
    2. Chalamandaris, Georgios & Tsekrekos, Andrianos E., 2010. "Predictable dynamics in implied volatility surfaces from OTC currency options," Journal of Banking & Finance, Elsevier, vol. 34(6), pages 1175-1188, June.
    3. Laurent E. Calvet & Adlai J. Fisher, 2005. "Multifrequency News and Stock Returns," NBER Working Papers 11441, National Bureau of Economic Research, Inc.
    4. Hautsch, Nikolaus & Hess, Dieter E. & Veredas, David, 2010. "The impact of macroeconomic news on quote adjustments, noise, and informational volatility," CFS Working Paper Series 2010/01, Center for Financial Studies (CFS).
    5. A. A. Brown & L. C. G. Rogers, 2009. "Heterogeneous Beliefs with Finite-Lived Agents," Papers 0907.4953, arXiv.org.
    6. M. Duembgen & L. C. G. Rogers, 2014. "Estimate nothing," Papers 1401.5666, arXiv.org.
    7. Calvet, Laurent-Emmanuel & Czellar , Veronika, 2011. "state-observation sampling and the econometrics of learning models," HEC Research Papers Series 947, HEC Paris.
    8. Shang, Han Lin & Kearney, Fearghal, 2022. "Dynamic functional time-series forecasts of foreign exchange implied volatility surfaces," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1025-1049.
    9. Sílvia Gonçalves & Massimo Guidolin, 2006. "Predictable Dynamics in the S&P 500 Index Options Implied Volatility Surface," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1591-1636, May.
    10. Massimo Guidolin, 2006. "High equity premia and crash fears - Rational foundations," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 28(3), pages 693-708, August.
    11. Nikolaus Hautsch & Dieter Hess & Christoph Müller, 2008. "Price Adjustment to News with Uncertain Precision," FRU Working Papers 2008/01, University of Copenhagen. Department of Economics. Finance Research Unit.
    12. Carsten Krabbe Nielsen, 2004. "Rational overconfidence and excess volatility in General Equilibrium," Econometric Society 2004 Australasian Meetings 279, Econometric Society.
    13. Shu Ling Chiang & Ming Shann Tsai, 2019. "Valuation of an option using non-parametric methods," Review of Derivatives Research, Springer, vol. 22(3), pages 419-447, October.
    14. Bernales, Alejandro & Chen, Louisa & Valenzuela, Marcela, 2017. "Learning and forecasts about option returns through the volatility risk premium," Journal of Economic Dynamics and Control, Elsevier, vol. 82(C), pages 312-330.
    15. Guidolin, Massimo & Timmermann, Allan, 2007. "Properties of equilibrium asset prices under alternative learning schemes," Journal of Economic Dynamics and Control, Elsevier, vol. 31(1), pages 161-217, January.
    16. Chatrath, Arjun & Miao, Hong & Ramchander, Sanjay, 2014. "Crude oil moments and PNG stock returns," Energy Economics, Elsevier, vol. 44(C), pages 222-235.
    17. Sudarshan Kumar & Sobhesh Kumar Agarwalla & Jayanth R. Varma & Vineet Virmani, 2023. "Harvesting the volatility smile in a large emerging market: A Dynamic Nelson–Siegel approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(11), pages 1615-1644, November.
    18. Massimo Guidolin & Kai Wang, 2022. "The Empirical Performance of Option Implied Volatility Surface-Driven Optimal Portfolios," BAFFI CAREFIN Working Papers 22190, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    19. Calvet, Laurent E. & Czellar, Veronika, 2015. "Through the looking glass: Indirect inference via simple equilibria," Journal of Econometrics, Elsevier, vol. 185(2), pages 343-358.
    20. Massimo Guidolin, 2005. "Pessimistic beliefs under rational learning: quantitative implications for the equity premium puzzle," Working Papers 2005-005, Federal Reserve Bank of St. Louis.
    21. Bedendo, Mascia & Hodges, Stewart D., 2009. "The dynamics of the volatility skew: A Kalman filter approach," Journal of Banking & Finance, Elsevier, vol. 33(6), pages 1156-1165, June.
    22. Bernales, Alejandro & Guidolin, Massimo, 2014. "Can we forecast the implied volatility surface dynamics of equity options? Predictability and economic value tests," Journal of Banking & Finance, Elsevier, vol. 46(C), pages 326-342.
    23. Élise PAYZAN LE NESTOUR, 2010. "Bayesian Learning in UnstableSettings: Experimental Evidence Based on the Bandit Problem," Swiss Finance Institute Research Paper Series 10-28, Swiss Finance Institute.
    24. Angus A Brown & L C G Rogers, 2010. "Diverse Beliefs," Papers 1001.1450, arXiv.org.
    25. Le, Van & Zurbruegg, Ralf, 2014. "Forecasting option smile dynamics," International Review of Financial Analysis, Elsevier, vol. 35(C), pages 32-45.
    26. Bernales, Alejandro & Guidolin, Massimo, 2015. "Learning to smile: Can rational learning explain predictable dynamics in the implied volatility surface?," Journal of Financial Markets, Elsevier, vol. 26(C), pages 1-37.
    27. Sadayuki Ono, 2007. "Option Pricing under Stochastic Volatility and Trading Volume," Discussion Papers 07/05, Department of Economics, University of York.
    28. Chalamandaris, Georgios & Rompolis, Leonidas S., 2012. "Exploring the role of the realized return distribution in the formation of the implied volatility smile," Journal of Banking & Finance, Elsevier, vol. 36(4), pages 1028-1044.
    29. Lei Shi, 2010. "Portfolio Analysis and Equilibrium Asset Pricing with Heterogeneous Beliefs," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2010, January-A.
    30. Paruolo Paolo, 2004. "Automated Inference and the Future of Econometrics: A comment," Economics and Quantitative Methods qf04025, Department of Economics, University of Insubria.
    31. Rainer Baule & Bart Frijns & Milena E. Tieves, 2018. "Volatility discovery and volatility quoting on markets for options and warrants," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(7), pages 758-774, July.
    32. Tao Li, 2013. "Investors' Heterogeneity and Implied Volatility Smiles," Management Science, INFORMS, vol. 59(10), pages 2392-2412, October.
    33. Bernales, Alejandro & Verousis, Thanos & Voukelatos, Nikolaos, 2020. "Do investors follow the herd in option markets?," Journal of Banking & Finance, Elsevier, vol. 119(C).
    34. Quaye, Enoch & Tunaru, Radu, 2022. "The stock implied volatility and the implied dividend volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 134(C).
    35. Xue-Zhong He & Lei Shi, 2016. "A Binomial Model of Asset and Option Pricing with Heterogeneous Beliefs," Published Paper Series 2016-4, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    36. Shaliastovich, Ivan, 2015. "Learning, confidence, and option prices," Journal of Econometrics, Elsevier, vol. 187(1), pages 18-42.
    37. Liu, Yi-Fang & Zhang, Wei & Xu, Hai-Chuan, 2014. "Collective behavior and options volatility smile: An agent-based explanation," Economic Modelling, Elsevier, vol. 39(C), pages 232-239.
    38. Guidolin, Massimo, 2003. "International asset prices and portfolio choices under Bayesian learning," Research in Economics, Elsevier, vol. 57(4), pages 383-437, December.
    39. Konstantinidi, Eirini & Skiadopoulos, George & Tzagkaraki, Emilia, 2008. "Can the evolution of implied volatility be forecasted? Evidence from European and US implied volatility indices," Journal of Banking & Finance, Elsevier, vol. 32(11), pages 2401-2411, November.
    40. Markopoulou, Chryssa & Skintzi, Vasiliki & Refenes, Apostolos, 2016. "On the predictability of model-free implied correlation," International Journal of Forecasting, Elsevier, vol. 32(2), pages 527-547.
    41. Nielsen, Carsten Krabbe, 2008. "On rationally confident beliefs and rational overconfidence," Mathematical Social Sciences, Elsevier, vol. 55(3), pages 381-404, May.
    42. Wang, Jinzhong & Chen, Shijiang & Tao, Qizhi & Zhang, Ting, 2017. "Modelling the implied volatility surface based on Shanghai 50ETF options," Economic Modelling, Elsevier, vol. 64(C), pages 295-301.
    43. Anais Maillet, 2015. "Food price volatility and farmers' production decisions under imperfect information," FOODSECURE Technical papers 8, LEI Wageningen UR.
    44. Shengli Chen & Zili Zhang, 2019. "Forecasting Implied Volatility Smile Surface via Deep Learning and Attention Mechanism," Papers 1912.11059, arXiv.org.

  42. Timmermann, Allan, 2001. "Structural Breaks, Incomplete Information and Stock Prices," University of California at San Diego, Economics Working Paper Series qt1sn269d7, Department of Economics, UC San Diego.

    Cited by:

    1. Martin Lettau & Stijn Van Nieuwerburgh, 2006. "Reconciling the Return Predictability Evidence," 2006 Meeting Papers 29, Society for Economic Dynamics.
    2. Elena Andreou, 2004. "The Impact of Sampling Frequency and Volatility Estimators on Change-Point Tests," Journal of Financial Econometrics, Oxford University Press, vol. 2(2), pages 290-318.
    3. Massacci, Daniele & Kapetanios, George, 2024. "Forecasting in factor augmented regressions under structural change," International Journal of Forecasting, Elsevier, vol. 40(1), pages 62-76.
    4. Londoño Yarce, Juan Miguel & Regúlez Castillo, Marta & Vázquez Pérez, Jesús, 2014. "An Alternative View of the US Price-Dividend Ratio Dynamics," DFAEII Working Papers 1988-088X, University of the Basque Country - Department of Foundations of Economic Analysis II.
    5. Pesaran, M.H. & Pettenuzzo, D. & Timmermann, A., 2006. "Learning, Structural Instability and Present Value Calculations," Cambridge Working Papers in Economics 0602, Faculty of Economics, University of Cambridge.
    6. Michail Karoglou & Bruce Morley & Dennis Thomas, 2013. "Risk and Structural Instability in US House Prices," The Journal of Real Estate Finance and Economics, Springer, vol. 46(3), pages 424-436, April.
    7. Smith, Aaron, 2005. "Level Shifts and the Illusion of Long Memory in Economic Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 321-335, July.
    8. Andrew Ang & Allan Timmermann, 2011. "Regime Changes and Financial Markets," NBER Working Papers 17182, National Bureau of Economic Research, Inc.
    9. Smith, Aaron & Naik, Prasad A. & Tsai, Chih-Ling, 2006. "Markov-switching model selection using Kullback-Leibler divergence," Journal of Econometrics, Elsevier, vol. 134(2), pages 553-577, October.
    10. Zhou, Yinggang, 2014. "Modeling the joint dynamics of risk-neutral stock index and bond yield volatilities," Journal of Banking & Finance, Elsevier, vol. 38(C), pages 216-228.
    11. Pesaran, M. Hashem & Timmermann, Allan, 2004. "How costly is it to ignore breaks when forecasting the direction of a time series?," International Journal of Forecasting, Elsevier, vol. 20(3), pages 411-425.
    12. Granger, Clive W.J. & Machina, Mark J., 2006. "Structural attribution of observed volatility clustering," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 15-29.
    13. Abhimanyu Gupta & Myung Hwan Seo, 2019. "Robust Inference on Infinite and Growing Dimensional Time Series Regression," Papers 1911.08637, arXiv.org, revised Apr 2023.
    14. Pierdzioch, Christian & Risse, Marian & Rohloff, Sebastian, 2014. "The international business cycle and gold-price fluctuations," The Quarterly Review of Economics and Finance, Elsevier, vol. 54(2), pages 292-305.
    15. Londono, Juan M. & Regúlez, Marta & Vázquez, Jesús, 2015. "An alternative view of the US price–dividend ratio dynamics," International Review of Economics & Finance, Elsevier, vol. 38(C), pages 291-307.
    16. Kanungo, Rama Prasad, 2021. "Uncertainty of M&As under asymmetric estimation," Journal of Business Research, Elsevier, vol. 122(C), pages 774-793.
    17. Massimo Guidolin, 2006. "High equity premia and crash fears - Rational foundations," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 28(3), pages 693-708, August.
    18. Pietro Veronesi, "undated". "Belief-dependent Utilities, Aversion to State-Uncertainty and Asset Prices,”," CRSP working papers 529, Center for Research in Security Prices, Graduate School of Business, University of Chicago.
    19. J. Doyne Farmer & John Geanakoplos, 2008. "The Virtues and Vices of Equilibrium and the Future of Financial Economics," Levine's Working Paper Archive 122247000000002067, David K. Levine.
    20. Giorgio Valente & Lucio Sarno, 2005. "Modelling and forecasting stock returns: exploiting the futures market, regime shifts and international spillovers," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(3), pages 345-376.
    21. Daniel Andrei & Bruce Carlin & Michael Hasler, 2019. "Asset Pricing with Disagreement and Uncertainty About the Length of Business Cycles," Management Science, INFORMS, vol. 67(6), pages 2900-2923, June.
    22. Bernales, Alejandro & Chen, Louisa & Valenzuela, Marcela, 2017. "Learning and forecasts about option returns through the volatility risk premium," Journal of Economic Dynamics and Control, Elsevier, vol. 82(C), pages 312-330.
    23. Guidolin, Massimo & Timmermann, Allan, 2007. "Properties of equilibrium asset prices under alternative learning schemes," Journal of Economic Dynamics and Control, Elsevier, vol. 31(1), pages 161-217, January.
    24. Christian Pierdzioch & Daniel Hartmann, 2013. "Forecasting Eurozone real-estate returns," Applied Financial Economics, Taylor & Francis Journals, vol. 23(14), pages 1185-1196, July.
    25. Hyein Shim & Hyeyoen Kim & Sunghyun Kim & Doojin Ryu, 2016. "Testing the relative purchasing power parity hypothesis: the case of Korea," Applied Economics, Taylor & Francis Journals, vol. 48(25), pages 2383-2395, May.
    26. Kelly David L. & Steigerwald Douglas G, 2004. "Private Information and High-Frequency Stochastic Volatility," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(1), pages 1-30, March.
    27. Yi Xue & Ramazan Gencay, 2009. "Trading Frequency and Volatility Clustering," Working Paper series 31_09, Rimini Centre for Economic Analysis.
    28. Jean-Marie Dufour & Richard Luger, 2017. "Identification-robust moment-based tests for Markov-switching in autoregressive models," Cahiers de recherche 1701, Centre de recherche sur les risques, les enjeux économiques, et les politiques publiques.
    29. Massimo Guidolin & Kai Wang, 2022. "The Empirical Performance of Option Implied Volatility Surface-Driven Optimal Portfolios," BAFFI CAREFIN Working Papers 22190, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    30. Asger Lunde & Allan Timmermann, 2005. "Completion time structures of stock price movements," Annals of Finance, Springer, vol. 1(3), pages 293-326, August.
    31. Massimo Guidolin, 2005. "Pessimistic beliefs under rational learning: quantitative implications for the equity premium puzzle," Working Papers 2005-005, Federal Reserve Bank of St. Louis.
    32. Bernales, Alejandro & Guidolin, Massimo, 2014. "Can we forecast the implied volatility surface dynamics of equity options? Predictability and economic value tests," Journal of Banking & Finance, Elsevier, vol. 46(C), pages 326-342.
    33. Roman Frydman & Soren Johansen & Anders Rahbek & Morten Nyboe Tabor, 2021. "Asset Prices Under Knightian Uncertainty," Working Papers Series inetwp172, Institute for New Economic Thinking.
    34. Bernales, Alejandro & Guidolin, Massimo, 2015. "Learning to smile: Can rational learning explain predictable dynamics in the implied volatility surface?," Journal of Financial Markets, Elsevier, vol. 26(C), pages 1-37.
    35. Aaron Smith, 2005. "Forecasting in the presence of level shifts," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(8), pages 557-574.
    36. Abbigail J. Chiodo & Massimo Guidolin & Michael T. Owyang & Makoto Shimoji, 2003. "Subjective probabilities: psychological evidence and economic applications," Working Papers 2003-009, Federal Reserve Bank of St. Louis.
    37. Smith Aaron, 2012. "Markov Breaks in Regression Models," Journal of Time Series Econometrics, De Gruyter, vol. 4(1), pages 1-35, May.
    38. Hartmann, Daniel & Kempa, Bernd & Pierdzioch, Christian, 2006. "Economic and Financial Crises and the Predictability of U.S. Stock Returns," MPRA Paper 561, University Library of Munich, Germany.
    39. Massimiliano De Santis, 2005. "Movements in the Equity Premium: Evidence from a Bayesian Time-Varying VAR," Money Macro and Finance (MMF) Research Group Conference 2005 62, Money Macro and Finance Research Group.
    40. Guidolin, Massimo, 2003. "International asset prices and portfolio choices under Bayesian learning," Research in Economics, Elsevier, vol. 57(4), pages 383-437, December.
    41. Matei Demetrescu, 2007. "Volatility Clustering in High-Frequency Data: A self-fulfilling prophecy?," Economics Bulletin, AccessEcon, vol. 7(15), pages 1-8.
    42. Yang Lu & Michael Siemer, 2013. "Learning, Rare Disasters, and Asset Prices," Finance and Economics Discussion Series 2013-85, Board of Governors of the Federal Reserve System (U.S.).

  43. White, Halbert & Timmermann, Allan & Sullivan, Ryan, 2001. "Forecast Evaluation with Shared Data Sets," CEPR Discussion Papers 3060, C.E.P.R. Discussion Papers.

    Cited by:

    1. Saša ŽIKOVIÆ & Randall K. FILER, 2013. "Ranking of VaR and ES Models: Performance in Developed and Emerging Markets," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 63(4), pages 327-359, August.
    2. Jasdeep S. Banga & B. Wade Brorsen, 2019. "Profitability of alternative methods of combining the signals from technical trading systems," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 26(1), pages 32-45, January.
    3. Andrei Shynkevich, 2021. "Impact of bitcoin futures on the informational efficiency of bitcoin spot market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(1), pages 115-134, January.
    4. Lu, Tsung-Hsun, 2014. "The profitability of candlestick charting in the Taiwan stock market," Pacific-Basin Finance Journal, Elsevier, vol. 26(C), pages 65-78.
    5. Park, Cheol-Ho & Irwin, Scott H., 2005. "The Profitability of Technical Trading Rules in US Futures Markets: A Data Snooping Free Test," AgMAS Project Research Reports 14771, University of Illinois at Urbana-Champaign, Department of Agricultural and Consumer Economics.
    6. Gael M. Martin & Andrew Reidy & Jill Wright, 2009. "Does the option market produce superior forecasts of noise-corrected volatility measures?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(1), pages 77-104.
    7. Jan G. de Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Tinbergen Institute Discussion Papers 05-068/4, Tinbergen Institute.
    8. Fang, Jiali & Jacobsen, Ben & Qin, Yafeng, 2014. "Predictability of the simple technical trading rules: An out-of-sample test," Review of Financial Economics, Elsevier, vol. 23(1), pages 30-45.
    9. A. Olasolo & M. A. Pérez & V. Ruiz, 2016. "Active investment strategies in the Spanish futures market: a solution to avoid data snooping bias," Applied Economics Letters, Taylor & Francis Journals, vol. 23(9), pages 609-613, June.
    10. Shynkevich, Andrei, 2012. "Short-term predictability of equity returns along two style dimensions," Journal of Empirical Finance, Elsevier, vol. 19(5), pages 675-685.
    11. Cheol‐Ho Park & Scott H. Irwin, 2007. "What Do We Know About The Profitability Of Technical Analysis?," Journal of Economic Surveys, Wiley Blackwell, vol. 21(4), pages 786-826, September.
    12. Michael P. Clements & Philip Hans Franses & Norman R. Swanson, 2003. "Forecasting economic and financial time-series with non-linear models," Departmental Working Papers 200309, Rutgers University, Department of Economics.
    13. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    14. Shynkevich, Andrei, 2012. "Performance of technical analysis in growth and small cap segments of the US equity market," Journal of Banking & Finance, Elsevier, vol. 36(1), pages 193-208.
    15. Cheol‐Ho Park & Scott H. Irwin, 2010. "A reality check on technical trading rule profits in the U.S. futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 30(7), pages 633-659, July.
    16. Shynkevich, Andrei, 2013. "Time-series momentum as an intra- and inter-industry effect: Implications for market efficiency," Journal of Economics and Business, Elsevier, vol. 69(C), pages 64-85.
    17. Robert Ślepaczuk & Grzegorz Zakrzewski & Paweł Sakowski, 2012. "Investment strategies beating the market. What can we squeeze from the market?," Working Papers 2012-04, Faculty of Economic Sciences, University of Warsaw.
    18. Afiruddin Tapa* & Mohd Hasimi Yaacob & Ahmad Husni Hamzah & Yean Soh Chuen, 2018. "Trading Performance Analysis: A Comparisons Between the Original MA Crossover and Modified MA Crossover Strategy," The Journal of Social Sciences Research, Academic Research Publishing Group, pages 933-941:6.
    19. Ślepaczuk Robert & Sakowski Paweł & Zakrzewski Grzegorz, 2018. "Investment Strategies that Beat the Market. What Can We Squeeze from the Market?," Financial Internet Quarterly (formerly e-Finanse), Sciendo, vol. 14(4), pages 36-55, December.

  44. Allan Timmerman & Massimo Guidolin, 2001. "Option prices and implied volatility dynamics under Bayesian learning," CeNDEF Workshop Papers, January 2001 P3, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.

    Cited by:

    1. A. A. Brown & L. C. G. Rogers, 2009. "Heterogeneous Beliefs with Finite-Lived Agents," Papers 0907.4953, arXiv.org.
    2. René Garcia & Eric Ghysels & Eric Renault, 2004. "The Econometrics of Option Pricing," CIRANO Working Papers 2004s-04, CIRANO.
    3. Alexander David & Pietro Veronesi, 1998. "Option Prices with Uncertain Fundamentals: Theory and Evidence on the Dynamics of Implied Volatilities," CRSP working papers 485, Center for Research in Security Prices, Graduate School of Business, University of Chicago.
    4. Angus A Brown & L C G Rogers, 2010. "Diverse Beliefs," Papers 1001.1450, arXiv.org.
    5. Sadayuki Ono, 2007. "Option Pricing under Stochastic Volatility and Trading Volume," Discussion Papers 07/05, Department of Economics, University of York.
    6. Paruolo Paolo, 2004. "Automated Inference and the Future of Econometrics: A comment," Economics and Quantitative Methods qf04025, Department of Economics, University of Insubria.
    7. René Garcia & Richard Luger & Eric Renault, 2001. "Empirical Assessment of an Intertemporal Option Pricing Model with Latent Variables (Note : Nouvelle version Février 2002)," CIRANO Working Papers 2001s-02, CIRANO.

  45. Allan Timmermann & Gabriel Perez-Quiros, 2000. "Business Cycle Asymmetries in Stock Returns: Evidence from Higher Order Moments and Conditional Densities," FMG Discussion Papers dp360, Financial Markets Group.

    Cited by:

    1. Zeng, Songlin & Bec, Frédérique, 2015. "Do stock returns rebound after bear markets? An empirical analysis from five OECD countries," Journal of Empirical Finance, Elsevier, vol. 30(C), pages 50-61.
    2. David Nawrocki & Tonis Vaga, 2014. "A bifurcation model of market returns," Quantitative Finance, Taylor & Francis Journals, vol. 14(3), pages 509-528, March.
    3. Andrew Patton, 2002. "(IAM Series No 001) On the Out-Of-Sample Importance of Skewness and Asymetric Dependence for Asset Allocation," FMG Discussion Papers dp431, Financial Markets Group.
    4. Esfandiar Maasoumi & Jeffrey Racine, 2009. "A Robust Entropy-Based Test of Asymmetry for Discrete and Continuous Processes," Econometric Reviews, Taylor & Francis Journals, vol. 28(1-3), pages 246-261.
    5. Cem Cakmakli & Richard Paap & Dick J.C. van Dijk, 2011. "Modeling and Estimation of Synchronization in Multistate Markov-Switching Models," Tinbergen Institute Discussion Papers 11-002/4, Tinbergen Institute.
    6. George Hondroyiannis & Evangelia Papapetrou, 2006. "Stock returns and inflation in Greece: A Markov switching approach," Review of Financial Economics, John Wiley & Sons, vol. 15(1), pages 76-94.
    7. Lieven Baele & Koen Inghelbrecht, 2005. "Structural versus Temporary Drivers of Country and Industry Risk," International Finance 0511005, University Library of Munich, Germany.
    8. Anthony S. Tay & Aamir R. Hashmi, 2004. "Global and Regional Sources of Risk in Equity Markets: Evidence from Factor Models with Time-Varying Conditional Skewness," Econometric Society 2004 Far Eastern Meetings 634, Econometric Society.
    9. L. Baele & R. Vander Vennet & A. Van Landschoot, 2004. "Bank Risk Strategies and Cyclical Variation in Bank Stock Returns," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 04/217, Ghent University, Faculty of Economics and Business Administration.
    10. Matteo Barigozzi & Daniele Massacci, 2022. "Modelling Large Dimensional Datasets with Markov Switching Factor Models," Papers 2210.09828, arXiv.org, revised Dec 2024.
    11. Andrew Ang & Allan Timmermann, 2011. "Regime Changes and Financial Markets," NBER Working Papers 17182, National Bureau of Economic Research, Inc.
    12. John M Maheu & Thomas H McCurdy & Yong Song, 2009. "Extracting bull and bear markets from stock returns," Working Papers tecipa-369, University of Toronto, Department of Economics.
    13. Xuan Vinh Vo & Thi Tuan Anh Tran, 2021. "Higher-order comoments and asset returns: evidence from emerging equity markets," Annals of Operations Research, Springer, vol. 297(1), pages 323-340, February.
    14. Elliott, Graham & Timmermann, Allan, 2004. "Optimal forecast combinations under general loss functions and forecast error distributions," Journal of Econometrics, Elsevier, vol. 122(1), pages 47-79, September.
    15. Hess, Martin K., 2003. "What drives Markov regime-switching behavior of stock markets? The Swiss case," International Review of Financial Analysis, Elsevier, vol. 12(5), pages 527-543.
    16. Haas, Markus & Mittnik, Stefan, 2008. "Multivariate regimeswitching GARCH with an application to international stock markets," CFS Working Paper Series 2008/08, Center for Financial Studies (CFS).
    17. Nguyen, Hoang & Javed, Farrukh, 2021. "Dynamic relationship between Stock and Bond returns: A GAS MIDAS copula approach," Working Papers 2021:15, Örebro University, School of Business.
    18. Coakley, Jerry & Fuertes, Ana-Maria, 2006. "Testing for sign and amplitude asymmetries using threshold autoregressions," Journal of Economic Dynamics and Control, Elsevier, vol. 30(4), pages 623-654, April.
    19. Chen, Shiu-Sheng, 2010. "Do higher oil prices push the stock market into bear territory?," Energy Economics, Elsevier, vol. 32(2), pages 490-495, March.
    20. Shiu-Sheng Chen, 2005. "Does Monetary Policy Have Asymmetric Effects on Stock Returns?," Macroeconomics 0502001, University Library of Munich, Germany, revised 01 Feb 2005.
    21. Ferrara, Laurent & Marcellino, Massimiliano & Mogliani, Matteo, 2015. "Macroeconomic forecasting during the Great Recession: The return of non-linearity?," International Journal of Forecasting, Elsevier, vol. 31(3), pages 664-679.
    22. Ayelen Banegas, 2016. "Predictability of Growth in Emerging Markets: Information in Financial Aggregates," International Finance Discussion Papers 1174, Board of Governors of the Federal Reserve System (U.S.).
    23. Maciejowska, Katarzyna, 2013. "Assessing the number of components in a normal mixture: an alternative approach," MPRA Paper 50303, University Library of Munich, Germany.
    24. Javed Farrukh & Podgórski Krzysztof, 2017. "Tail Behavior and Dependence Structure in the APARCH Model," Journal of Time Series Econometrics, De Gruyter, vol. 9(2), pages 1-48, July.
    25. Chang, Kuang-Liang, 2012. "The impacts of regime-switching structures and fat-tailed characteristics on the relationship between inflation and inflation uncertainty," Journal of Macroeconomics, Elsevier, vol. 34(2), pages 523-536.
    26. Cees Diks & Valentyn Panchenko & Dick van Dijk, 2008. "Partial Likelihood-Based Scoring Rules for Evaluating Density Forecasts in Tails," Discussion Papers 2008-10, School of Economics, The University of New South Wales.
    27. Zeng, Jhih-Hong & Peng, Chi-Lu & Chen, Ming-Chi & Lee, Chien-Chiang, 2013. "Wealth effects on the housing markets: Do market liquidity and market states matter?," Economic Modelling, Elsevier, vol. 32(C), pages 488-495.
    28. Opschoor, Anne & van Dijk, Dick & van der Wel, Michel, 2014. "Predicting volatility and correlations with Financial Conditions Indexes," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 435-447.
    29. Andrew J. Patton, 2004. "On the Out-of-Sample Importance of Skewness and Asymmetric Dependence for Asset Allocation," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 130-168.
    30. Giorgio Valente & Lucio Sarno, 2005. "Modelling and forecasting stock returns: exploiting the futures market, regime shifts and international spillovers," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(3), pages 345-376.
    31. Lieven Baele & Geert Bekaert & Koen Inghelbrecht & Min Wei, 2012. "Flights to Safety," Working Paper Research 230, National Bank of Belgium.
    32. Isah Wada, 2019. "Dynamic Effects of Crude Oil Price Movements: a Sectoral Examination," Romanian Economic Journal, Department of International Business and Economics from the Academy of Economic Studies Bucharest, vol. 22(71), pages 17-28, March.
    33. Pérez-Quirós, Gabriel & Poncela, Pilar & Camacho, Máximo, 2012. "Green Shoots and Double Dips in the Euro Area. A Real Time Measure," CEPR Discussion Papers 8896, C.E.P.R. Discussion Papers.
    34. Baele, Lieven & Inghelbrecht, Koen, 2009. "Time-varying Integration and International diversification strategies," Journal of Empirical Finance, Elsevier, vol. 16(3), pages 368-387, June.
    35. Lhuissier Stéphane, 2022. "Financial Conditions and Macroeconomic Downside Risks in the Euro Area," Working papers 863, Banque de France.
    36. Maximo Camacho & Gabriel Perez-Quiros & Pilar Poncela, 2010. "Green shoots in the euro area. A real time measure," Working Papers 1026, Banco de España.
    37. Hashmi, Aamir R. & Tay, Anthony S., 2007. "Global regional sources of risk in equity markets: Evidence from factor models with time-varying conditional skewness," Journal of International Money and Finance, Elsevier, vol. 26(3), pages 430-453, April.
    38. John M Maheu & Thomas H McCurdy & Yong Song, 2010. "Components of bull and bear markets: bull corrections and bear rallies," Working Papers tecipa-402, University of Toronto, Department of Economics.
    39. Chien-Chiang Lee & Chin-Yu Wang & Jhih-Hong Zeng, 2017. "Housing price–volume correlations and boom–bust cycles," Empirical Economics, Springer, vol. 52(4), pages 1423-1450, June.
    40. KIANI, Khurshid M., 2007. "Business Cycle Asymmetries In Stock Returns: Robust Evidence," International Journal of Applied Econometrics and Quantitative Studies, Euro-American Association of Economic Development, vol. 4(2), pages 99-120.
    41. Guidolin, Massimo & Hyde, Stuart, 2012. "Can VAR models capture regime shifts in asset returns? A long-horizon strategic asset allocation perspective," Journal of Banking & Finance, Elsevier, vol. 36(3), pages 695-716.
    42. Anne Opschoor & Dick van Dijk & Michel van der Wel, 2013. "Predicting Covariance Matrices with Financial Conditions Indexes," Tinbergen Institute Discussion Papers 13-113/III, Tinbergen Institute.
    43. Martin Hess, 2006. "Timing and diversification: A state-dependent asset allocation approach," The European Journal of Finance, Taylor & Francis Journals, vol. 12(3), pages 189-204.
    44. Chang, Kuang-Liang, 2009. "Do macroeconomic variables have regime-dependent effects on stock return dynamics? Evidence from the Markov regime switching model," Economic Modelling, Elsevier, vol. 26(6), pages 1283-1299, November.
    45. Mai Shibata, 2014. "The Influence of Japan’s Unsecured Overnight Call Rate on Bull and Bear Markets and Market Turns," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 21(4), pages 331-349, November.
    46. Wee, Damien C.H. & Chen, Feng & Dunsmuir, William T.M., 2022. "Likelihood inference for Markov switching GARCH(1,1) models using sequential Monte Carlo," Econometrics and Statistics, Elsevier, vol. 21(C), pages 50-68.
    47. Massacci, Daniele, 2014. "A two-regime threshold model with conditional skewed Student t distributions for stock returns," Economic Modelling, Elsevier, vol. 43(C), pages 9-20.
    48. Wai‐Sum Chan & Li‐Xin Zhang & Siu Hung Cheung, 2009. "Temporal aggregation of Markov‐switching financial return models," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(3), pages 359-383, May.
    49. Cees Diks & Valentyn Panchenko & Dick van Dijk, 2011. "Likelihood-based scoring rules for comparing density forecasts in tails," Post-Print hal-00834423, HAL.
    50. Chan, Raymond H. & Chow, Sheung-Chi & Guo, Xu & Wong, Wing-Keung, 2022. "Central moments, stochastic dominance, moment rule, and diversification with an application," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    51. John M. Maheu & Thomas McCurdy, 2003. "News Arrival, Jump Dynamics and Volatility Components for Individual Stock Returns," CIRANO Working Papers 2003s-38, CIRANO.
    52. Duong, Diep & Swanson, Norman R., 2015. "Empirical evidence on the importance of aggregation, asymmetry, and jumps for volatility prediction," Journal of Econometrics, Elsevier, vol. 187(2), pages 606-621.
    53. Guidolin, Massimo & Hyde, Stuart, 2012. "Simple VARs cannot approximate Markov switching asset allocation decisions: An out-of-sample assessment," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3546-3566.
    54. Monica Billio & Silvestro Di Sanzo, 2006. "Granger-causality in Markov Switching Models," Working Papers 2006_20, Department of Economics, University of Venice "Ca' Foscari".
    55. Chen, Shiu-Sheng, 2011. "Lack of consumer confidence and stock returns," Journal of Empirical Finance, Elsevier, vol. 18(2), pages 225-236, March.
    56. Katarzyna Maciejowska, 2010. "Estimation Methods Comparison of SVAR Models with a Mixture of Two Normal Distributions," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 2(4), pages 279-314, September.
    57. Bijsterbosch, Martin & Guérin, Pierre, 2014. "Characterizing very high uncertainty episodes," Working Paper Series 1637, European Central Bank.
    58. Ghysels, Eric & Plazzi, Alberto & Valkanov, Rossen & Torous, Walter, 2013. "Forecasting Real Estate Prices," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 509-580, Elsevier.
    59. González-Rivera, Gloria & Yoldas, Emre, 2012. "Autocontour-based evaluation of multivariate predictive densities," International Journal of Forecasting, Elsevier, vol. 28(2), pages 328-342.
    60. Kim, Tae-Hwan & White, Halbert, 2004. "On more robust estimation of skewness and kurtosis," Finance Research Letters, Elsevier, vol. 1(1), pages 56-73, March.
    61. Geweke, John, 2007. "Interpretation and inference in mixture models: Simple MCMC works," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3529-3550, April.
    62. Massacci, Daniele, 2013. "A switching model with flexible threshold variable: With an application to nonlinear dynamics in stock returns," Economics Letters, Elsevier, vol. 119(2), pages 199-203.
    63. Ane, Thierry & Ureche-Rangau, Loredana, 2006. "Stock market dynamics in a regime-switching asymmetric power GARCH model," International Review of Financial Analysis, Elsevier, vol. 15(2), pages 109-129.
    64. Ayben Koy, 2017. "Modelling Nonlinear Dynamics of Oil Futures Market," Econometric Research in Finance, SGH Warsaw School of Economics, Collegium of Economic Analysis, vol. 2(1), pages 23-42, June.
    65. Bali, Turan G. & Demirtas, K. Ozgur & Levy, Haim, 2008. "Nonlinear mean reversion in stock prices," Journal of Banking & Finance, Elsevier, vol. 32(5), pages 767-782, May.
    66. José Ferreira Machado, 2006. "Identifying asset price booms and busts with quantile regressions," Working Papers w200608, Banco de Portugal, Economics and Research Department.
    67. Jun Tu, 2010. "Is Regime Switching in Stock Returns Important in Portfolio Decisions?," Management Science, INFORMS, vol. 56(7), pages 1198-1215, July.
    68. Victoria Atanasov, 2016. "Conditional interest rate risk and the cross‐section of excess stock returns," Review of Financial Economics, John Wiley & Sons, vol. 30(1), pages 23-32, September.
    69. Jian Yang & Yinggang Zhou & Zijun Wang, 2010. "Conditional Coskewness in Stock and Bond Markets: Time-Series Evidence," Management Science, INFORMS, vol. 56(11), pages 2031-2049, November.
    70. Qing Xu & Terry Childs, 2013. "Evaluating forecast performances of the quantile autoregression models in the present global crisis in international equity markets," Applied Financial Economics, Taylor & Francis Journals, vol. 23(2), pages 105-117, January.
    71. Chang, Kuang-Liang, 2012. "Volatility regimes, asymmetric basis effects and forecasting performance: An empirical investigation of the WTI crude oil futures market," Energy Economics, Elsevier, vol. 34(1), pages 294-306.
    72. Richard D. F. Harris & Murat Mazibas, 2022. "A component Markov regime‐switching autoregressive conditional range model," Bulletin of Economic Research, Wiley Blackwell, vol. 74(2), pages 650-683, April.
    73. Chiu-Lan Chang & Paul L. Hsueh, 2013. "An Investigation of the Flight-to-Quality Effect: Evidence from Asia-Pacific Countries," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 49(S4), pages 53-69, September.
    74. Marco Bazzi & Francisco Blasques & Siem Jan Koopman & Andre Lucas, 2017. "Time-Varying Transition Probabilities for Markov Regime Switching Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(3), pages 458-478, May.
    75. Shum, Wai Yan, 2020. "Modelling conditional skewness: Heterogeneous beliefs, short sale restrictions and market declines," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    76. Atanasov, Victoria, 2016. "Conditional interest rate risk and the cross-section of excess stock returns," Review of Financial Economics, Elsevier, vol. 30(C), pages 23-32.
    77. Christopher S. Withers & Saralees Nadarajah & Shou Hsing Shih, 2015. "Moments and Cumulants of a Mixture," Methodology and Computing in Applied Probability, Springer, vol. 17(3), pages 541-564, September.
    78. Chang, Kuang-Liang, 2010. "House price dynamics, conditional higher-order moments, and density forecasts," Economic Modelling, Elsevier, vol. 27(5), pages 1029-1039, September.
    79. Peñaranda, Francisco, 2003. "Evaluation of joint density forecasts of stock and bond returns: predictability and parameter uncertainty," LSE Research Online Documents on Economics 24857, London School of Economics and Political Science, LSE Library.
    80. Klaus Grobys, 2012. "Active PortofolioManagement in the Presence of Regime Switching: What Are the Benefits of Defensive Asset Allocation Strategies If the Investor Faces Bear Markets?," The Review of Finance and Banking, Academia de Studii Economice din Bucuresti, Romania / Facultatea de Finante, Asigurari, Banci si Burse de Valori / Catedra de Finante, vol. 4(1), pages 015-031, June.
    81. Shiu-Sheng Chen, 2012. "Consumer confidence and stock returns over market fluctuations," Quantitative Finance, Taylor & Francis Journals, vol. 12(10), pages 1585-1597, October.
    82. Juan Reboredo, 2010. "Nonlinear effects of oil shocks on stock returns: a Markov-switching approach," Applied Economics, Taylor & Francis Journals, vol. 42(29), pages 3735-3744.
    83. Vanden, Joel M., 2005. "Equilibrium analysis of volatility clustering," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 374-417, June.

  46. Allan Timmermann, 1999. "Moments of Markov Switching Models," FMG Discussion Papers dp323, Financial Markets Group.

    Cited by:

    1. Haas Markus, 2010. "Skew-Normal Mixture and Markov-Switching GARCH Processes," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(4), pages 1-56, September.
    2. Dick van Dijk & Timo Terasvirta & Philip Hans Franses, 2002. "Smooth Transition Autoregressive Models — A Survey Of Recent Developments," Econometric Reviews, Taylor & Francis Journals, vol. 21(1), pages 1-47.
    3. Cem Cakmakli & Richard Paap & Dick J.C. van Dijk, 2011. "Modeling and Estimation of Synchronization in Multistate Markov-Switching Models," Tinbergen Institute Discussion Papers 11-002/4, Tinbergen Institute.
    4. Giorgio Canarella & WenShwo Fang & Stephen M. Miller & Stephen K. Pollard, 2008. "Is the Great Moderation Ending? UK and US Evidence," Working papers 2008-24, University of Connecticut, Department of Economics.
    5. Francesco Giordano & Marcella Niglio & Cosimo Damiano Vitale, 2023. "Linear approximation of the Threshold AutoRegressive model: an application to order estimation," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(1), pages 27-56, March.
    6. Haas, Markus, 2008. "The autocorrelation structure of the Markov-switching asymmetric power GARCH process," Statistics & Probability Letters, Elsevier, vol. 78(12), pages 1480-1489, September.
    7. Nelson Areal & Maria Cortez & Florinda Silva, 2013. "The conditional performance of US mutual funds over different market regimes: do different types of ethical screens matter?," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 27(4), pages 397-429, December.
    8. Massimo Guidolin & Allan Timmerman, 2006. "Asset allocation under multivariate regime switching," Working Papers 2005-002, Federal Reserve Bank of St. Louis.
    9. Alexander Arimond & Damian Borth & Andreas Hoepner & Michael Klawunn & Stefan Weisheit, 2020. "Neural Networks and Value at Risk," Papers 2005.01686, arXiv.org, revised May 2020.
    10. Hsu, Yuan-Lin & Lin, Shih-Kuei & Hung, Ming-Chin & Huang, Tzu-Hui, 2016. "Empirical analysis of stock indices under a regime-switching model with dependent jump size risks," Economic Modelling, Elsevier, vol. 54(C), pages 260-275.
    11. Andrew Ang & Allan Timmermann, 2011. "Regime Changes and Financial Markets," NBER Working Papers 17182, National Bureau of Economic Research, Inc.
    12. Don Harding & Adrian Pagan, 2000. "Disecting the Cycle: A Methodological Investigation," Econometric Society World Congress 2000 Contributed Papers 1164, Econometric Society.
    13. Chang, Yoosoon & Choi, Yongok & Park, Joon Y., 2017. "A new approach to model regime switching," Journal of Econometrics, Elsevier, vol. 196(1), pages 127-143.
    14. Massimo Guidolin & Stuart Hyde, 2009. "What tames the Celtic Tiger? Portfolio implications from a Multivariate Markov Switching model," Applied Financial Economics, Taylor & Francis Journals, vol. 19(6), pages 463-488.
    15. Erik Kole & Dick Dijk, 2017. "How to Identify and Forecast Bull and Bear Markets?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(1), pages 120-139, January.
    16. Carrasco, Marine, 2002. "Misspecified Structural Change, Threshold, and Markov-switching models," Journal of Econometrics, Elsevier, vol. 109(2), pages 239-273, August.
    17. Amisano, Gianni & Fagan, Gabriel, 2013. "Money growth and inflation: A regime switching approach," Journal of International Money and Finance, Elsevier, vol. 33(C), pages 118-145.
    18. Mototsugu Shintani, 2003. "Nonlinear Forecasting Analysis Using Diffusion Indexes: An Application to Japan," Vanderbilt University Department of Economics Working Papers 0322, Vanderbilt University Department of Economics, revised Apr 2004.
    19. Dominique Guegan, 2007. "Global and local stationary modelling in finance: theory and empirical evidence," Post-Print halshs-00187875, HAL.
    20. Dominique Guegan, 2007. "La persistance dans les marchés financiers," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00179269, HAL.
    21. Massimo Guidolin & Giovanna Nicodano, 2007. "Managing international portfolios with small capitalization stocks," Working Papers 2007-030, Federal Reserve Bank of St. Louis.
    22. Nidhaleddine Ben Cheikh & Younes Ben Zaied, 2021. "A new look at carbon dioxide emissions in MENA countries," Climatic Change, Springer, vol. 166(3), pages 1-22, June.
    23. Haas, Markus & Mittnik, Stefan, 2008. "Multivariate regimeswitching GARCH with an application to international stock markets," CFS Working Paper Series 2008/08, Center for Financial Studies (CFS).
    24. Muhammad Farid Ahmed & Stephen Satchell, 2019. "Some Dynamic and Steady-State Properties of Threshold Auto-Regressions with Applications to Stationarity and Local Explosivity," JRFM, MDPI, vol. 12(3), pages 1-18, July.
    25. Gomes, Pedro & Kurter, Zeynep O. & Morita, Rubens, 2022. "European Sovereign Bond and Stock Market Granger Causality Dynamics," The Warwick Economics Research Paper Series (TWERPS) 1405, University of Warwick, Department of Economics.
    26. Chan, Kalok & Yang, Jian & Zhou, Yinggang, 2018. "Conditional co-skewness and safe-haven currencies: A regime switching approach," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 58-80.
    27. Anandadeep Mandal & Sunil S. Poshakwale & Gabriel J. Power, 2021. "Do investors gain from forecasting the asymmetric return co‐movements of financial and real assets?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 3246-3268, July.
    28. Michael C. Fu & Bingqing Li & Rongwen Wu & Tianqi Zhang, 2020. "Option Pricing Under a Discrete-Time Markov Switching Stochastic Volatility with Co-Jump Model," Papers 2006.15054, arXiv.org.
    29. Fischer, Henning & Stolper, Oscar, 2019. "The nonlinear dynamics of corporate bond spreads: Regime-dependent effects of their determinants," Discussion Papers 08/2019, Deutsche Bundesbank.
    30. Meenagh, David & Minford, Patrick & Peel, David, 2007. "Simulating stock returns under switching regimes - A new test of market efficiency," Economics Letters, Elsevier, vol. 94(2), pages 235-239, February.
    31. Shyh‐Wei Chen & Chung‐Hua Shen, 2004. "Price Common Volatility or Volume Common Volatility? Evidence from Taiwan's Exchange Rate and Stock Markets," Asian Economic Journal, East Asian Economic Association, vol. 18(2), pages 185-211, June.
    32. Harding, Don & Pagan, Adrian, 2001. "Extracting, Using and Analysing Cyclical Information," MPRA Paper 15, University Library of Munich, Germany.
    33. Klaus Grobys, 2011. "Are Different National Stock Markets Driven by the Same Stochastic Hidden Variable?," The Review of Finance and Banking, Academia de Studii Economice din Bucuresti, Romania / Facultatea de Finante, Asigurari, Banci si Burse de Valori / Catedra de Finante, vol. 3(1), pages 021-030, June.
    34. Hiroshi Ishijima & Masaki Uchida, 2011. "The Regime Switching Portfolios," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 18(2), pages 167-189, May.
    35. Frömmel, Michael, 2006. "Volatility Regimes in Central and Eastern European Countries' Exchange Rates," Hannover Economic Papers (HEP) dp-333, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    36. Dominique Guegan & Bertrand K. Hassani, 2019. "Risk Measurement," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02119256, HAL.
    37. Kuang-Liang Chang, 2011. "The optimal value-at-risk hedging strategy under bivariate regime switching ARCH framework," Applied Economics, Taylor & Francis Journals, vol. 43(21), pages 2627-2640.
    38. Zhang, Yue-Jun & Yao, Ting & He, Ling-Yun & Ripple, Ronald, 2019. "Volatility forecasting of crude oil market: Can the regime switching GARCH model beat the single-regime GARCH models?," International Review of Economics & Finance, Elsevier, vol. 59(C), pages 302-317.
    39. Leland E. Farmer & Lawrence Schmidt & Allan Timmermann, 2023. "Pockets of Predictability," Journal of Finance, American Finance Association, vol. 78(3), pages 1279-1341, June.
    40. Lieven Baele, 2010. "The Determinants of Stock and Bond Return Comovements," The Review of Financial Studies, Society for Financial Studies, vol. 23(6), pages 2374-2428, June.
    41. Massimo Guidolin & Allan Timmermann, 2008. "International asset allocation under regime switching, skew, and kurtosis preferences," The Review of Financial Studies, Society for Financial Studies, vol. 21(2), pages 889-935, April.
    42. Massimo Guidolin & Federica Ria, 2010. "Regime shifts in mean-variance efficient frontiers: some international evidence," Working Papers 2010-040, Federal Reserve Bank of St. Louis.
    43. Alexander Karalis Isaac, 2014. "Higher moments of MSVARs and the business cycle," BCAM Working Papers 1405, Birkbeck Centre for Applied Macroeconomics.
    44. Niels Haldrup & Robinson Kruse & Timo Teräsvirta & Rasmus T. Varneskov, 2012. "Unit roots, nonlinearities and structural breaks," CREATES Research Papers 2012-14, Department of Economics and Business Economics, Aarhus University.
    45. Guidolin, Massimo & Hyde, Stuart, 2008. "Equity portfolio diversification under time-varying predictability: Evidence from Ireland, the US, and the UK," Journal of Multinational Financial Management, Elsevier, vol. 18(4), pages 293-312, October.
    46. Emmanouil Platanakis & Athanasios Sakkas & Charles Sutcliffe, 2017. "Harmful Diversification: Evidence from Alternative Investments," ICMA Centre Discussion Papers in Finance icma-dp2017-09, Henley Business School, University of Reading.
    47. Maximo Camacho & Gabriel Perez-Quiros & Pilar Poncela, 2012. "Extracting non-linear signals from several economic indicators," Working Papers 1202, Banco de España.
    48. Chris Stivers & Licheng Sun, 2013. "Market Cycles and the Performance of Relative Strength Strategies," Financial Management, Financial Management Association International, vol. 42(2), pages 263-290, June.
    49. Hodrick, Robert J & Bekaert, Geert & Zhang, Xiaoyan, 2010. "Aggregate Idiosyncratic Volatility," CEPR Discussion Papers 8149, C.E.P.R. Discussion Papers.
    50. Maheu, John M. & McCurdy, Thomas H., 2000. "Volatility dynamics under duration-dependent mixing," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 345-372, November.
    51. Andrew Ang & Geert Bekaert, 2004. "The term structure of real rates and expected inflation," Proceedings, Federal Reserve Bank of San Francisco, issue Mar.
    52. Bianchi, Francesco, 2016. "Methods for measuring expectations and uncertainty in Markov-switching models," Journal of Econometrics, Elsevier, vol. 190(1), pages 79-99.
    53. Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    54. Massimo Guidolin & Giovanna Nicodano, 2009. "Small caps in international equity portfolios: the effects of variance risk," Annals of Finance, Springer, vol. 5(1), pages 15-48, January.
    55. Chih-Nan Chen & Chien-Hsiu Lin, 2022. "Optimal carry trade portfolio choice under regime shifts," Review of Quantitative Finance and Accounting, Springer, vol. 59(2), pages 483-506, August.
    56. Ryan Lemand, 2003. "The Contagion Effect Between the Volatilities of the NASDAQ-100 and the IT.CA :A Univariate and A Bivariate Switching Approach," Econometrics 0307002, University Library of Munich, Germany, revised 07 Dec 2020.
    57. Yun Xie & Yixiang Tian & Zhuang Xiao & Xiangyun Zhou, 2018. "Dependence of credit spread and macro-conditions based on an alterable structure model," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-15, May.
    58. Massimo Guidolin, 2011. "Markov Switching Models in Empirical Finance," Working Papers 415, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    59. Valeriy Zakamulin & Javier Giner, 2024. "Optimal trend-following rules in two-state regime-switching models," Journal of Asset Management, Palgrave Macmillan, vol. 25(4), pages 327-348, July.
    60. Emmanouil Platanakis & Athanasios Sakkas & Charles Sutcliffe, 2017. "Should Portfolio Model Inputs Be Estimated Using One or Two Economic Regimes?," ICMA Centre Discussion Papers in Finance icma-dp2017-07, Henley Business School, University of Reading.
    61. Johannes Hauptmann & Anja Hoppenkamps & Aleksey Min & Franz Ramsauer & Rudi Zagst, 2014. "Forecasting market turbulence using regime-switching models," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 28(2), pages 139-164, May.
    62. Frédérick Demers & Ryan Macdonald, 2007. "The Canadian Business Cycle: A Comparison of Models," Staff Working Papers 07-38, Bank of Canada.
    63. Chan, Wai-Sum & Chan, Yin-Ting, 2008. "A note on the autocorrelation properties of temporally aggregated Markov switching Gaussian models," Statistics & Probability Letters, Elsevier, vol. 78(6), pages 728-735, April.
    64. Pål Nicolai Henriksen, 2011. "Pricing barrier options by a regime switching model," Quantitative Finance, Taylor & Francis Journals, vol. 11(8), pages 1221-1231.
    65. Lhuissier Stéphane, 2022. "Financial Conditions and Macroeconomic Downside Risks in the Euro Area," Working papers 863, Banque de France.
    66. Khashanah, Khaldoun & Simaan, Majeed & Simaan, Yusif, 2022. "Do we need higher-order comoments to enhance mean-variance portfolios? Evidence from a simplified jump process," International Review of Financial Analysis, Elsevier, vol. 81(C).
    67. Chevallier, Julien, 2011. "Evaluating the carbon-macroeconomy relationship: Evidence from threshold vector error-correction and Markov-switching VAR models," Economic Modelling, Elsevier, vol. 28(6), pages 2634-2656.
    68. Prukumpai, Suthawan, 2015. "Time-varying Industrial Portfolio Betas under the Regime-switching Model:Evidence from the Stock Exchange of Thailand," Asian Journal of Applied Economics, Kasetsart University, Center for Applied Economics Research, vol. 22(2), December.
    69. Perez-Quiros, G. & Timmermann, A., 2001. "Business Cycle Asymmetries in Stock Returns: Evidence from Higher Order Moments and Conditional Densities," Papers 58, Quebec a Montreal - Recherche en gestion.
    70. Kaihua Deng, 2018. "Another Look at Large-Cap Stock Return Comovement: A Semi-Markov-Switching Approach," Computational Economics, Springer;Society for Computational Economics, vol. 51(2), pages 227-262, February.
    71. Rianne Legerstee & Philip Hans Franses, 2010. "Does Disagreement amongst Forecasters have Predictive Value?," Tinbergen Institute Discussion Papers 10-088/4, Tinbergen Institute.
    72. Deng, Kaihua, 2016. "A test of asymmetric comovement for state-dependent stock returns," Journal of Empirical Finance, Elsevier, vol. 36(C), pages 68-85.
    73. Guidolin, Massimo & Hyde, Stuart, 2012. "Can VAR models capture regime shifts in asset returns? A long-horizon strategic asset allocation perspective," Journal of Banking & Finance, Elsevier, vol. 36(3), pages 695-716.
    74. Chan, Wai-Sum, 2022. "On temporal aggregation of some nonlinear time-series models," Econometrics and Statistics, Elsevier, vol. 21(C), pages 38-49.
    75. Lieven Baele & Geert Bekaert & Koen Inghelbrecht, 2007. "The determinants of stock and bond return comovements," Working Paper Research 119, National Bank of Belgium.
    76. Gianbiagio Curato & Fabrizio Lillo, 2013. "Modeling the coupled return-spread high frequency dynamics of large tick assets," Papers 1310.4539, arXiv.org.
    77. Sajjad Rasoul & Coakley Jerry & Nankervis John C, 2008. "Markov-Switching GARCH Modelling of Value-at-Risk," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(3), pages 1-31, September.
    78. Basher, Syed Abul & Haug, Alfred A. & Sadorsky, Perry, 2018. "The impact of oil-market shocks on stock returns in major oil-exporting countries," Journal of International Money and Finance, Elsevier, vol. 86(C), pages 264-280.
    79. Jean-Marie Dufour & Richard Luger, 2017. "Identification-robust moment-based tests for Markov-switching in autoregressive models," Cahiers de recherche 1701, Centre de recherche sur les risques, les enjeux économiques, et les politiques publiques.
    80. Fiorentini, Gabriele & Planas, Christophe & Rossi, Alessandro, 2016. "Skewness and kurtosis of multivariate Markov-switching processes," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 153-159.
    81. Lin, Shih-Kuei & Lin, Chien-Hsiu & Chuang, Ming-Che & Chou, Chia-Yu, 2014. "A recursive formula for a participating contract embedding a surrender option under regime-switching model with jump risks: Evidence from stock indices," Economic Modelling, Elsevier, vol. 38(C), pages 341-350.
    82. Jedrzej Bialkowski, 2004. "Modelling Returns on Stock Indices for Western and Central European Stock Exchanges - a Markov Switching Approach," South-Eastern Europe Journal of Economics, Association of Economic Universities of South and Eastern Europe and the Black Sea Region, vol. 2(2), pages 81-100.
    83. Vikram Krishnamurthy & Elisabeth Leoff & Jorn Sass, 2016. "Filterbased Stochastic Volatility in Continuous-Time Hidden Markov Models," Papers 1602.05323, arXiv.org.
    84. Patrick Augustin & Roméo Tédongap, 2021. "Disappointment Aversion, Term Structure, and Predictability Puzzles in Bond Markets," Management Science, INFORMS, vol. 67(10), pages 6266-6293, October.
    85. Wai‐Sum Chan & Li‐Xin Zhang & Siu Hung Cheung, 2009. "Temporal aggregation of Markov‐switching financial return models," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(3), pages 359-383, May.
    86. Ang, Andrew & Gu, Li & Hochberg, Yael V., 2007. "Is Ipo Underperformance a Peso Problem?," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 42(3), pages 565-594, September.
    87. Kuang‐Liang Chang & Chi‐Wei He, 2010. "Does The Magnitude Of The Effect Of Inflation Uncertainty On Output Growth Depend On The Level Of Inflation?," Manchester School, University of Manchester, vol. 78(2), pages 126-148, March.
    88. Kaihua Deng, 2015. "Power Attrition of Asymmetric Tail Comovement Test," Economics Bulletin, AccessEcon, vol. 35(4), pages 2813-2819.
    89. Taamouti, Abderrahim, 2009. "Analytical Value-at-Risk and Expected Shortfall under regime-switching," Finance Research Letters, Elsevier, vol. 6(3), pages 138-151, September.
    90. Duong, Diep & Swanson, Norman R., 2015. "Empirical evidence on the importance of aggregation, asymmetry, and jumps for volatility prediction," Journal of Econometrics, Elsevier, vol. 187(2), pages 606-621.
    91. Valeriy Zakamulin, 2023. "Not all bull and bear markets are alike: insights from a five-state hidden semi-Markov model," Risk Management, Palgrave Macmillan, vol. 25(1), pages 1-25, March.
    92. Yue-Jun Zhang & Ting Yao & Ling-Yun He, 2015. "Forecasting crude oil market volatility: can the Regime Switching GARCH model beat the single-regime GARCH models?," Papers 1512.01676, arXiv.org.
    93. Constandina Koki & Stefanos Leonardos & Georgios Piliouras, 2020. "Exploring the Predictability of Cryptocurrencies via Bayesian Hidden Markov Models," Papers 2011.03741, arXiv.org, revised Dec 2020.
    94. Yin-Wong Cheung & Sang-Kuck Chung, 2011. "A Long Memory Model with Normal Mixture GARCH," Computational Economics, Springer;Society for Computational Economics, vol. 38(4), pages 517-539, November.
    95. James D. Hamilton, 2016. "Macroeconomic Regimes and Regime Shifts," NBER Working Papers 21863, National Bureau of Economic Research, Inc.
    96. Geert Bekaert & Eric Engstrom & Andrey Ermolov, 2023. "The Variance Risk Premium in Equilibrium Models," Review of Finance, European Finance Association, vol. 27(6), pages 1977-2014.
    97. Giner, Javier & Zakamulin, Valeriy, 2023. "A regime-switching model of stock returns with momentum and mean reversion," Economic Modelling, Elsevier, vol. 122(C).
    98. Andrea Beccarini, 2010. "Eliminating the omitted variable bias by a regime-switching approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(1), pages 57-75.
    99. Chevallier, Julien, 2011. "A model of carbon price interactions with macroeconomic and energy dynamics," Energy Economics, Elsevier, vol. 33(6), pages 1295-1312.
    100. Stavros Degiannakis & Christos Floros & Enrique Salvador & Dimitrios Vougas, 2022. "On the stationarity of futures hedge ratios," Operational Research, Springer, vol. 22(3), pages 2281-2303, July.
    101. Mohammadreza Mahmoudi & Hana Ghaneei, 2021. "Detection of Structural Regimes and Analyzing the Impact of Crude Oil Market on Canadian Stock Market: Markov Regime-Switching Approach," Papers 2109.01046, arXiv.org, revised Oct 2021.
    102. Guidolin, Massimo & Timmermann, Allan, 2006. "Term structure of risk under alternative econometric specifications," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 285-308.
    103. Massimo Guidolin & Allan Timmerman, 2005. "Optimal portfolio choice under regime switching, skew and kurtosis preferences," Working Papers 2005-006, Federal Reserve Bank of St. Louis.
    104. Angelos Kanas, 2009. "The relation between the equity risk premium and the bond maturity premium in the UK: 1900–2006," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 33(2), pages 111-127, April.
    105. Massimo Guidolin & Allan Timmermann, 2008. "Size and Value Anomalies under Regime Shifts," Journal of Financial Econometrics, Oxford University Press, vol. 6(1), pages 1-48, Winter.
    106. Wai-Mun Chia & Mengling Li & Huanhuan Zheng, 2017. "Behavioral heterogeneity in the Australian housing market," Applied Economics, Taylor & Francis Journals, vol. 49(9), pages 872-885, February.
    107. Ryan Lemand, 2003. "New Technology Stock Market Indexes Contagion: A VAR-dccMVGARCH Approach," Econometrics 0307003, University Library of Munich, Germany, revised 07 Dec 2020.
    108. Peixin (Payton) Liu & Kuan Xu & Yonggan Zhao, 2011. "Market regimes, sectorial investments, and time‐varying risk premiums," International Journal of Managerial Finance, Emerald Group Publishing Limited, vol. 7(2), pages 107-133, April.
    109. Jedrzej Białkowski & Dobromił Serwa, 2005. "Financial contagion, spillovers and causality in the Markov switching framework," Quantitative Finance, Taylor & Francis Journals, vol. 5(1), pages 123-131.
    110. Kim, Tae-Hwan & White, Halbert, 2004. "On more robust estimation of skewness and kurtosis," Finance Research Letters, Elsevier, vol. 1(1), pages 56-73, March.
    111. Koki, Constandina & Leonardos, Stefanos & Piliouras, Georgios, 2022. "Exploring the predictability of cryptocurrencies via Bayesian hidden Markov models," Research in International Business and Finance, Elsevier, vol. 59(C).
    112. Kole, Erik & van Dijk, Dick, 2023. "Moments, shocks and spillovers in Markov-switching VAR models," Journal of Econometrics, Elsevier, vol. 236(2).
    113. Krishnamurthy, Vikram & Leoff, Elisabeth & Sass, Jörn, 2018. "Filterbased stochastic volatility in continuous-time hidden Markov models," Econometrics and Statistics, Elsevier, vol. 6(C), pages 1-21.
    114. Francis X. Diebold & Atsushi Inoue, 2000. "Long Memory and Regime Switching," NBER Technical Working Papers 0264, National Bureau of Economic Research, Inc.
    115. Chourdakis, Kyriakos & Dendramis, Yiannis & Tzavalis, Elias, 2014. "Are regime-shift sources of risk priced in the market?," Journal of Empirical Finance, Elsevier, vol. 28(C), pages 151-170.
    116. Ane, Thierry & Ureche-Rangau, Loredana, 2006. "Stock market dynamics in a regime-switching asymmetric power GARCH model," International Review of Financial Analysis, Elsevier, vol. 15(2), pages 109-129.
    117. Hiroshi Ishijima & Masaki Uchida, 2011. "Log Mean-Variance Portfolio Selection Under Regime Switching," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 18(2), pages 213-229, May.
    118. Liu, Lu, 2014. "Extreme downside risk spillover from the United States and Japan to Asia-Pacific stock markets," International Review of Financial Analysis, Elsevier, vol. 33(C), pages 39-48.
    119. Cavicchioli, Maddalena, 2023. "Statistical analysis of Markov switching vector autoregression models with endogenous explanatory variables," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
    120. Kyriakos Chourdakis, 2000. "Stochastic Volatility and Jumps Driven by Continuous Time Markov Chains," Working Papers 430, Queen Mary University of London, School of Economics and Finance.
    121. Massimo Guidolin & Stuart Hyde, 2008. "Equity portfolio diversification under time-varying predictability and comovements: evidence from Ireland, the US, and the UK," Working Papers 2008-005, Federal Reserve Bank of St. Louis.
    122. Massimo Guidolin & Giovanna Nicodano, 2010. "Ex Post Portfolio Performance with Predictable Skewness and Kurtosis," Carlo Alberto Notebooks 191, Collegio Carlo Alberto.
    123. Suthawan Prukumpai, 2015. "Time-varying Industrial Portfolio Betas under the Regime-switching Model: Evidence from the Stock Exchange of Thailand," Applied Economics Journal, Kasetsart University, Faculty of Economics, Center for Applied Economic Research, vol. 22(2), pages 54-76, December.
    124. Andrea Beccarini, 2019. "Testing for the omission of relevant variables and regime-switching misspecification," Empirical Economics, Springer, vol. 56(3), pages 775-796, March.
    125. Jian Yang & Yinggang Zhou & Zijun Wang, 2010. "Conditional Coskewness in Stock and Bond Markets: Time-Series Evidence," Management Science, INFORMS, vol. 56(11), pages 2031-2049, November.
    126. Masahiko Egami & Yuki Shigeta & Katsutoshi Wakai, 2014. "The change of correlation structure across industries:an analysis in the regime-switching framework," Discussion papers e-14-002, Graduate School of Economics Project Center, Kyoto University.
    127. Weinan Zhang & Pingping Zeng, 2023. "A transform-based method for pricing Asian options under general two-dimensional models," Quantitative Finance, Taylor & Francis Journals, vol. 23(11), pages 1677-1697, November.
    128. Timmermann, Allan & Catão, Luís, 2004. "Country and Industry Dynamics in Stock Returns," CEPR Discussion Papers 4368, C.E.P.R. Discussion Papers.
    129. Gourieroux, Christian & Jasiak, Joann, 2006. "Multivariate Jacobi process with application to smooth transitions," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 475-505.
    130. Bekaert, Geert & Engstrom, Eric & Ermolov, Andrey, 2015. "Bad environments, good environments: A non-Gaussian asymmetric volatility model," Journal of Econometrics, Elsevier, vol. 186(1), pages 258-275.
    131. Cenedese, Gino, 2015. "Safe haven currencies: a portfolio perspective," Bank of England working papers 533, Bank of England.
    132. Jalal, Amine & Rockinger, Michael, 2008. "Predicting tail-related risk measures: The consequences of using GARCH filters for non-GARCH data," Journal of Empirical Finance, Elsevier, vol. 15(5), pages 868-877, December.
    133. Ryan Lemand, 2003. "Should Stock Market Indexes Time Varying Correlations Be Taken Into Account? A Conditional Variance Multivariate Approach," Econometrics 0307004, University Library of Munich, Germany, revised 07 Dec 2020.
    134. Vasco J. Gabriel & Luis F. Martins, 2000. "The Forecast Performance of Long Memory and Markov Switching Models," NIPE Working Papers 2/2000, NIPE - Universidade do Minho.
    135. Chan, W.S. & Cheung, S.H. & Zhang, L.X. & Wu, K.H., 2008. "Temporal aggregation of equity return time-series models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 78(2), pages 172-180.
    136. Taamouti, Abderrahim, 2012. "Moments of multivariate regime switching with application to risk-return trade-off," Journal of Empirical Finance, Elsevier, vol. 19(2), pages 292-308.
    137. Andrade, Sandro C. & Ekponon, Adelphe & Jeanneret, Alexandre, 2023. "Sovereign risk premia and global macroeconomic conditions," Journal of Financial Economics, Elsevier, vol. 147(1), pages 172-197.
    138. Juan Reboredo, 2010. "Nonlinear effects of oil shocks on stock returns: a Markov-switching approach," Applied Economics, Taylor & Francis Journals, vol. 42(29), pages 3735-3744.
    139. M. T. Agieva & A. V. Korolev & G. A. Ougolnitsky, 2020. "Modeling and Simulation of Impact and Control in Social Networks with Application to Marketing," Mathematics, MDPI, vol. 8(9), pages 1-28, September.
    140. Kole, Erik & Koedijk, Kees & Verbeek, Marno, 2006. "Portfolio implications of systemic crises," Journal of Banking & Finance, Elsevier, vol. 30(8), pages 2347-2369, August.

  47. Pesaran, Hashem & Timmermann, Allan, 1999. "Model Instability and Choice of Observation Window," University of California at San Diego, Economics Working Paper Series qt8zx626k6, Department of Economics, UC San Diego.

    Cited by:

    1. Lu, Yang K. & Perron, Pierre, 2010. "Modeling and forecasting stock return volatility using a random level shift model," Journal of Empirical Finance, Elsevier, vol. 17(1), pages 138-156, January.
    2. Kurmaş Akdoğan, 2017. "Unemployment hysteresis and structural change in Europe," Empirical Economics, Springer, vol. 53(4), pages 1415-1440, December.
    3. Goodness C. Aye & Mehmet Balcilar & Rangan Gupta, 2017. "International stock return predictability: Is the role of U.S. time-varying?," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 44(1), pages 121-146, February.
    4. Altissimo, F. & Corradi, V., 2000. "Strong Rules for Detecting the Number of Breaks in a Time Series," Discussion Papers 0011, University of Exeter, Department of Economics.
    5. Liew, Freddy, 2012. "Forecasting inflation in Asian economies," MPRA Paper 36781, University Library of Munich, Germany.
    6. Kurmaş Akdoğan, 2015. "Asymmetric Behaviour of Inflation around the Target in Inflation-Targeting Countries," Scottish Journal of Political Economy, Scottish Economic Society, vol. 62(5), pages 486-504, November.

  48. Allan Timmermann & Gabriel Perez-Quiros, 1999. "Firm Size and Cyclical Variations in Stock Returns," FMG Discussion Papers dp335, Financial Markets Group.

    Cited by:

    1. Barbara Rossi, 2011. "Advances in Forecasting Under Instability," Working Papers 11-20, Duke University, Department of Economics.
    2. David Nawrocki & Tonis Vaga, 2014. "A bifurcation model of market returns," Quantitative Finance, Taylor & Francis Journals, vol. 14(3), pages 509-528, March.
    3. Francisco Covas & Wouter Denhaan, 2006. "The role of debt and equity finance over the business cycle," 2006 Meeting Papers 407, Society for Economic Dynamics.
    4. Puneet Handa, 2006. "Does Stock Return Predictability Imply Improved Asset Allocation and Performance? Evidence from the U.S. Stock Market (1954–2002)," The Journal of Business, University of Chicago Press, vol. 79(5), pages 2423-2468, September.
    5. Nguyen, Duc Binh Benno & Prokopczuk, Marcel & Sibbertsen, Philipp, 2020. "The memory of stock return volatility: Asset pricing implications," Journal of Financial Markets, Elsevier, vol. 47(C).
    6. Paulo Maio, 2014. "Another Look at the Stock Return Response to Monetary Policy Actions," Review of Finance, European Finance Association, vol. 18(1), pages 321-371.
    7. Abdul Karim, Zulkefly & Zaidi, Mohd Azlan Shah & Karim, Bakri, 2011. "Does Firm-Level Equity Return Respond to Domestic and International Monetary Policy Shocks? A Panel Data Study of Malaysia," Jurnal Ekonomi Malaysia, Faculty of Economics and Business, Universiti Kebangsaan Malaysia, vol. 45, pages 21-31.
    8. Pandey I M, 2005. "What Drives the Shareholer Value?," IIMA Working Papers WP2005-09-04, Indian Institute of Management Ahmedabad, Research and Publication Department.
    9. Bazgour, Tarik & Heuchenne, Cédric & Hübner, Georges & Sougné, Danielle, 2021. "How do volatility regimes affect the pricing of quality and liquidity in the stock market?," LIDAM Reprints ISBA 2021038, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    10. Cem Cakmakli & Richard Paap & Dick J.C. van Dijk, 2011. "Modeling and Estimation of Synchronization in Multistate Markov-Switching Models," Tinbergen Institute Discussion Papers 11-002/4, Tinbergen Institute.
    11. Hur, Jungshik & Pettengill, Glenn & Singh, Vivek, 2014. "Market states and the risk-based explanation of the size premium," Journal of Empirical Finance, Elsevier, vol. 28(C), pages 139-150.
    12. Alessandra Guariglia & Marina-Eliza Spaliara & Serafeim Tsoukas, 2016. "To What Extent Does the Interest Burden Affect Firm Survival? Evidence from a Panel of UK Firms during the Recent Financial Crisis," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 78(4), pages 576-594, August.
    13. Peng Huang & C. James Hueng, 2009. "Interest-rate risk factor and stock returns: a time-varying factor-loadings model," Applied Financial Economics, Taylor & Francis Journals, vol. 19(22), pages 1813-1824.
    14. Alexandros Kontonikas & Alexandros Kostakis, 2013. "On Monetary Policy and Stock Market Anomalies," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 40(7-8), pages 1009-1042, September.
    15. Block, Joern & Fisch, Christian & Vismara, Silvio & Andres, René, 2019. "Private equity investment criteria: An experimental conjoint analysis of venture capital, business angels, and family offices," Journal of Corporate Finance, Elsevier, vol. 58(C), pages 329-352.
    16. Pesaran, M. Hashem & Timmermann, Allan, 2002. "Market timing and return prediction under model instability," Journal of Empirical Finance, Elsevier, vol. 9(5), pages 495-510, December.
    17. Carol Alexander & Anca Dimitriu, 2003. "Equity Indexing: Conitegration and Stock Price Dispersion: A Regime Switiching Approach to market Efficiency," ICMA Centre Discussion Papers in Finance icma-dp2003-02, Henley Business School, University of Reading.
    18. Don Bredin & Stuart Hyde, 2008. "Regime Change and the Role of International Markets on the Stock Returns of Small Open Economies," European Financial Management, European Financial Management Association, vol. 14(2), pages 315-346, March.
    19. Eijffinger, S.C.W. & Mahieu, R.J. & Raes, L.B.D., 2012. "Can the Fed talk the Hind Legs off the Stock Market? (replaces CentER DP 2011-072)," Other publications TiSEM 347a970d-4a05-416f-a351-1, Tilburg University, School of Economics and Management.
    20. L. Baele & R. Vander Vennet & A. Van Landschoot, 2004. "Bank Risk Strategies and Cyclical Variation in Bank Stock Returns," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 04/217, Ghent University, Faculty of Economics and Business Administration.
    21. Renatas Kizys & Peter Spencer, 2007. "Assessing the Relation between Equity Risk Premium and Macroeconomic Volatilities in the UK," Discussion Papers 07/13, Department of Economics, University of York.
    22. Massimo Guidolin & Allan Timmerman, 2006. "Asset allocation under multivariate regime switching," Working Papers 2005-002, Federal Reserve Bank of St. Louis.
    23. Matteo Barigozzi & Daniele Massacci, 2022. "Modelling Large Dimensional Datasets with Markov Switching Factor Models," Papers 2210.09828, arXiv.org, revised Dec 2024.
    24. David McMillan & Alan Speight, 2006. "Non-linear long horizon returns predictability: evidence from six south-east Asian markets," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 13(2), pages 95-111, June.
    25. Zolotoy, Leon & Frederickson, James R. & Lyon, John D., 2017. "Aggregate earnings and stock market returns: The good, the bad, and the state-dependent," Journal of Banking & Finance, Elsevier, vol. 77(C), pages 157-175.
    26. David G. McMillan, 2009. "Non-linear interest rate dynamics and forecasting: evidence for US and Australian interest rates," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 14(2), pages 139-155.
    27. Tsai, Chun-Li, 2013. "The high-frequency asymmetric response of stock returns to monetary policy for high oil price events," Energy Economics, Elsevier, vol. 36(C), pages 166-176.
    28. Ehrmann, M., 2000. "Firm Size and Monetary Policy Transmission - Evidence from German Business Survey Data," Economics Working Papers eco2000/12, European University Institute.
    29. Andrew Phiri, 2018. "Has the South African Reserve Bank responded to equity returns since the sub-prime crisis? An asymmetric convergence approach," International Journal of Sustainable Economy, Inderscience Enterprises Ltd, vol. 10(3), pages 205-225.
    30. Yeoh, Siew-Boey & Hooy, Chee-Wooi, 2024. "Is the military CEO aggressive or conservative? Differences in legal and cultural factors around the world," Research in International Business and Finance, Elsevier, vol. 70(PA).
    31. Ahn, Dong-Hyun & Min, Byoung-Kyu & Yoon, Bohyun, 2019. "Why has the size effect disappeared?," Journal of Banking & Finance, Elsevier, vol. 102(C), pages 256-276.
    32. Andrew Ang & Allan Timmermann, 2011. "Regime Changes and Financial Markets," NBER Working Papers 17182, National Bureau of Economic Research, Inc.
    33. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    34. Lorenzo Cerboni Baiardi & Massimo Costabile & Domenico De Giovanni & Fabio Lamantia & Arturo Leccadito & Ivar Massabó & Massimiliano Menzietti & Marco Pirra & Emilio Russo & Alessandro Staino, 2020. "The Dynamics of the S&P 500 under a Crisis Context: Insights from a Three-Regime Switching Model," Risks, MDPI, vol. 8(3), pages 1-15, July.
    35. Pawel Bilinski & Danielle Lyssimachou, 2014. "Risk Interpretation of the CAPM's Beta: Evidence from a New Research Method," Abacus, Accounting Foundation, University of Sydney, vol. 50(2), pages 203-226, June.
    36. Turtle, H.J. & Zhang, Chengping, 2012. "Time-varying performance of international mutual funds," Journal of Empirical Finance, Elsevier, vol. 19(3), pages 334-348.
    37. Qadan, Mahmoud & Aharon, David Y., 2019. "Can investor sentiment predict the size premium?," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 10-26.
    38. Dennis Wesselbaum, 2022. "Cheap Talk in a New Keynesian Model," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 20(3), pages 661-691, September.
    39. Erik Kole & Dick Dijk, 2017. "How to Identify and Forecast Bull and Bear Markets?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(1), pages 120-139, January.
    40. Atanasov, Victoria & Nitschka, Thomas, 2017. "Firm size, economic risks, and the cross-section of international stock returns," The North American Journal of Economics and Finance, Elsevier, vol. 39(C), pages 110-126.
    41. Bauer, Rob & Derwall, Jeroen & Molenaar, Roderick, 2004. "The real-time predictability of the size and value premium in Japan," Pacific-Basin Finance Journal, Elsevier, vol. 12(5), pages 503-523, November.
    42. Wu-Jen Chuang & Liang-Yuh Ou-Yang & Wen-Chen Lo, 2009. "Nonlinear Market Dynamics Between Stock Returns And Trading Volume: Empirical Evidences From Asian Stock Markets," Analele Stiintifice ale Universitatii "Alexandru Ioan Cuza" din Iasi - Stiinte Economice (1954-2015), Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, vol. 56, pages 621-634, November.
    43. Héctor M. Zárate Solano & Norberto Rodríguez Niño & Margarita Marín Jaramillo, 2012. "El tamaño de las empresas y la transmisión de la política monetaria en Colombia: una aplicación con la encuesta mensual de expectativas económicas," Borradores de Economia 721, Banco de la Republica de Colombia.
    44. Fedorova, E. & Afanasev, D., 2014. "Comprehensive Crisis Indicator for Russia," Journal of the New Economic Association, New Economic Association, vol. 23(3), pages 38-59.
    45. Ali Ozdagli & Mihail Velikov, 2016. "Show me the money: the monetary policy risk premium," Working Papers 16-27, Federal Reserve Bank of Boston.
    46. Pesaran, M. Hashem & Timmermann, Allan, 2004. "How costly is it to ignore breaks when forecasting the direction of a time series?," International Journal of Forecasting, Elsevier, vol. 20(3), pages 411-425.
    47. Lucia BALDI & Massimo PERI & Daniela VANDONE, 2010. "Is wine a financial parachute?," Departmental Working Papers 2010-01, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    48. Golam Sarwar & Cesario Mateus & Natasa Todorovic, 2017. "A tale of two states: asymmetries in the UK small, value and momentum premiums," Applied Economics, Taylor & Francis Journals, vol. 49(5), pages 456-476, January.
    49. Chang-Chih Chen & Chia-Chien Chang, 2019. "How Big are the Ambiguity-Based Premiums on Mortgage Insurances?," The Journal of Real Estate Finance and Economics, Springer, vol. 58(1), pages 133-157, January.
    50. Massimo Guidolin & Francesco Ravazzolo & Andrea Tortora, 2014. "Myths and Facts about the Alleged Over-Pricing of U.S. Real Estate," The Journal of Real Estate Finance and Economics, Springer, vol. 49(4), pages 477-523, November.
    51. Carol Alexander & Anca Dimitriu, 2005. "Indexing, cointegration and equity market regimes," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 10(3), pages 213-231.
    52. Asger Lunde & Allan Timmermann, 2000. "Duration Dependence in Stock Prices: An Analysis of Bull and Bear Markets," Econometric Society World Congress 2000 Contributed Papers 1216, Econometric Society.
    53. Chen, Shiu-Sheng, 2012. "Revisiting the empirical linkages between stock returns and trading volume," MPRA Paper 36897, University Library of Munich, Germany.
    54. Massimo Guidolin & Giovanna Nicodano, 2007. "Managing international portfolios with small capitalization stocks," Working Papers 2007-030, Federal Reserve Bank of St. Louis.
    55. Jansen, Dennis W. & Tsai, Chun-Li, 2010. "Monetary policy and stock returns: Financing constraints and asymmetries in bull and bear markets," Journal of Empirical Finance, Elsevier, vol. 17(5), pages 981-990, December.
    56. Laurent Calvet & Adlai Fisher, 2003. "Regime-Switching and the Estimation of Multifractal Processes," Harvard Institute of Economic Research Working Papers 1999, Harvard - Institute of Economic Research.
    57. Inessa BENCHORA & Aurélien LEROY & Louis RAFFESTIN, 2023. "Is Monetary Policy Transmission Green?," Bordeaux Economics Working Papers 2023-08, Bordeaux School of Economics (BSE).
    58. Cao, Yue & Dong, Yizhe & Ma, Diandian & Sun, Li, 2021. "Customer concentration and corporate risk-taking," Journal of Financial Stability, Elsevier, vol. 54(C).
    59. Betz, Frank & Ravasan, Farshad R., 2016. "Collateral regimes and missing job creation in the MENA region," EIB Working Papers 2016/03, European Investment Bank (EIB).
    60. Pierdzioch, Christian & Risse, Marian & Rohloff, Sebastian, 2014. "The international business cycle and gold-price fluctuations," The Quarterly Review of Economics and Finance, Elsevier, vol. 54(2), pages 292-305.
    61. Massimo Guidolin & Francesco Ravazzolo & Andrea Donato Tortora, 2011. "Myths and facts about the alleged over-pricing of U.S. real estate. Evidence from multi-factor asset pricing models of REIT returns," Working Paper 2011/19, Norges Bank.
    62. Simon Ho & Annie Li & Kinsun Tam & Feida Zhang, 2015. "CEO Gender, Ethical Leadership, and Accounting Conservatism," Journal of Business Ethics, Springer, vol. 127(2), pages 351-370, March.
    63. Pitarakis, Jean-Yves, 2012. "Estimation and inference in threshold type regime switching models," UC3M Working papers. Economics we1204, Universidad Carlos III de Madrid. Departamento de Economía.
    64. Chen, Shiu-Sheng, 2010. "Do higher oil prices push the stock market into bear territory?," Energy Economics, Elsevier, vol. 32(2), pages 490-495, March.
    65. Kim, Dongcheol & Roh, Tai-Yong & Min, Byoung-Kyu & Byun, Suk-Joon, 2014. "Time-varying expected momentum profits," Journal of Banking & Finance, Elsevier, vol. 49(C), pages 191-215.
    66. Albuquerque, Ana, 2009. "Peer firms in relative performance evaluation," Journal of Accounting and Economics, Elsevier, vol. 48(1), pages 69-89, October.
    67. Bahram Adrangi & Arjun Chatrath & Joseph Macri & Kambiz Raffiee, 2016. "The US Monetary Base and Major World Equity Markets: An Empirical Investigation," Review of Economics & Finance, Better Advances Press, Canada, vol. 6, pages 49-64, August.
    68. Dahmene, Meriam & Boughrara, Adel & Slim, Skander, 2021. "Nonlinearity in stock returns: Do risk aversion, investor sentiment and, monetary policy shocks matter?," International Review of Economics & Finance, Elsevier, vol. 71(C), pages 676-699.
    69. Zulkefly Abdul Karim & Mohd Azlan Shah Zaidi, 2015. "Monetary Policy, Firm Size and Equity Returns in An Emerging Market: Panel Evidence of Malaysia," Asian Academy of Management Journal of Accounting and Finance (AAMJAF), Penerbit Universiti Sains Malaysia, vol. 11(2), pages 29-55.
    70. Gian Luca Clementi & Hugo Hopenhayn, 2002. "A Theory of Financing Constraints and Firm Dynamics," RCER Working Papers 492, University of Rochester - Center for Economic Research (RCER).
    71. Badye Essid & Tolga Cenesizoglu, 2010. "The Effect of Monetary Policy on Credit Spreads," 2010 Meeting Papers 1139, Society for Economic Dynamics.
    72. Felix Haase & Matthias Neuenkirch, 2020. "Predictability of Bull and Bear Markets: A New Look at Forecasting Stock Market Regimes (and Returns) in the US," Research Papers in Economics 2020-01, University of Trier, Department of Economics.
    73. Massimo Guidolin & Allan Timmerman, 2005. "An econometric model of nonlinear dynamics in the joint distribution of stock and bond returns," Working Papers 2005-003, Federal Reserve Bank of St. Louis.
    74. Apostolos Thomadakis, 2012. "Contagion or Flight-to-Quality Phenomena in Stock and Bond Returns," School of Economics Discussion Papers 0612, School of Economics, University of Surrey.
    75. João Pedro Pereira & António Rua, 2018. "Asset Pricing with a Bank Risk Factor," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(5), pages 993-1032, August.
    76. Ai Jun Hou & Ian Khrashchevskyi & Jarkko Peltomäki, 2019. "Hedge and safe haven investing with investment styles," Journal of Asset Management, Palgrave Macmillan, vol. 20(5), pages 351-364, September.
    77. Klaus Grobys, 2011. "Are Different National Stock Markets Driven by the Same Stochastic Hidden Variable?," The Review of Finance and Banking, Academia de Studii Economice din Bucuresti, Romania / Facultatea de Finante, Asigurari, Banci si Burse de Valori / Catedra de Finante, vol. 3(1), pages 021-030, June.
    78. Shiu-Sheng Chen, 2005. "Does Monetary Policy Have Asymmetric Effects on Stock Returns?," Macroeconomics 0502001, University Library of Munich, Germany, revised 01 Feb 2005.
    79. Ma, Jason Z. & Deng, Xiang & Ho, Kung-Cheng & Tsai, Sang-Bing, 2018. "Regime-switching determinants of emerging markets sovereign credit risk swaps spread," Economics Discussion Papers 2018-52, Kiel Institute for the World Economy (IfW Kiel).
    80. Hoa Nguyen & Robert Faff, 2010. "Are firms hedging or speculating? The relationship between financial derivatives and firm risk," Applied Financial Economics, Taylor & Francis Journals, vol. 20(10), pages 827-843.
    81. Alemany, Nuria & Aragó, Vicent & Salvador, Enrique, 2020. "Lead-lag relationship between spot and futures stock indexes: Intraday data and regime-switching models," International Review of Economics & Finance, Elsevier, vol. 68(C), pages 269-280.
    82. Zhenxi Chen & Weihong Huang & Huanhuan Zheng, 2018. "Estimating heterogeneous agents behavior in a two-market financial system," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 13(3), pages 491-510, October.
    83. Bilinski, Pawel & Liu, Weimin & Strong, Norman, 2012. "Does liquidity risk explain low firm performance following seasoned equity offerings?," Journal of Banking & Finance, Elsevier, vol. 36(10), pages 2770-2785.
    84. Henri Nyberg, 2018. "Forecasting US interest rates and business cycle with a nonlinear regime switching VAR model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(1), pages 1-15, January.
    85. Guo, Hui, 2004. "Stock prices, firm size, and changes in the federal funds rate target," The Quarterly Review of Economics and Finance, Elsevier, vol. 44(4), pages 487-507, September.
    86. Nyberg, Henri, 2011. "Forecasting the direction of the US stock market with dynamic binary probit models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 561-578.
    87. Linh Nguyen & Vilém Novák & Soheyla Mirshahi, 2020. "Trend‐cycle Estimation Using Fuzzy Transform and Its Application for Identifying Bull and Bear Phases in Markets," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 27(3), pages 111-124, July.
    88. McMillan, David G., 2001. "Nonlinear predictability of stock market returns: Evidence from nonparametric and threshold models," International Review of Economics & Finance, Elsevier, vol. 10(4), pages 353-368, December.
    89. Massimo Guidolin & Allan Timmermann, 2008. "International asset allocation under regime switching, skew, and kurtosis preferences," The Review of Financial Studies, Society for Financial Studies, vol. 21(2), pages 889-935, April.
    90. Faraji, Omid & Kashanipour, Mohammad & MohammadRezaei, Fakhroddin & Ahmed, Kamran & Vatanparast, Nader, 2020. "Political connections, political cycles and stock returns: Evidence from Iran," Emerging Markets Review, Elsevier, vol. 45(C).
    91. Hammami, Yacine & Oueslati, Abdelmonem, 2017. "Measuring skill in the Islamic mutual fund industry: Evidence from GCC countries," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 49(C), pages 15-31.
    92. Berardi, Andrea & Plazzi, Alberto, 2022. "Dissecting the yield curve: The international evidence," Journal of Banking & Finance, Elsevier, vol. 134(C).
    93. Eijffinger, S.C.W. & Mahieu, R.J. & Raes, L.B.D., 2012. "Can the Fed talk the Hind Legs off the Stock Market? (replaces CentER DP 2011-072)," Discussion Paper 2012-012, Tilburg University, Center for Economic Research.
    94. Campbell, John & Vuolteenaho, Tuomo, 2004. "Bad Beta, Good Beta," Scholarly Articles 3122489, Harvard University Department of Economics.
    95. Luis Garcia-Feijoo & Gerald R. Jensen, 2014. "The Monetary Environment And Long-Run Reversals In Stock Returns," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 37(1), pages 3-26, February.
    96. Renatas Kizys & Peter Spencer, 2007. "Assessing the Relation between Equity Risk Premia and Macroeconomic Volatilities," Money Macro and Finance (MMF) Research Group Conference 2006 140, Money Macro and Finance Research Group.
    97. Firat Melih Yilmaz & Engin Yildiztepe, 2024. "Statistical Evaluation of Deep Learning Models for Stock Return Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 63(1), pages 221-244, January.
    98. Priestley, Richard, 2001. "Time-varying persistence in expected returns," Journal of Banking & Finance, Elsevier, vol. 25(7), pages 1271-1286, July.
    99. Guidolin, Massimo & Hyde, Stuart & McMillan, David & Ono, Sadayuki, 2009. "Non-linear predictability in stock and bond returns: When and where is it exploitable?," International Journal of Forecasting, Elsevier, vol. 25(2), pages 373-399.
    100. Tim Bollerslev & Viktor Todorov & Lai Xu, 2014. "Tail Risk Premia and Return Predictability," CREATES Research Papers 2014-49, Department of Economics and Business Economics, Aarhus University.
    101. Massimo Guidolin & Stuart Hyde & David McMillan & Sadayuki Ono, 2010. "Does the macroeconomy predict U.K. asset returns in a nonlinear fashion? comprehensive out-of-sample evidence," Working Papers 2010-039, Federal Reserve Bank of St. Louis.
    102. David McMillan, 2004. "Non-linear predictability of UK stock market returns," Money Macro and Finance (MMF) Research Group Conference 2003 63, Money Macro and Finance Research Group.
    103. Maheu, John M. & McCurdy, Thomas H., 2000. "Volatility dynamics under duration-dependent mixing," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 345-372, November.
    104. Phiri, Andrew, 2017. "Has the South African Reserve Bank responded to equity prices since the sub-prime crisis? An asymmetric convergence approach," MPRA Paper 76542, University Library of Munich, Germany.
    105. Massimo Guidolin & Giovanna Nicodano, 2009. "Small caps in international equity portfolios: the effects of variance risk," Annals of Finance, Springer, vol. 5(1), pages 15-48, January.
    106. Dittmann, Ingolf & Montone, Maurizio & Zhu, Yuhao, 2023. "Wage gap and stock returns: Do investors dislike pay inequality?," Journal of Corporate Finance, Elsevier, vol. 78(C).
    107. Kizys, Renatas & Pierdzioch, Christian, 2011. "The changing sensitivity of realized portfolio betas to U.S. output growth: An analysis based on real-time data," Journal of Economics and Business, Elsevier, vol. 63(3), pages 168-186, May.
    108. Ali Ozdagli, 2014. "Financial frictions and the reaction of stock prices to monetary policy shocks," Working Papers 14-6, Federal Reserve Bank of Boston.
    109. Christodoulakis, George & Mohamed, Abdulkadir & Topaloglou, Nikolas, 2018. "Optimal privatization portfolios in the presence of arbitrary risk aversion," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1172-1191.
    110. Emenike Kalu O. & Odili Okwuchukwu, 2014. "Stock Market Return Volatility and Macroeconomic Variables in Nigeria," International Journal of Empirical Finance, Research Academy of Social Sciences, vol. 2(2), pages 75-82.
    111. Jang, Bosung & So, Inhwan, 2024. "Stock returns and monetary policy stance," International Review of Economics & Finance, Elsevier, vol. 92(C), pages 851-869.
    112. Eijffinger, Sylvester & Mahieu, Ronald & Raes, Louis, 2011. "Can the Fed talk the hind legs off the stock market?," CEPR Discussion Papers 8450, C.E.P.R. Discussion Papers.
    113. Yao Zheng & Peihwang Wei & Eric Osmer, 2022. "The relation between earnings and price momentum: Does it vary across regimes?," Review of Quantitative Finance and Accounting, Springer, vol. 58(3), pages 1145-1213, April.
    114. David Haab & Dr. Thomas Nitschka, 2017. "Predicting returns on asset markets of a small, open economy and the influence of global risks," Working Papers 2017-14, Swiss National Bank.
    115. Chen, Shiu-Sheng, 2009. "Predicting the bear stock market: Macroeconomic variables as leading indicators," Journal of Banking & Finance, Elsevier, vol. 33(2), pages 211-223, February.
    116. Jaehoon Hahn & Hangyong Lee, 2009. "Financial Constraints, Debt Capacity, and the Cross‐section of Stock Returns," Journal of Finance, American Finance Association, vol. 64(2), pages 891-921, April.
    117. Agapova, Anna & Madura, Jeff, 2016. "Market uncertainty and earnings guidance," The Quarterly Review of Economics and Finance, Elsevier, vol. 61(C), pages 97-111.
    118. Henry, Ólan & Olekalns, Nilss & Shields, Kalvinder, 2010. "Sign and phase asymmetry: News, economic activity and the stock market," Journal of Macroeconomics, Elsevier, vol. 32(4), pages 1083-1100, December.
    119. Sujoy Mukerji & Han N. Ozsoylev & Jean‐Marc Tallon, 2023. "Trading Ambiguity: A Tale Of Two Heterogeneities," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 1127-1164, August.
    120. Tian, Can, 2015. "Riskiness, endogenous productivity dispersion and business cycles," Journal of Economic Dynamics and Control, Elsevier, vol. 57(C), pages 227-249.
    121. Carlos Enrique Carrasco-Gutierrez & Wagner Piazza Gaglianone, 2012. "Evaluating Asset Pricing Models in a Simulated Multifactor Approach," Brazilian Review of Finance, Brazilian Society of Finance, vol. 10(4), pages 425-460.
    122. Christian Pierdzioch & Daniel Hartmann, 2013. "Forecasting Eurozone real-estate returns," Applied Financial Economics, Taylor & Francis Journals, vol. 23(14), pages 1185-1196, July.
    123. Boons, Martijn, 2016. "State variables, macroeconomic activity, and the cross section of individual stocks," Journal of Financial Economics, Elsevier, vol. 119(3), pages 489-511.
    124. Ariel M. Viale & Jeff Madura, 2014. "Learning Banks' Exposure To Systematic Risk: Evidence From The Financial Crisis Of 2008," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 37(1), pages 75-98, February.
    125. Mira Farka, 2022. "The credit channel of monetary policy before and after the zero lower bound: Evidence from the US equity market," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 45(3), pages 633-693, September.
    126. Henkel, Sam James & Martin, J. Spencer & Nardari, Federico, 2011. "Time-varying short-horizon predictability," Journal of Financial Economics, Elsevier, vol. 99(3), pages 560-580, March.
    127. Fabio ALESSANDRINI, 2003. "Some Additional Evidence from the Credit Channel on the Response to Monetary Shocks: Looking for Asymmetries," Cahiers de Recherches Economiques du Département d'économie 03.04, Université de Lausanne, Faculté des HEC, Département d’économie.
    128. Peltomäki, Jarkko & Äijö, Janne, 2015. "Cross-sectional anomalies and volatility risk in different economic and market cycles," Finance Research Letters, Elsevier, vol. 12(C), pages 17-22.
    129. Chevallier, Julien, 2011. "Evaluating the carbon-macroeconomy relationship: Evidence from threshold vector error-correction and Markov-switching VAR models," Economic Modelling, Elsevier, vol. 28(6), pages 2634-2656.
    130. Perez-Quiros, G. & Timmermann, A., 2001. "Business Cycle Asymmetries in Stock Returns: Evidence from Higher Order Moments and Conditional Densities," Papers 58, Quebec a Montreal - Recherche en gestion.
    131. Dylan Rassier & Dietrich Earnhart, 2010. "Does the Porter Hypothesis Explain Expected Future Financial Performance? The Effect of Clean Water Regulation on Chemical Manufacturing Firms," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(3), pages 353-377, March.
    132. David A. Becher & Gerald R. Jensen & Jeffrey M. Mercer, 2008. "Monetary Policy Indicators As Predictors Of Stock Returns," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 31(4), pages 357-379, December.
    133. Mehmet Balcilar & Riza Demirer & Shawkat Hammoudeh & Ahmed Khalifa, 2013. "Do Global Shocks Drive Investor Herds in Oil-Rich Frontier Markets?," Working Papers 819, Economic Research Forum, revised Dec 2013.
    134. Alexander, Carol & Kaeck, Andreas, 2008. "Regime dependent determinants of credit default swap spreads," Journal of Banking & Finance, Elsevier, vol. 32(6), pages 1008-1021, June.
    135. Guidolin, Massimo & Hyde, Stuart, 2012. "Can VAR models capture regime shifts in asset returns? A long-horizon strategic asset allocation perspective," Journal of Banking & Finance, Elsevier, vol. 36(3), pages 695-716.
    136. Francesco Chincoli & Massimo Guidolin, 2017. "Linear and nonlinear predictability in investment style factors: multivariate evidence," Journal of Asset Management, Palgrave Macmillan, vol. 18(6), pages 476-509, October.
    137. Baetje, Fabian & Menkhoff, Lukas, 2013. "Macro determinants of U.S. stock market risk premia in bull and bear markets," Hannover Economic Papers (HEP) dp-520, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    138. Pettenuzzo, Davide & Timmermann, Allan, 2011. "Predictability of stock returns and asset allocation under structural breaks," Journal of Econometrics, Elsevier, vol. 164(1), pages 60-78, September.
    139. Mu-Shun Wang, 2013. "Idiosyncratic Volatility and the Expected Stock Returns for Exploring the Relationship with Panel Threshold Regression," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 20(2), pages 113-129, May.
    140. Chang, Kuang-Liang, 2009. "Do macroeconomic variables have regime-dependent effects on stock return dynamics? Evidence from the Markov regime switching model," Economic Modelling, Elsevier, vol. 26(6), pages 1283-1299, November.
    141. Massacci, Daniele, 2014. "A two-regime threshold model with conditional skewed Student t distributions for stock returns," Economic Modelling, Elsevier, vol. 43(C), pages 9-20.
    142. Chen, Chang-Chih & Ho, Kung-Cheng & Yan, Cheng & Yeh, Chung-Ying & Yu, Min-Teh, 2023. "Does ambiguity matter for corporate debt financing? Theory and evidence," Journal of Corporate Finance, Elsevier, vol. 80(C).
    143. Ahsan Habib & Mostafa Monzur Hasan, 2017. "Firm life cycle, corporate risk-taking and investor sentiment," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 57(2), pages 465-497, June.
    144. Cowan, Adrian M. & Joutz, Frederick L., 2006. "An unobserved component model of asset pricing across financial markets," International Review of Financial Analysis, Elsevier, vol. 15(1), pages 86-107.
    145. Sharma, Shahil & Rodriguez, Ivan, 2019. "The diminishing hedging role of crude oil: Evidence from time varying financialization," Journal of Multinational Financial Management, Elsevier, vol. 52.
    146. Adland, Roar & Alizadeh, Amir H., 2018. "Explaining price differences between physical and derivative freight contracts," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 20-33.
    147. Ang, Andrew & Gu, Li & Hochberg, Yael V., 2007. "Is Ipo Underperformance a Peso Problem?," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 42(3), pages 565-594, September.
    148. Ravi Kashyap, 2024. "The Concentration Risk Indicator: Raising the Bar for Financial Stability and Portfolio Performance Measurement," Papers 2408.07271, arXiv.org.
    149. Timmermann, Allan, 2008. "Elusive return predictability," International Journal of Forecasting, Elsevier, vol. 24(1), pages 1-18.
    150. De Santis, Roberto A. & Tornese, Tommaso, 2024. "US monetary policy is more powerful in low economic growth regimes," Working Paper Series 2919, European Central Bank.
    151. McMillan, David G., 2007. "Non-linear forecasting of stock returns: Does volume help?," International Journal of Forecasting, Elsevier, vol. 23(1), pages 115-126.
    152. Xin Li & Tih Koon Tan, 2015. "Governance Changes For Firms Added To The S&P 500," The International Journal of Business and Finance Research, The Institute for Business and Finance Research, vol. 9(4), pages 21-35.
    153. Akhigbe, Aigbe & Makar, Stephen & Wang, Li & Whyte, Ann Marie, 2018. "Interest rate derivatives use in banking: Market pricing implications of cash flow hedges," Journal of Banking & Finance, Elsevier, vol. 86(C), pages 113-126.
    154. Franzoni, Francesco, 2009. "Underinvestment vs. overinvestment: Evidence from price reactions to pension contributions," Journal of Financial Economics, Elsevier, vol. 92(3), pages 491-518, June.
    155. Hsu, Ching-Chi & Wei, An-Pin & Chen, Miao-Ling, 2020. "Funding liquidity risk and the low-volatility anomaly: Evidence from the Taiwan stock market," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    156. Sun, Wenbin & Price, Joseph & Ding, Yuan, 2019. "The longitudinal effects of internationalization on firm performance: The moderating role of marketing capability," Journal of Business Research, Elsevier, vol. 95(C), pages 326-337.
    157. Carol Alexander & Andreas Kaeck, 2006. "Regimes in CDS Spreads: A Markov Switching Model of iTraxx Europe Indices," ICMA Centre Discussion Papers in Finance icma-dp2006-08, Henley Business School, University of Reading.
    158. David R. Haab & Thomas Nitschka, 2019. "What Goliaths and Davids among Swiss firms tell us about expected returns on Swiss asset markets," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 155(1), pages 1-17, December.
    159. Zheng, Yao, 2015. "The linkage between aggregate investor sentiment and metal futures returns: A nonlinear approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 58(C), pages 128-142.
    160. David G. McMillan, 2005. "Non‐linear dynamics in international stock market returns," Review of Financial Economics, John Wiley & Sons, vol. 14(1), pages 81-91.
    161. Gregory Connor & Lisa R. Goldberg & Robert A. Korajczyk, 2010. "Portfolio Risk Analysis," Economics Books, Princeton University Press, edition 1, number 9224.
    162. Huseyin Gulen & Yuhang Xing & Lu Zhang, 2011. "Value versus Growth: Time‐Varying Expected Stock Returns," Financial Management, Financial Management Association International, vol. 40(2), pages 381-407, June.
    163. Bahram Adrangi & Hannah Baade & Kambiz Raffiee, 2019. "Dynamic Responses of the Economy to Monetary Shocks in the United Kingdom," Review of Economics & Finance, Better Advances Press, Canada, vol. 15, pages 31-45, February.
    164. Lee, Hsiu-Chuan & Chang, Shu-Lien, 2013. "Spillovers of currency carry trade returns, market risk sentiment, and U.S. market returns," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 197-216.
    165. Jonathan Fletcher, 2022. "Exploring the diversification benefits of US international equity closed-end funds," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 36(3), pages 297-320, September.
    166. Laborda, Ricardo & Olmo, Jose, 2017. "Optimal asset allocation for strategic investors," International Journal of Forecasting, Elsevier, vol. 33(4), pages 970-987.
    167. Habib Rahman & Hasan Mohsin, 2011. "Monetary Policy Announcements and Stock Returns: Evidence from the Pakistani Market," Transition Studies Review, Springer;Central Eastern European University Network (CEEUN), vol. 18(2), pages 342-360, December.
    168. Dietrich Earnhart & Dylan G. Rassier, 2016. "“Effective regulatory stringency” and firms’ profitability: the effects of effluent limits and government monitoring," Journal of Regulatory Economics, Springer, vol. 50(2), pages 111-145, October.
    169. Massimo Guidolin & Allan Timmerman, 2005. "Optimal portfolio choice under regime switching, skew and kurtosis preferences," Working Papers 2005-006, Federal Reserve Bank of St. Louis.
    170. Chen, Shiu-Sheng, 2011. "Lack of consumer confidence and stock returns," Journal of Empirical Finance, Elsevier, vol. 18(2), pages 225-236, March.
    171. Veerawin Korphaibool & Pattanaporn Chatjuthamard & Sirimon Treepongkaruna, 2021. "Scoring Sufficiency Economy Philosophy through GRI Standards and Firm Risk: A Case Study of Thai Listed Companies," Sustainability, MDPI, vol. 13(4), pages 1-19, February.
    172. Rassier, Dylan G. & Earnhart, Dietrich, 2015. "Effects of environmental regulation on actual and expected profitability," Ecological Economics, Elsevier, vol. 112(C), pages 129-140.
    173. Lambert, Marie & Platania, Federico, 2020. "The macroeconomic drivers in hedge fund beta management," Economic Modelling, Elsevier, vol. 91(C), pages 65-80.
    174. Massimo Guidolin & Allan Timmermann, 2008. "Size and Value Anomalies under Regime Shifts," Journal of Financial Econometrics, Oxford University Press, vol. 6(1), pages 1-48, Winter.
    175. Scharler, Johann, 2008. "Bank lending and the stock market's response to monetary policy shocks," International Review of Economics & Finance, Elsevier, vol. 17(3), pages 425-435.
    176. Zhang Wu & Terence Tai-Leung Chong, 2021. "Does the macroeconomy matter to market volatility? Evidence from US industries," Empirical Economics, Springer, vol. 61(6), pages 2931-2962, December.
    177. Salvatore Perdichizzi, 2017. "The impact of ECBs conventional and unconventional monetary policies on European banking indexes returns," DISCE - Working Papers del Dipartimento di Economia e Finanza def059, Università Cattolica del Sacro Cuore, Dipartimenti e Istituti di Scienze Economiche (DISCE).
    178. Cooper, Michael J. & McConnell, John J. & Ovtchinnikov, Alexei V., 2006. "The other January effect," Journal of Financial Economics, Elsevier, vol. 82(2), pages 315-341, November.
    179. Zhao, Dongxu & Li, Kai, 2022. "Bounded rationality, adaptive behaviour, and asset prices," International Review of Financial Analysis, Elsevier, vol. 80(C).
    180. Johann Scharler, 2004. "Understanding the Stock Market’s Response to Monetary Policy Shocks," Working Papers 93, Oesterreichische Nationalbank (Austrian Central Bank).
    181. Fernando D. Chague, 2013. "Conditional Betas and Investor Uncertainty," Working Papers, Department of Economics 2013_04, University of São Paulo (FEA-USP).
    182. Wasim Ahmad & N. Bhanumurthy & Sanjay Sehgal, 2015. "Regime dependent dynamics and European stock markets: Is asset allocation really possible?," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 42(1), pages 77-107, February.
    183. Tarun Chordia & Lakshmanan Shivakumar, 2002. "Momentum, Business Cycle, and Time‐varying Expected Returns," Journal of Finance, American Finance Association, vol. 57(2), pages 985-1019, April.
    184. Guo, Haifeng & Hung, Chi-Hsiou D. & Kontonikas, Alexandros, 2022. "The Fed and the stock market: A tale of sentiment states," Journal of International Money and Finance, Elsevier, vol. 128(C).
    185. Mehdi Zolfaghari & Bahram Sahabi, 2021. "The impact of oil price and exchange rate on momentum strategy profits in stock market: evidence from oil-rich developing countries," Review of Managerial Science, Springer, vol. 15(7), pages 1981-2023, October.
    186. Chen, Hsiu-Lang & De Bondt, Werner, 2004. "Style momentum within the S&P-500 index," Journal of Empirical Finance, Elsevier, vol. 11(4), pages 483-507, September.
    187. Stephen E. Satchell & Shaun A. Bond, 2004. "Asymmetry, Loss Aversion and Forecasting," Econometric Society 2004 Australasian Meetings 160, Econometric Society.
    188. Zakamulin, Valeriy, 2013. "Forecasting the size premium over different time horizons," Journal of Banking & Finance, Elsevier, vol. 37(3), pages 1061-1072.
    189. Dewandaru, Ginanjar & Masih, Rumi & Bacha, Obiyathulla I. & Masih, A. Mansur M., 2014. "The Role of Islamic Asset Classes in the Diversified Portfolios: Mean Variance Spanning Test," MPRA Paper 56857, University Library of Munich, Germany.
    190. Stephen A. Gorman & Frank J. Fabozzi, 2021. "The ABC’s of the alternative risk premium: academic roots," Journal of Asset Management, Palgrave Macmillan, vol. 22(6), pages 405-436, October.
    191. Nyberg, Henri, 2013. "Predicting bear and bull stock markets with dynamic binary time series models," Journal of Banking & Finance, Elsevier, vol. 37(9), pages 3351-3363.
    192. Tompkins, Robert G. & D'Ecclesia, Rita L., 2006. "Unconditional return disturbances: A non-parametric simulation approach," Journal of Banking & Finance, Elsevier, vol. 30(1), pages 287-314, January.
    193. Chavleishvili, Sulkhan & Manganelli, Simone, 2019. "Forecasting and stress testing with quantile vector autoregression," Working Paper Series 2330, European Central Bank.
    194. Chen, Nan-Kuang & Chen, Shiu-Sheng & Chou, Yu-Hsi, 2013. "Further evidence on bear market predictability: The role of the external finance premium," MPRA Paper 49093, University Library of Munich, Germany.
    195. Jun Tu, 2010. "Is Regime Switching in Stock Returns Important in Portfolio Decisions?," Management Science, INFORMS, vol. 56(7), pages 1198-1215, July.
    196. Ban, Mingyuan & Chen, Chang-Chih, 2019. "Ambiguity and capital structure adjustments," International Review of Economics & Finance, Elsevier, vol. 64(C), pages 242-270.
    197. Peter F. Christoffersen, "undated". "Dating the Turning Points of Nordic Business Cycles," EPRU Working Paper Series 00-13, Economic Policy Research Unit (EPRU), University of Copenhagen. Department of Economics.
    198. N Aslanidis & D R Osborn & M Sensier, 2003. "Explaining Movements in UK Stock Prices: How Important is the US Market?," Economics Discussion Paper Series 0305, Economics, The University of Manchester.
    199. Brennan, Michael J. & Xia, Yihong, 2005. "tay's as good as cay," Finance Research Letters, Elsevier, vol. 2(1), pages 1-14, March.
    200. H. Youn Kim, 2003. "Intertemporal production and asset pricing: a duality approach," Oxford Economic Papers, Oxford University Press, vol. 55(2), pages 344-379, April.
    201. Apergis, Nicholas & Artikis, Panagiotis G. & Kyriazis, Dimitrios, 2015. "Does stock market liquidity explain real economic activity? New evidence from two large European stock markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 38(C), pages 42-64.
    202. Abbigail J. Chiodo & Massimo Guidolin & Michael T. Owyang & Makoto Shimoji, 2003. "Subjective probabilities: psychological evidence and economic applications," Working Papers 2003-009, Federal Reserve Bank of St. Louis.
    203. Ntantamis, Christos & Zhou, Jun, 2015. "Bull and bear markets in commodity prices and commodity stocks: Is there a relation?," Resources Policy, Elsevier, vol. 43(C), pages 61-81.
    204. Eijffinger, S.C.W. & Mahieu, R.J. & Raes, L.B.D., 2012. "Can the Fed Talk the Hind Legs off the Stock Market? (replaces EBC DP 2011-017)," Other publications TiSEM 2cab42f6-c75d-46ef-9801-4, Tilburg University, School of Economics and Management.
    205. Song, Wonho & Ryu, Doojin & Webb, Robert I., 2016. "Overseas market shocks and VKOSPI dynamics: A Markov-switching approach," Finance Research Letters, Elsevier, vol. 16(C), pages 275-282.
    206. Atanasov, Victoria, 2018. "World output gap and global stock returns," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 181-197.
    207. Sónia Félix, . "Borrowing constraints and firm dynamics," Economic Bulletin and Financial Stability Report Articles and Banco de Portugal Economic Studies, Banco de Portugal, Economics and Research Department.
    208. Jürgen Bierbaumer & Werner Hölzl, 2015. "Business Cycle Dynamics and Firm Heterogeneity. Evidence for Austria Using Survey Data," WIFO Working Papers 504, WIFO.
    209. Timmermann, Allan & Catão, Luís, 2004. "Country and Industry Dynamics in Stock Returns," CEPR Discussion Papers 4368, C.E.P.R. Discussion Papers.
    210. McMillan, David G., 2005. "Non-linear dynamics in international stock market returns," Review of Financial Economics, Elsevier, vol. 14(1), pages 81-91.
    211. Chang, Kuang-Liang, 2011. "The nonlinear effects of expected and unexpected components of monetary policy on the dynamics of REIT returns," Economic Modelling, Elsevier, vol. 28(3), pages 911-920, May.
    212. Ahmed Al Samman & Mahmoud Moustafa Otaify, 2017. "How Does Volatility of Characteristics-sorted Portfolios Respond to Macroeconomic Volatility?," International Journal of Economics and Financial Issues, Econjournals, vol. 7(4), pages 300-315.
    213. Francis, Bill B. & Hunter, Delroy M. & Kelly, Patrick J., 2020. "Do foreign investors insulate firms from local shocks? Evidence from the response of investable firms to monetary policy," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 386-411.
    214. Chung, Chien-Ping & Chien, Cheng-Yi & Huang, Chia-Hsin & Lee, Hsiu-Chuan, 2021. "Foreign institutional ownership and the effectiveness of technical analysis," The Quarterly Review of Economics and Finance, Elsevier, vol. 82(C), pages 86-96.
    215. Brennan, Michael & Wang, Ashley W & Xia, Yihong, 2003. "Estimation and Test of a Simple Model of Intertemporal Capital Asset Pricing," University of California at Los Angeles, Anderson Graduate School of Management qt20r0j5t8, Anderson Graduate School of Management, UCLA.
    216. Guo, Hui & Jiang, Xiaowen, 2021. "Aggregate Distress Risk and Equity Returns," Journal of Banking & Finance, Elsevier, vol. 133(C).
    217. Chiu-Lan Chang & Paul L. Hsueh, 2013. "An Investigation of the Flight-to-Quality Effect: Evidence from Asia-Pacific Countries," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 49(S4), pages 53-69, September.
    218. Hartmann, Daniel & Kempa, Bernd & Pierdzioch, Christian, 2006. "Economic and Financial Crises and the Predictability of U.S. Stock Returns," MPRA Paper 561, University Library of Munich, Germany.
    219. Nektarios Aslanidis & Denise Osborn & Marianne Sensier, 2003. "Explaining movements in UK stock prices:," Working Papers 0302, University of Crete, Department of Economics.
    220. Mohd Afandi Abu Bakar* & Noormahayu Mohd Nasir & Farrah Dina Abd Razak & Nor Samsinar Kamsi & Asmalia Che Ahmad, 2018. "Provision for Bad & Doubtful Financing and Contingency Reserve Management: Assessing Resilient and Stable Islamic Banks," The Journal of Social Sciences Research, Academic Research Publishing Group, pages 621-627:6.
    221. Shu‐Lien Chang & Hsiu‐Chuan Lee & Donald Lien, 2022. "The global latent factor and international index futures returns predictability," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 514-538, April.
    222. Asgharian, Hossein & Hou, Ai Jun & Javed, Farrukh, 2013. "Importance of the macroeconomic variables for variance prediction A GARCH-MIDAS approach," Knut Wicksell Working Paper Series 2013/4, Lund University, Knut Wicksell Centre for Financial Studies.
    223. Block, Jörn H. & Fisch, Christian O. & Obschonka, Martin & Sandner, Philipp G., 2019. "A personality perspective on business angel syndication✰," Journal of Banking & Finance, Elsevier, vol. 100(C), pages 306-327.
    224. Jamie Alcock & Eva Steiner, 2018. "Fundamental Drivers of Dependence in REIT Returns," The Journal of Real Estate Finance and Economics, Springer, vol. 57(1), pages 4-42, July.
    225. Li, Junye, 2012. "Option-implied volatility factors and the cross-section of market risk premia," Journal of Banking & Finance, Elsevier, vol. 36(1), pages 249-260.
    226. Jensen, Gerald R. & Moorman, Theodore, 2010. "Inter-temporal variation in the illiquidity premium," Journal of Financial Economics, Elsevier, vol. 98(2), pages 338-358, November.
    227. Anindita Chakravarty & Rajdeep Grewal, 2011. "The Stock Market in the Driver's Seat! Implications for R&D and Marketing," Management Science, INFORMS, vol. 57(9), pages 1594-1609, March.
    228. Jason Z. Ma & Xiang Deng & Kung-Cheng Ho & Sang-Bing Tsai, 2018. "Regime-Switching Determinants for Spreads of Emerging Markets Sovereign Credit Default Swaps," Sustainability, MDPI, vol. 10(8), pages 1-17, August.
    229. Gulraze Wakil, 2020. "Firm size proxies and the value relevance of predictive stock return models," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 44(3), pages 434-457, July.
    230. Chung, San-Lin & Hung, Mao-Wei & Wei, Tzu-Wen & Yeh, Chung-Ying, 2024. "Strategic asset allocation with distorted beliefs," International Review of Economics & Finance, Elsevier, vol. 89(PB), pages 804-831.
    231. Chowdhury, Biplob & Jeyasreedharan, Nagaratnam, 2019. "An empirical examination of the jump and diffusion aspects of asset pricing: Japanese evidence," Working Papers 2019-02, University of Tasmania, Tasmanian School of Business and Economics.
    232. Mariangela Bonasia & Oreste Napolitano, 2007. "Do Fundamentals and Credibility Matter in a Funded Pension System ?A Markov Switching Analysis for Australia and Iceland," Brussels Economic Review, ULB -- Universite Libre de Bruxelles, vol. 50(2), pages 221-248.
    233. Angelidis, Timotheos & Tessaromatis, Nikolaos, 2009. "Idiosyncratic risk matters! A regime switching approach," International Review of Economics & Finance, Elsevier, vol. 18(1), pages 132-141, January.
    234. Bing Han & Gang Li, 2021. "Information Content of Aggregate Implied Volatility Spread," Management Science, INFORMS, vol. 67(2), pages 1249-1269, February.
    235. Desrosiers, Stéphanie & L’Her, Jean-François & Tnani, Mohamed Yassine, 2002. "Stratégies de momentum sectoriel au Canada," L'Actualité Economique, Société Canadienne de Science Economique, vol. 78(3), pages 371-395, Septembre.
    236. Paye, Bradley S. & Timmermann, Allan, 2006. "Instability of return prediction models," Journal of Empirical Finance, Elsevier, vol. 13(3), pages 274-315, June.
    237. Chang, Kuang-Liang, 2010. "House price dynamics, conditional higher-order moments, and density forecasts," Economic Modelling, Elsevier, vol. 27(5), pages 1029-1039, September.
    238. Peñaranda, Francisco, 2003. "Evaluation of joint density forecasts of stock and bond returns: predictability and parameter uncertainty," LSE Research Online Documents on Economics 24857, London School of Economics and Political Science, LSE Library.
    239. Lee, King Fuei, 2013. "Demographics and the long-horizon returns of dividend-yield strategies," The Quarterly Review of Economics and Finance, Elsevier, vol. 53(2), pages 202-218.
    240. Nyberg, Henri, 2011. "Forecasting the direction of the US stock market with dynamic binary probit models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 561-578, April.
    241. Boons, M.F., 2014. "Sorting out commodity and macroeconomic risk in expected stock returns," Other publications TiSEM 1ebdac58-bf37-499d-8835-1, Tilburg University, School of Economics and Management.
    242. Andrea Eross & Andrew Urquhart & Simon Wolfe, 2019. "Investigating risk contagion initiated by endogenous liquidity shocks: evidence from the US and eurozone interbank markets," The European Journal of Finance, Taylor & Francis Journals, vol. 25(1), pages 35-53, January.
    243. Shiu-Sheng Chen, 2012. "Consumer confidence and stock returns over market fluctuations," Quantitative Finance, Taylor & Francis Journals, vol. 12(10), pages 1585-1597, October.
    244. Azamat Abdymomunov & James Morley, 2011. "Time variation of CAPM betas across market volatility regimes," Applied Financial Economics, Taylor & Francis Journals, vol. 21(19), pages 1463-1478.
    245. Chung, San-Lin & Hung, Chi-Hsiou & Yeh, Chung-Ying, 2012. "When does investor sentiment predict stock returns?," Journal of Empirical Finance, Elsevier, vol. 19(2), pages 217-240.
    246. Bingxin Li & Natalia Piqueira, 2019. "State-dependent size and value premium: evidence from a regime-switching asset pricing model," Journal of Asset Management, Palgrave Macmillan, vol. 20(3), pages 229-249, May.
    247. Simpson, Marc W. & Ramchander, Sanjay, 2008. "An inquiry into the economic fundamentals of the Fama and French equity factors," Journal of Empirical Finance, Elsevier, vol. 15(5), pages 801-815, December.
    248. Murillo Campello & Long Chen, 2010. "Are Financial Constraints Priced? Evidence from Firm Fundamentals and Stock Returns," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 42(6), pages 1185-1198, September.
    249. Fletcher, Jonathan, 2021. "International equity U.S. mutual funds and diversification benefits," International Review of Economics & Finance, Elsevier, vol. 76(C), pages 246-257.

  49. Sullivan, Ryan & Timmermann, Allan G & White, Halbert, 1998. "Data-Snooping, Technical Trading Rule Performance and the Bootstrap," CEPR Discussion Papers 1976, C.E.P.R. Discussion Papers.

    Cited by:

    1. Barbara Rossi, 2011. "Advances in Forecasting Under Instability," Working Papers 11-20, Duke University, Department of Economics.
    2. M. Hashem Pesaran, 2000. "The Cost Efficiency of UK Debt Management: A Recursive Modelling Approach," CESifo Working Paper Series 346, CESifo.
    3. Lucio Sarno & Giorgio Valente, 2009. "Exchange Rates and Fundamentals: Footloose or Evolving Relationship?," Journal of the European Economic Association, MIT Press, vol. 7(4), pages 786-830, June.
    4. Yamamoto, Ryuichi, 2012. "Intraday technical analysis of individual stocks on the Tokyo Stock Exchange," Journal of Banking & Finance, Elsevier, vol. 36(11), pages 3033-3047.
    5. Alexander M. Chinco & Andreas Neuhierl & Michael Weber, 2019. "Estimating The Anomaly Base Rate," NBER Working Papers 26493, National Bureau of Economic Research, Inc.
    6. Blanchet-Scalliet, Christophette & Diop, Awa & Gibson, Rajna & Talay, Denis & Tanre, Etienne, 2007. "Technical analysis compared to mathematical models based methods under parameters mis-specification," Journal of Banking & Finance, Elsevier, vol. 31(5), pages 1351-1373, May.
    7. Puneet Handa, 2006. "Does Stock Return Predictability Imply Improved Asset Allocation and Performance? Evidence from the U.S. Stock Market (1954–2002)," The Journal of Business, University of Chicago Press, vol. 79(5), pages 2423-2468, September.
    8. Christensen, Garret & Miguel, Edward & Sturdy, Jennifer, 2017. "Transparency, Reproducibility, and the Credibility of Economics Research," MetaArXiv 9a3rw, Center for Open Science.
    9. Li-Xin Wang, 2014. "Dynamical Models of Stock Prices Based on Technical Trading Rules Part I: The Models," Papers 1401.1888, arXiv.org, revised Feb 2016.
    10. Kam Fong Chan & John G. Powell & Jing Shi & Tom Smith, 2018. "Dividend persistence and dividend behaviour," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 58(1), pages 127-147, March.
    11. Michael Sinkey & Trevon Logan, 2014. "Does the Hot Hand Drive the Market? Evidence from College Football Betting Markets," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 40(4), pages 583-603, September.
    12. Christophe M. Boucher & Bertrand B. Maillet, 2013. "Learning by Failing: A Simple VaR Buffer," Financial Markets, Institutions & Instruments, John Wiley & Sons, vol. 22(2), pages 113-127, May.
    13. Kaucic, Massimiliano, 2010. "Investment using evolutionary learning methods and technical rules," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1717-1727, December.
    14. Ülkü, Numan & Prodan, Eugeniu, 2013. "Drivers of technical trend-following rules' profitability in world stock markets," International Review of Financial Analysis, Elsevier, vol. 30(C), pages 214-229.
    15. Mateus, Irina B. & Mateus, Cesario & Todorovic, Natasa, 2019. "Review of new trends in the literature on factor models and mutual fund performance," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 344-354.
    16. Narayan, Paresh Kumar & Narayan, Seema & Sharma, Susan Sunila, 2013. "An analysis of commodity markets: What gain for investors?," Journal of Banking & Finance, Elsevier, vol. 37(10), pages 3878-3889.
    17. Meifen Qian & Bin Yu & Qianyu Zhu, 2018. "Noise traders, firm-specific uncertainty and technical trading effectiveness," Applied Economics Letters, Taylor & Francis Journals, vol. 25(13), pages 918-923, July.
    18. Jin, Xiaoye, 2022. "Performance of intraday technical trading in China’s gold market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 76(C).
    19. Pesaran, M. Hashem & Timmermann, Allan, 2002. "Market timing and return prediction under model instability," Journal of Empirical Finance, Elsevier, vol. 9(5), pages 495-510, December.
    20. Jenni L. Bettman & Stephen J. Sault & Emma L. Schultz, 2009. "Fundamental and technical analysis: substitutes or complements?," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 49(1), pages 21-36, March.
    21. Dai, Zhifeng & Zhang, Xiaotong & Li, Tingyu, 2023. "Forecasting stock return volatility in data-rich environment: A new powerful predictor," The North American Journal of Economics and Finance, Elsevier, vol. 64(C).
    22. Jia Wang & Tong Sun & Benyuan Liu & Yu Cao & Degang Wang, 2021. "Financial Markets Prediction with Deep Learning," Papers 2104.05413, arXiv.org.
    23. Tezel, Ahmet & McManus, Ginette, 2001. "Evaluating a stock market timing strategy: the case of RTE Asset Management," Financial Services Review, Elsevier, vol. 10(1-4), pages 173-186.
    24. Papapostolou, Nikos C. & Pouliasis, Panos K. & Nomikos, Nikos K. & Kyriakou, Ioannis, 2016. "Shipping investor sentiment and international stock return predictability," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 96(C), pages 81-94.
    25. Egbers, Tom & Swinkels, Laurens, 2015. "Can implied volatility predict returns on the currency carry trade?," Journal of Banking & Finance, Elsevier, vol. 59(C), pages 14-26.
    26. Neely, Christopher J., 2003. "Risk-adjusted, ex ante, optimal technical trading rules in equity markets," International Review of Economics & Finance, Elsevier, vol. 12(1), pages 69-87.
    27. Harvey, Campbell R. & Liu, Yan, 2021. "Lucky factors," Journal of Financial Economics, Elsevier, vol. 141(2), pages 413-435.
    28. Alizadeh, Amir H. & Nomikos, Nikos K., 2007. "Investment timing and trading strategies in the sale and purchase market for ships," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 126-143, January.
    29. Vitali Alexeev & Francis Tapon, 2010. "Testing Weak Form Efficiency on the Toronto Stock Exchange," Working Papers 1002, University of Guelph, Department of Economics and Finance.
    30. Andreas Thomann, 2021. "Multi-asset scenario building for trend-following trading strategies," Annals of Operations Research, Springer, vol. 299(1), pages 293-315, April.
    31. Lu, Tsung-Hsun & Chen, Yi-Chi & Hsu, Yu-Chin, 2015. "Trend definition or holding strategy: What determines the profitability of candlestick charting?," Journal of Banking & Finance, Elsevier, vol. 61(C), pages 172-183.
    32. Andriosopoulos, Kostas & Doumpos, Michael & Papapostolou, Nikos C. & Pouliasis, Panos K., 2013. "Portfolio optimization and index tracking for the shipping stock and freight markets using evolutionary algorithms," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 52(C), pages 16-34.
    33. Grinblatt, Mark & Moskowitz, Tobias J., 2004. "Predicting stock price movements from past returns: the role of consistency and tax-loss selling," Journal of Financial Economics, Elsevier, vol. 71(3), pages 541-579, March.
    34. Wei‐Han Liu & Jow‐Ran Chang, 2022. "What can inverse VIX contribute to an investment portfolio?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(3), pages 3791-3798, July.
    35. Buncic, Daniel & Piras, Gion Donat, 2014. "Heterogeneous Agents, the Financial Crisis and Exchange Rate Predictability," Economics Working Paper Series 1436, University of St. Gallen, School of Economics and Political Science, revised Oct 2015.
    36. Ioannis Kyriakou & Panos K. Pouliasis & Nikos C. Papapostolou & Nikos K. Nomikos, 2018. "Income uncertainty and the decision to invest in bulk shipping," European Financial Management, European Financial Management Association, vol. 24(3), pages 387-417, June.
    37. Chang, C-L. & Ilomäki, J. & Laurila, H. & McAleer, M.J., 2018. "Long Run Returns Predictability and Volatility with Moving Averages," Econometric Institute Research Papers EI2018-39, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    38. Bell, Peter N, 2013. "New Testing Procedures to Assess Market Efficiency with Trading Rules," MPRA Paper 46701, University Library of Munich, Germany.
    39. Eom, Cheoljun & Park, Jong Won, 2023. "Price behavior of small-cap stocks and momentum: A study using principal component momentum," Research in International Business and Finance, Elsevier, vol. 65(C).
    40. Wang, Shan & Jiang, Zhi-Qiang & Li, Sai-Ping & Zhou, Wei-Xing, 2015. "Testing the performance of technical trading rules in the Chinese markets based on superior predictive test," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 439(C), pages 114-123.
    41. Isakov, Dusan & Marti, Didier, 2011. "Technical Analysis with a Long-Term Perspective: Trading Strategies and Market Timing Ability," FSES Working Papers 421, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    42. Oleg Rytchkov & Xun Zhong, 2020. "Information Aggregation and P-Hacking," Management Science, INFORMS, vol. 66(4), pages 1605-1626, April.
    43. Newell, Richard G. & Prest, Brian C. & Sexton, Steven, 2020. "The GDP Temperature Relationship: Implications for Climate Change Damages," RFF Working Paper Series 18-17, Resources for the Future.
    44. Chong, Terence Tai-Leung & Ip, Hugo Tak-Sang, 2009. "Do momentum-based strategies work in emerging currency markets?," Pacific-Basin Finance Journal, Elsevier, vol. 17(4), pages 479-493, September.
    45. Danilov, D.L. & Magnus, J.R., 2002. "Forecast Accuracy after Pretesting with an Application to the Stock Market," Other publications TiSEM cb9b9b63-40a9-4035-924e-d, Tilburg University, School of Economics and Management.
    46. Flavio Ivo Riedlinger & João Nicolau, 2020. "The Profitability in the FTSE 100 Index: A New Markov Chain Approach," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 27(1), pages 61-81, March.
    47. Y. Kahiri & A. Shmilovici & S. Hauser, 2006. "Measuring the Efficiency of the Intraday Forex Market with a Universal Data Compression Algorithm," Computing in Economics and Finance 2006 256, Society for Computational Economics.
    48. Valentina Corradi & Norman Swanson, 2013. "A Survey of Recent Advances in Forecast Accuracy Comparison Testing, with an Extension to Stochastic Dominance," Departmental Working Papers 201309, Rutgers University, Department of Economics.
    49. Stephan Schulmeister, 2001. "Profitability and Price Effects of Technical Currency Trading," WIFO Working Papers 140, WIFO.
    50. Karolyi, G. Andrew & Kho, Bong-Chan, 2004. "Momentum strategies: some bootstrap tests," Journal of Empirical Finance, Elsevier, vol. 11(4), pages 509-536, September.
    51. Paskalis Glabadanidis, 2015. "Market Timing With Moving Averages," International Review of Finance, International Review of Finance Ltd., vol. 15(3), pages 387-425, September.
    52. Nabil Bouamara & S'ebastien Laurent & Shuping Shi, 2023. "Sequential Cauchy Combination Test for Multiple Testing Problems with Financial Applications," Papers 2303.13406, arXiv.org, revised Jun 2023.
    53. Asger Lunde & Allan Timmermann, 2000. "Duration Dependence in Stock Prices: An Analysis of Bull and Bear Markets," Econometric Society World Congress 2000 Contributed Papers 1216, Econometric Society.
    54. Andriyashin, Anton, 2008. "Stock picking via nonsymmetrically pruned binary decision trees," SFB 649 Discussion Papers 2008-035, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    55. Bajgrowicz, Pierre & Scaillet, Olivier, 2012. "Technical trading revisited: False discoveries, persistence tests, and transaction costs," Journal of Financial Economics, Elsevier, vol. 106(3), pages 473-491.
    56. Yang, Jian & Cabrera, Juan & Wang, Tao, 2010. "Nonlinearity, data-snooping, and stock index ETF return predictability," European Journal of Operational Research, Elsevier, vol. 200(2), pages 498-507, January.
    57. Deprez, Niek & Frömmel, Michael, 2024. "Are simple technical trading rules profitable in bitcoin markets?," International Review of Economics & Finance, Elsevier, vol. 93(PB), pages 858-874.
    58. Pu Shen, 2002. "Market timing strategies that worked," Research Working Paper RWP 02-01, Federal Reserve Bank of Kansas City.
    59. Hassanniakalager, Arman & Sermpinis, Georgios & Stasinakis, Charalampos, 2021. "Trading the foreign exchange market with technical analysis and Bayesian Statistics," Journal of Empirical Finance, Elsevier, vol. 63(C), pages 230-251.
    60. Jukka Ilomäki, 2018. "Risk and return of a trend-chasing application in financial markets: an empirical test," Risk Management, Palgrave Macmillan, vol. 20(3), pages 258-272, August.
    61. Pierdzioch, Christian & Risse, Marian & Rohloff, Sebastian, 2014. "The international business cycle and gold-price fluctuations," The Quarterly Review of Economics and Finance, Elsevier, vol. 54(2), pages 292-305.
    62. Nikos C. Papapostolou & Nikos K. Nomikos & Panos K. Pouliasis & Ioannis Kyriakou, 2014. "Investor Sentiment for Real Assets: The Case of Dry Bulk Shipping Market," Review of Finance, European Finance Association, vol. 18(4), pages 1507-1539.
    63. Eduardo José Araújo Lima & Benjamin Miranda Tabak, 2008. "Exchange Rate Dynamics and the Relationship between the Random Walk Hypothesis and Official Interventions," Working Papers Series 173, Central Bank of Brazil, Research Department.
    64. Day, Theodore E. & Wang, Pingying, 2002. "Dividends, nonsynchronous prices, and the returns from trading the Dow Jones Industrial Average," Journal of Empirical Finance, Elsevier, vol. 9(4), pages 431-454, November.
    65. Marshall, Ben R. & Visaltanachoti, Nuttawat, 2010. "The Other January Effect: Evidence against market efficiency?," Journal of Banking & Finance, Elsevier, vol. 34(10), pages 2413-2424, October.
    66. Urquhart, Andrew & Gebka, Bartosz & Hudson, Robert, 2015. "How exactly do markets adapt? Evidence from the moving average rule in three developed markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 38(C), pages 127-147.
    67. Szakmary, Andrew C. & Shen, Qian & Sharma, Subhash C., 2010. "Trend-following trading strategies in commodity futures: A re-examination," Journal of Banking & Finance, Elsevier, vol. 34(2), pages 409-426, February.
    68. Jackson, Antony & Ladley, Daniel, 2016. "Market ecologies: The effect of information on the interaction and profitability of technical trading strategies," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 270-280.
    69. Yang, Yurun & Göncü, Ahmet & Pantelous, Athanasios A., 2018. "Momentum and reversal strategies in Chinese commodity futures markets," International Review of Financial Analysis, Elsevier, vol. 60(C), pages 177-196.
    70. Nomikos, Nikos K. & Pouliasis, Panos K., 2011. "Forecasting petroleum futures markets volatility: The role of regimes and market conditions," Energy Economics, Elsevier, vol. 33(2), pages 321-337, March.
    71. Timmermann, Allan, 2018. "Forecasting Methods in Finance," CEPR Discussion Papers 12692, C.E.P.R. Discussion Papers.
    72. Stephan Schulmeister, 2009. "Trading Practices and Price Dynamics in Commodity Markets and the Stabilising Effects of a Transaction Tax," WIFO Studies, WIFO, number 34919.
    73. Paskalis Glabadanidis, 2017. "Timing the Market with a Combination of Moving Averages," International Review of Finance, International Review of Finance Ltd., vol. 17(3), pages 353-394, September.
    74. Ilomäki, J. & Laurila, H. & McAleer, M.J., 2018. "Market Timing with Moving Averages," Econometric Institute Research Papers EI 2018-28, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    75. Ioana-Andreea Boboc & Mihai-Cristian Dinică, 2013. "An Algorithm for Testing the Efficient Market Hypothesis," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-11, October.
    76. Christopher J. Neely, 2002. "The temporal pattern of trading rule returns and central bank intervention: intervention does not generate technical trading rule profits," Working Papers 2000-018, Federal Reserve Bank of St. Louis.
    77. Andrei Shynkevich, 2021. "Impact of bitcoin futures on the informational efficiency of bitcoin spot market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(1), pages 115-134, January.
    78. Eero P䴤ri & Mika Vilska, 2014. "Performance of moving average trading strategies over varying stock market conditions: the Finnish evidence," Applied Economics, Taylor & Francis Journals, vol. 46(24), pages 2851-2872, August.
    79. Chiang, Mi-Hsiu & Chiu, Hsin-Yu & Kuo, Wei-Yu, 2021. "Predictive ability of similarity-based futures trading strategies," Pacific-Basin Finance Journal, Elsevier, vol. 68(C).
    80. Ha-Yeon Park & Cheong-Kyu Park, 2024. "The Impact of COVID-19 on the Value Relevance of Customer Satisfaction," Sustainability, MDPI, vol. 16(18), pages 1-16, September.
    81. Taylor, Nick, 2014. "The rise and fall of technical trading rule success," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 286-302.
    82. Michael Cooper & Huseyin Gulen, 2006. "Is Time-Series-Based Predictability Evident in Real Time?," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1263-1292, May.
    83. Taylor, Mark & Hsu, Po-Hsuan & Wang, Zigan, 2020. "The Out-of-Sample Performance of Carry Trades," CEPR Discussion Papers 15052, C.E.P.R. Discussion Papers.
    84. Söhnke M. Bartram & Harald Lohre & Peter F. Pope & Ananthalakshmi Ranganathan, 2021. "Navigating the factor zoo around the world: an institutional investor perspective," Journal of Business Economics, Springer, vol. 91(5), pages 655-703, July.
    85. Scholz, Peter & Walther, Ursula, 2011. "The trend is not your friend! Why empirical timing success is determined by the underlying's price characteristics and market efficiency is irrelevant," CPQF Working Paper Series 29, Frankfurt School of Finance and Management, Centre for Practical Quantitative Finance (CPQF).
    86. Lu, Tsung-Hsun, 2014. "The profitability of candlestick charting in the Taiwan stock market," Pacific-Basin Finance Journal, Elsevier, vol. 26(C), pages 65-78.
    87. Hsu, Po-Hsuan & Han, Qiheng & Wu, Wensheng & Cao, Zhiguang, 2018. "Asset allocation strategies, data snooping, and the 1 / N rule," Journal of Banking & Finance, Elsevier, vol. 97(C), pages 257-269.
    88. Wan-Ni Lai & Yi-Ting Chen & Edward W. Sun, 2021. "Comonotonicity and low volatility effect," Annals of Operations Research, Springer, vol. 299(1), pages 1057-1099, April.
    89. Zarrabi, Nima & Snaith, Stuart & Coakley, Jerry, 2017. "FX technical trading rules can be profitable sometimes!," International Review of Financial Analysis, Elsevier, vol. 49(C), pages 113-127.
    90. Sainan Jin & Valentina Corradi & Norman Swanson, 2015. "Robust Forecast Comparison," Departmental Working Papers 201502, Rutgers University, Department of Economics.
    91. Fernando Rubio, 2005. "Eficiencia De Mercado, Administracion De Carteras De Fondos Y Behavioural Finance," Finance 0503028, University Library of Munich, Germany, revised 23 Jul 2005.
    92. Kaplan, David M. & Zhuo, Longhao, 2021. "Frequentist properties of Bayesian inequality tests," Journal of Econometrics, Elsevier, vol. 221(1), pages 312-336.
    93. Chia-Lin Chang & Shu-Han Hsu & Michael McAleer, 2018. "Asymmetric Risk Impacts of Chinese Tourists to Taiwan," Tinbergen Institute Discussion Papers 18-047/III, Tinbergen Institute.
    94. Sullivan, Ryan & Timmermann, Allan & White, Halbert, 1998. "Dangers of Data-Driven Inference: The Case of Calendar Effects in Stock Returns," University of California at San Diego, Economics Working Paper Series qt2z02z6d9, Department of Economics, UC San Diego.
    95. Batchelor, Roy & Kwan, Tai Yeong, 2007. "Judgemental bootstrapping of technical traders in the bond market," International Journal of Forecasting, Elsevier, vol. 23(3), pages 427-445.
    96. Farias Nazário, Rodolfo Toríbio & e Silva, Jéssica Lima & Sobreiro, Vinicius Amorim & Kimura, Herbert, 2017. "A literature review of technical analysis on stock markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 66(C), pages 115-126.
    97. Zakamulin, Valeriy & Giner, Javier, 2022. "Time series momentum in the US stock market: Empirical evidence and theoretical analysis," International Review of Financial Analysis, Elsevier, vol. 82(C).
    98. Ardia, David & Boudt, Kris & Hartmann, Stefan & Nguyen, Giang, 2022. "Properties of the Margrabe Best-of-two strategy to tactical asset allocation," International Review of Financial Analysis, Elsevier, vol. 81(C).
    99. Urquhart, Andrew & Zhang, Hanxiong, 2019. "The performance of technical trading rules in Socially Responsible Investments," International Review of Economics & Finance, Elsevier, vol. 63(C), pages 397-411.
    100. Ioannis Kyriakou & Nikos K. Nomikos & Nikos C. Papapostolou & Panos K. Pouliasis, 2016. "Affine†Structure Models and the Pricing of Energy Commodity Derivatives," European Financial Management, European Financial Management Association, vol. 22(5), pages 853-881, November.
    101. White, Halbert & Timmermann, Allan & Sullivan, Ryan, 2001. "Forecast Evaluation with Shared Data Sets," CEPR Discussion Papers 3060, C.E.P.R. Discussion Papers.
    102. Francesco Lautizi, 2015. "Large Scale Covariance Estimates for Portfolio Selection," CEIS Research Paper 353, Tor Vergata University, CEIS, revised 07 Aug 2015.
    103. Park, Cheol-Ho & Irwin, Scott H., 2005. "The Profitability of Technical Trading Rules in US Futures Markets: A Data Snooping Free Test," AgMAS Project Research Reports 14771, University of Illinois at Urbana-Champaign, Department of Agricultural and Consumer Economics.
    104. Andrew J. Patton & Tarun Ramadorai, 2013. "On the High-Frequency Dynamics of Hedge Fund Risk Exposures," Journal of Finance, American Finance Association, vol. 68(2), pages 597-635, April.
    105. Konstantinidi, Eirini & Skiadopoulos, George, 2011. "Are VIX futures prices predictable? An empirical investigation," International Journal of Forecasting, Elsevier, vol. 27(2), pages 543-560, April.
    106. Wang, Tao & Yang, Jian, 2010. "Nonlinearity and intraday efficiency tests on energy futures markets," Energy Economics, Elsevier, vol. 32(2), pages 496-503, March.
    107. Terence Tai-Leung Chong & Wing-Kam Ng & Venus Khim-Sen Liew, 2014. "Revisiting the Performance of MACD and RSI Oscillators," JRFM, MDPI, vol. 7(1), pages 1-12, February.
    108. Jarrow, Robert & Teo, Melvyn & Tse, Yiu Kuen & Warachka, Mitch, 2012. "An improved test for statistical arbitrage," Journal of Financial Markets, Elsevier, vol. 15(1), pages 47-80.
    109. Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2010. "Out-of-sample equity premium prediction: economic fundamentals vs. moving-average rules," Working Papers 2010-008, Federal Reserve Bank of St. Louis.
    110. Jukka Ilomaki & Hannu Laurila & Michael McAleer, 2018. "Simple Market Timing with Moving Averages," Tinbergen Institute Discussion Papers 18-048/III, Tinbergen Institute.
    111. Cristiana Tudor & Andrei Anghel, 2021. "The Financialization of Crude Oil Markets and Its Impact on Market Efficiency: Evidence from the Predictive Ability and Performance of Technical Trading Strategies," Energies, MDPI, vol. 14(15), pages 1-19, July.
    112. Pankaj Topiwala & Wei Dai, 2022. "Surviving Black Swans: The Challenge of Market Timing Systems," JRFM, MDPI, vol. 15(7), pages 1-25, June.
    113. Schmidt, Anatoly B., 2002. "Why technical trading may be successful? A lesson from the agent-based modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 303(1), pages 185-188.
    114. Stephan Schulmeister, 2012. "Technical Trading and Commodity Price Fluctuations," WIFO Studies, WIFO, number 45238.
    115. Gebka, Bartosz & Hudson, Robert S. & Atanasova, Christina V., 2015. "The benefits of combining seasonal anomalies and technical trading rules," Finance Research Letters, Elsevier, vol. 14(C), pages 36-44.
    116. David M. Kaplan & Longhao Zhuo, 2017. "Frequentist size of Bayesian inequality tests," Working Papers 1709, Department of Economics, University of Missouri, revised 14 Jul 2019.
    117. Antony Jackson & Daniel Ladley, 2013. "Market Ecologies: The Interaction and Profitability of Technical Trading Strategies," Discussion Papers in Economics 13/02, Division of Economics, School of Business, University of Leicester.
    118. Timmermann, Allan & Granger, Clive, 2002. "Efficient Market Hypothesis and Forecasting," CEPR Discussion Papers 3593, C.E.P.R. Discussion Papers.
    119. Marco Aiolfi & Carlo Ambrogio Favero, "undated". "Model Uncertainty, Thick Modelling and the predictability of Stock Returns," Working Papers 221, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    120. Giampiero M. Gallo & Yongmiao Hong & Tae-Why Lee, 2001. "Modelling the Impact of Overnight Surprises on Intra-daily Stock Returns," Econometrics Working Papers Archive wp2001_03, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
    121. Stephan Schulmeister, 2000. "Technical Analysis and Exchange Rate Dynamics," WIFO Studies, WIFO, number 25857.
    122. Stephan Schulmeister, 2009. "Profitability of technical stock trading: Has it moved from daily to intraday data?," Review of Financial Economics, John Wiley & Sons, vol. 18(4), pages 190-201, October.
    123. Psaradellis, Ioannis & Laws, Jason & Pantelous, Athanasios A. & Sermpinis, Georgios, 2023. "Technical analysis, spread trading, and data snooping control," International Journal of Forecasting, Elsevier, vol. 39(1), pages 178-191.
    124. Cai, Lili & Swanson, Norman R., 2011. "In- and out-of-sample specification analysis of spot rate models: Further evidence for the period 1982-2008," Journal of Empirical Finance, Elsevier, vol. 18(4), pages 743-764, September.
    125. Christian Pierdzioch & Daniel Hartmann, 2013. "Forecasting Eurozone real-estate returns," Applied Financial Economics, Taylor & Francis Journals, vol. 23(14), pages 1185-1196, July.
    126. Tatiana PÎŞCHINA & Romeo Fortuna, 2017. "Moldova’s Phenomenon: Can Foreign Investments Help Out of the Poverty Circle?," European Journal of Economics and Business Studies Articles, Revistia Research and Publishing, vol. 3, ejes_v3_i.
    127. Frömmel, Michael & Lampaert, Kevin, 2016. "Does frequency matter for intraday technical trading?," Finance Research Letters, Elsevier, vol. 18(C), pages 177-183.
    128. Hung, Chiayu & Lai, Hung-Neng, 2022. "Information asymmetry and the profitability of technical analysis," Journal of Banking & Finance, Elsevier, vol. 134(C).
    129. Shuxing Yin & Khelifa Mazouz & Abdelhafid Benamraoui & Brahim Saadouni, 2018. "Stock price reaction to profit warnings: the role of time-varying betas," Review of Quantitative Finance and Accounting, Springer, vol. 50(1), pages 67-93, January.
    130. Hsu, Po-Hsuan, 2009. "Technological innovations and aggregate risk premiums," Journal of Financial Economics, Elsevier, vol. 94(2), pages 264-279, November.
    131. Hsu, Po-Hsuan & Taylor, Mark P. & Wang, Zigan, 2016. "Technical trading: Is it still beating the foreign exchange market?," Journal of International Economics, Elsevier, vol. 102(C), pages 188-208.
    132. Neely, Christopher J. & Weller, Paul A. & Ulrich, Joshua M., 2009. "The Adaptive Markets Hypothesis: Evidence from the Foreign Exchange Market," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 44(2), pages 467-488, April.
    133. Marshall, Ben R. & Cahan, Rochester H. & Cahan, Jared M., 2008. "Does intraday technical analysis in the U.S. equity market have value?," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 199-210, March.
    134. Michael D. McKenzie, 2007. "Technical Trading Rules in Emerging Markets and the 1997 Asian Currency Crises," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 43(4), pages 46-73, August.
    135. Pereira, Pedro L. Valls, 2009. "Predictability of equity models," Textos para discussão 176, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
    136. Fong, Wai Mun & Yong, Lawrence H. M., 2005. "Chasing trends: recursive moving average trading rules and internet stocks," Journal of Empirical Finance, Elsevier, vol. 12(1), pages 43-76, January.
    137. Fang, Jiali & Jacobsen, Ben & Qin, Yafeng, 2014. "Predictability of the simple technical trading rules: An out-of-sample test," Review of Financial Economics, Elsevier, vol. 23(1), pages 30-45.
    138. Anghel, Dan Gabriel, 2021. "Data Snooping Bias in Tests of the Relative Performance of Multiple Forecasting Models," Journal of Banking & Finance, Elsevier, vol. 126(C).
    139. Alhashel, Bader S. & Almudhaf, Fahad W. & Hansz, J. Andrew, 2018. "Can technical analysis generate superior returns in securitized property markets? Evidence from East Asia markets," Pacific-Basin Finance Journal, Elsevier, vol. 47(C), pages 92-108.
    140. Nomikos, Nikos K. & Kyriakou, Ioannis & Papapostolou, Nikos C. & Pouliasis, Panos K., 2013. "Freight options: Price modelling and empirical analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 51(C), pages 82-94.
    141. Kuang, P. & Schröder, M. & Wang, Q., 2014. "Illusory profitability of technical analysis in emerging foreign exchange markets," International Journal of Forecasting, Elsevier, vol. 30(2), pages 192-205.
    142. Souropanis, Ioannis & Vivian, Andrew, 2023. "Forecasting realized volatility with wavelet decomposition," Journal of Empirical Finance, Elsevier, vol. 74(C).
    143. Osman Kilic & Joseph M. Marks & Kiseok Nam, 2022. "Predictable asset price dynamics, risk-return tradeoff, and investor behavior," Review of Quantitative Finance and Accounting, Springer, vol. 59(2), pages 749-791, August.
    144. ap Gwilym, O. & Kita, A. & Wang, Q., 2014. "Speculate against speculative demand," International Review of Financial Analysis, Elsevier, vol. 34(C), pages 212-221.
    145. Julián Andrada-Félix & Fernando Fernández-Rodríguez, 2008. "Improving moving average trading rules with boosting and statistical learning methods," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(5), pages 433-449.
    146. Hsu, Po-Hsuan & Hsu, Yu-Chin & Kuan, Chung-Ming, 2010. "Testing the predictive ability of technical analysis using a new stepwise test without data snooping bias," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 471-484, June.
    147. Philip, Dennis & Shi, Yukun, 2016. "Optimal hedging in carbon emission markets using Markov regime switching models," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 43(C), pages 1-15.
    148. Dan Anghel, 2013. "How Reliable is the Moving Average Crossover Rule for an Investor on the Romanian Stock Market?," The Review of Finance and Banking, Academia de Studii Economice din Bucuresti, Romania / Facultatea de Finante, Asigurari, Banci si Burse de Valori / Catedra de Finante, vol. 5(2), pages 089-115, December.
    149. Ergun, Lerby & Molchanov, Alexander & Stork, Philip, 2023. "Technical trading rules, loss avoidance, and the business cycle," Pacific-Basin Finance Journal, Elsevier, vol. 82(C).
    150. Yin, Libo & Yang, Qingyuan, 2016. "Predicting the oil prices: Do technical indicators help?," Energy Economics, Elsevier, vol. 56(C), pages 338-350.
    151. Grant, Andrew & Johnstone, David, 2010. "Finding profitable forecast combinations using probability scoring rules," International Journal of Forecasting, Elsevier, vol. 26(3), pages 498-510, July.
    152. Carine Brasseur & Marcelo Espinoza & Johan A. K. Suykens & Tony Van Gestel & Bart Baesens & Bart De Moor, 2006. "A Bayesian nonlinear support vector machine error correction model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(2), pages 77-100.
    153. Alizadeh, Amir H. & Nomikos, Nikos K. & Pouliasis, Panos K., 2008. "A Markov regime switching approach for hedging energy commodities," Journal of Banking & Finance, Elsevier, vol. 32(9), pages 1970-1983, September.
    154. Yan, Isabel K. & Chong, Terence & Lam, Tau-Hing, 2011. "Is the Chinese Stock Market Really Efficient," MPRA Paper 35219, University Library of Munich, Germany.
    155. Carlos A. Medel & Sergio C. Salgado, 2012. "Does BIC Estimate and Forecast Better Than AIC?," Working Papers Central Bank of Chile 679, Central Bank of Chile.
    156. Shynkevich, Andrei, 2012. "Short-term predictability of equity returns along two style dimensions," Journal of Empirical Finance, Elsevier, vol. 19(5), pages 675-685.
    157. Fong, Tom Pak Wing & Wu, Shui Tang, 2020. "Predictability in sovereign bond returns using technical trading rules: Do developed and emerging markets differ?," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    158. Cooper, Michael J. & Gubellini, Stefano, 2011. "The critical role of conditioning information in determining if value is really riskier than growth," Journal of Empirical Finance, Elsevier, vol. 18(2), pages 289-305, March.
    159. Powell, John G. & Shi, Jing & Smith, Tom & Whaley, Robert E., 2009. "Political regimes, business cycles, seasonalities, and returns," Journal of Banking & Finance, Elsevier, vol. 33(6), pages 1112-1128, June.
    160. Kearney, Fearghal & Cummins, Mark & Murphy, Finbarr, 2014. "Outperformance in exchange-traded fund pricing deviations: Generalized control of data snooping bias," Journal of Financial Markets, Elsevier, vol. 19(C), pages 86-109.
    161. Foort Hamelink, 2001. "Nonlinear analysis for forecasting currencies: are they useful to the portfolio manager?," The European Journal of Finance, Taylor & Francis Journals, vol. 7(4), pages 335-355.
    162. Salma Khand & Vivake Anand & Mohammad Nadeem Qureshi, 2020. "The Predictability and Profitability of Simple Moving Averages and Trading Range Breakout Rules in the Pakistan Stock Market," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 23(01), pages 1-38, March.
    163. Joseph P & Romano & Azeem M. Shaikh & Michael Wolf, 2005. "Formalized Data Snooping Based on Generalized Error Rates," IEW - Working Papers 259, Institute for Empirical Research in Economics - University of Zurich.
    164. B. Carmichael & L. Samson, 2003. "Expected returns and economic risk in Canadian financial markets," Applied Financial Economics, Taylor & Francis Journals, vol. 13(3), pages 177-189.
    165. Andrew Y. Chen, 2021. "The Limits of p‐Hacking: Some Thought Experiments," Journal of Finance, American Finance Association, vol. 76(5), pages 2447-2480, October.
    166. Jying‐Nan Wang & Hung‐Chun Liu & Jiangze Du & Yuan‐Teng Hsu, 2019. "Economic benefits of technical analysis in portfolio management: Evidence from global stock markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 24(2), pages 890-902, April.
    167. Guanqing Liu, 2019. "Technical Trading Behaviour: Evidence from Chinese Rebar Futures Market," Computational Economics, Springer;Society for Computational Economics, vol. 54(2), pages 669-704, August.
    168. Po-Hsuan Hsu & Chung-Ming Kuan, 2004. "Re-Examining the Profitability of Technical Analysis with White’s Reality Check," IEAS Working Paper : academic research 04-A003, Institute of Economics, Academia Sinica, Taipei, Taiwan.
    169. Nomikos, Nikos K. & Doctor, Kaizad, 2013. "Economic significance of market timing rules in the Forward Freight Agreement markets," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 52(C), pages 77-93.
    170. Pedro Godinho, 2012. "Can abnormal returns be earned on bandwidth-bounded currencies? Evidence from a genetic algorithm," Economic Issues Journal Articles, Economic Issues, vol. 17(1), pages 1-26, March.
    171. Guglielmo Maria Caporale & Alex Plastun, 2023. "Seven Pitfalls of Technical Analysis," CESifo Working Paper Series 10213, CESifo.
    172. Patton, Andrew, 2010. "On the Dynamics of Hedge Fund Risk Exposures," CEPR Discussion Papers 7780, C.E.P.R. Discussion Papers.
    173. Jessica James & Louis Yang, 2010. "Stop-losses, maximum drawdown-at-risk and replicating financial time series with the stationary bootstrap," Quantitative Finance, Taylor & Francis Journals, vol. 10(1), pages 1-12.
    174. Kidd, Willis V. & Brorsen, B. Wade, 2004. "Why have the returns to technical analysis decreased?," Journal of Economics and Business, Elsevier, vol. 56(3), pages 159-176.
    175. Jacobs, Heiko, 2015. "What explains the dynamics of 100 anomalies?," Journal of Banking & Finance, Elsevier, vol. 57(C), pages 65-85.
    176. ZEW - Zentrum für Europäische Wirtschaftsforschung (Mannheim) (ed.), 2007. "Studie im Auftrag der Deutschen Bank AG, Frankfurt am Main zum Thema: "Analyse der Currency Harvest-Strategie". Endbericht," ZEW Expertises, ZEW - Leibniz Centre for European Economic Research, number 110490.
    177. Cheol‐Ho Park & Scott H. Irwin, 2007. "What Do We Know About The Profitability Of Technical Analysis?," Journal of Economic Surveys, Wiley Blackwell, vol. 21(4), pages 786-826, September.
    178. Ellul, Andrew & Holden, Craig W. & Jain, Pankaj & Jennings, Robert, 2003. "A comprehensive test of order choice theory: recent evidence from the NYSE," LSE Research Online Documents on Economics 24896, London School of Economics and Political Science, LSE Library.
    179. Janice How & Martin Ling & Peter Verhoeven, 2010. "Does size matter? A genetic programming approach to technical trading," Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 131-140.
    180. Ouysse, Rachida, 2006. "Consistent variable selection in large panels when factors are observable," Journal of Multivariate Analysis, Elsevier, vol. 97(4), pages 946-984, April.
    181. de Zwart, Gerben & Markwat, Thijs & Swinkels, Laurens & van Dijk, Dick, 2009. "The economic value of fundamental and technical information in emerging currency markets," Journal of International Money and Finance, Elsevier, vol. 28(4), pages 581-604, June.
    182. Ebert, Sebastian & Hilpert, Christian, 2019. "Skewness preference and the popularity of technical analysis," Journal of Banking & Finance, Elsevier, vol. 109(C).
    183. Robert Hudson & Andrew Urquhart, 2021. "Technical trading and cryptocurrencies," Annals of Operations Research, Springer, vol. 297(1), pages 191-220, February.
    184. Heinz, Adrian & Jamaloodeen, Mohamed & Saxena, Atul & Pollacia, Lissa, 2021. "Bullish and Bearish Engulfing Japanese Candlestick patterns: A statistical analysis on the S&P 500 index," The Quarterly Review of Economics and Finance, Elsevier, vol. 79(C), pages 221-244.
    185. Dicle, Mehmet F. & Levendis, John, 2020. "Historic risk and implied volatility," Global Finance Journal, Elsevier, vol. 45(C).
    186. Qing Zhou & Robert Faff, 2017. "The complementary role of cross-sectional and time-series information in forecasting stock returns," Australian Journal of Management, Australian School of Business, vol. 42(1), pages 113-139, February.
    187. Huang, Jing-Zhi & Huang, Zhijian (James), 2020. "Testing moving average trading strategies on ETFs," Journal of Empirical Finance, Elsevier, vol. 57(C), pages 16-32.
    188. Cesari, Riccardo & Cremonini, David, 2003. "Benchmarking, portfolio insurance and technical analysis: a Monte Carlo comparison of dynamic strategies of asset allocation," Journal of Economic Dynamics and Control, Elsevier, vol. 27(6), pages 987-1011, April.
    189. Tan, Siow-Hooi & Lai, Ming-Ming & Tey, Eng-Xin & Chong, Lee-Lee, 2020. "Testing the performance of technical analysis and sentiment-TAR trading rules in the Malaysian stock market," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    190. Spyros Skouras, 2001. "Decisionmetrics: A Decision-Based Approach to Econometric Modeling," Working Papers 01-11-064, Santa Fe Institute.
    191. Pouliasis, Panos K. & Papapostolou, Nikos C. & Kyriakou, Ioannis & Visvikis, Ilias D., 2018. "Shipping equity risk behavior and portfolio management," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 178-200.
    192. Kouwenberg, Roy & Markiewicz, Agnieszka & Verhoeks, Ralph & Zwinkels, Remco C. J., 2017. "Model Uncertainty and Exchange Rate Forecasting," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 52(1), pages 341-363, February.
    193. Valeriy Zakamulin, 2014. "The real-life performance of market timing with moving average and time-series momentum rules," Journal of Asset Management, Palgrave Macmillan, vol. 15(4), pages 261-278, August.
    194. Gilles Daniel & Didier Sornette & Peter Wohrmann, 2008. "Look-Ahead Benchmark Bias in Portfolio Performance Evaluation," Papers 0810.1922, arXiv.org.
    195. Skouras, Spyros, 2001. "Financial returns and efficiency as seen by an artificial technical analyst," Journal of Economic Dynamics and Control, Elsevier, vol. 25(1-2), pages 213-244, January.
    196. Coe, P.J. & Pesaran, M.H. & Vahey, S.P., 2003. "Scope for Cost Minimization in Public Debt Management: the Case of the UK," Cambridge Working Papers in Economics 0338, Faculty of Economics, University of Cambridge.
    197. Hudson, Robert S. & Gregoriou, Andros, 2015. "Calculating and comparing security returns is harder than you think: A comparison between logarithmic and simple returns," International Review of Financial Analysis, Elsevier, vol. 38(C), pages 151-162.
    198. Gregory Connor & Lisa R. Goldberg & Robert A. Korajczyk, 2010. "Portfolio Risk Analysis," Economics Books, Princeton University Press, edition 1, number 9224.
    199. Schmeling, Maik, 2006. "Institutional and Individual Sentiment: Smart Money and Noise Trader Risk," Hannover Economic Papers (HEP) dp-337, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    200. E. Hui & J. Wright & S. Yam, 2014. "Calendar Effects and Real Estate Securities," The Journal of Real Estate Finance and Economics, Springer, vol. 49(1), pages 91-115, July.
    201. Zongwu Cai & Jiancheng Jiang & Jingshuang Zhang & Xibin Zhang, 2015. "A new semiparametric test for superior predictive ability," Empirical Economics, Springer, vol. 48(1), pages 389-405, February.
    202. Zhu, Yingzi & Zhou, Guofu, 2009. "Technical analysis: An asset allocation perspective on the use of moving averages," Journal of Financial Economics, Elsevier, vol. 92(3), pages 519-544, June.
    203. McCracken, Michael W., 2007. "Asymptotics for out of sample tests of Granger causality," Journal of Econometrics, Elsevier, vol. 140(2), pages 719-752, October.
    204. Marshall, Ben R. & Young, Martin R. & Rose, Lawrence C., 2006. "Candlestick technical trading strategies: Can they create value for investors?," Journal of Banking & Finance, Elsevier, vol. 30(8), pages 2303-2323, August.
    205. Goulas, Lambros & Skiadopoulos, George, 2012. "Are freight futures markets efficient? Evidence from IMAREX," International Journal of Forecasting, Elsevier, vol. 28(3), pages 644-659.
    206. Baur, Dirk G. & Dichtl, Hubert & Drobetz, Wolfgang & Wendt, Viktoria-Sophie, 2020. "Investing in gold – Market timing or buy-and-hold?," International Review of Financial Analysis, Elsevier, vol. 71(C).
    207. Batten, Jonathan A. & Lucey, Brian M. & McGroarty, Frank & Peat, Maurice & Urquhart, Andrew, 2018. "Does intraday technical trading have predictive power in precious metal markets?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 52(C), pages 102-113.
    208. Christopher Ittner & David Larcker & Daniel Taylor, 2009. "—The Stock Market's Pricing of Customer Satisfaction," Marketing Science, INFORMS, vol. 28(5), pages 826-835, 09-10.
    209. Taylor, Mark & Hsu, Po-Hsuan, 2014. "Forty Years, Thirty Currencies and 21,000 Trading Rules: A Large-scale, Data-Snooping Robust Analysis of Technical Trading in t," CEPR Discussion Papers 10018, C.E.P.R. Discussion Papers.
    210. Tsung-Hsun Lu & Yung-Ming Shiu, 2012. "Tests for Two-Day Candlestick Patterns in the Emerging Equity Market of Taiwan," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 48(0), pages 41-57, January.
    211. Qingwei Wang, 2010. "Sentiment, Convergence of Opinion, and Market Crash," Working Papers 10012, Bangor Business School, Prifysgol Bangor University (Cymru / Wales).
    212. Ghysels, Eric & Pereira, João Pedro, 2008. "Liquidity and conditional portfolio choice: A nonparametric investigation," Journal of Empirical Finance, Elsevier, vol. 15(4), pages 679-699, September.
    213. Kingsley Fong & David R. Gallagher & Adrian D. Lee, 2009. "The Value of Alpha Forecasts in Portfolio Construction," Australian Journal of Management, Australian School of Business, vol. 34(1), pages 97-121, June.
    214. Shynkevich, Andrei, 2012. "Performance of technical analysis in growth and small cap segments of the US equity market," Journal of Banking & Finance, Elsevier, vol. 36(1), pages 193-208.
    215. Žmuk Berislav, 2016. "Capabilities of Statistical Residual-Based Control Charts in Short- and Long-Term Stock Trading," Naše gospodarstvo/Our economy, Sciendo, vol. 62(1), pages 12-26, March.
    216. Shynkevich, Andrei, 2016. "Predictability in bond returns using technical trading rules," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 55-69.
    217. Paskalis Glabadanidis, 2014. "The Market Timing Power of Moving Averages: Evidence from US REITs and REIT Indexes," International Review of Finance, International Review of Finance Ltd., vol. 14(2), pages 161-202, June.
    218. Degenhardt, Thomas & Auer, Benjamin R., 2018. "The “Sell in May” effect: A review and new empirical evidence," The North American Journal of Economics and Finance, Elsevier, vol. 43(C), pages 169-205.
    219. Atanasova, Christina V. & Hudson, Robert S., 2010. "Technical trading rules and calendar anomalies -- Are they the same phenomena?," Economics Letters, Elsevier, vol. 106(2), pages 128-130, February.
    220. Jin, Xiaoye, 2022. "Testing technical trading strategies on China's equity ETFs: A skewness perspective," Emerging Markets Review, Elsevier, vol. 51(PA).
    221. C. L. Dunis & Jason Laws & Ben Evans, 2006. "Trading futures spreads: an application of correlation and threshold filters," Applied Financial Economics, Taylor & Francis Journals, vol. 16(12), pages 903-914.
    222. Enoch Cheng & Clemens C. Struck, 2019. "Time-Series Momentum: A Monte-Carlo Approach," Working Papers 201906, School of Economics, University College Dublin.
    223. Cerqueti, Roy & Falbo, Paolo & Pelizzari, Cristian, 2013. "Relevant States and Memory in Markov Chain Bootstrapping and Simulation," MPRA Paper 46250, University Library of Munich, Germany.
    224. Cummins, Mark, 2013. "EU ETS market interactions: The case for multiple hypothesis testing approaches," Applied Energy, Elsevier, vol. 111(C), pages 701-709.
    225. Eric Ghysels & João Pereira, 2003. "On Portfolio Choice, Liquidity, and Short Selling: A Nonparametric Investigation," CIRANO Working Papers 2003s-27, CIRANO.
    226. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    227. Chen, Cheng-Wei & Huang, Chin-Sheng & Lai, Hung-Wei, 2009. "The impact of data snooping on the testing of technical analysis: An empirical study of Asian stock markets," Journal of Asian Economics, Elsevier, vol. 20(5), pages 580-591, September.
    228. Mototsugu Shintani & Tomoyoshi Yabu & Daisuke Nagakura, 2008. "Spurious Regressions in Technical Trading: Momentum or Contrarian?," IMES Discussion Paper Series 08-E-09, Institute for Monetary and Economic Studies, Bank of Japan.
    229. Hoffmann, Arvid O.I. & Shefrin, Hersh, 2014. "Technical analysis and individual investors," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PB), pages 487-511.
    230. Vincent, Kendro & Hsu, Yu-Chin & Lin, Hsiou-Wei, 2021. "Investment styles and the multiple testing of cross-sectional stock return predictability," Journal of Financial Markets, Elsevier, vol. 56(C).
    231. Stephen A. Gorman & Frank J. Fabozzi, 2021. "The ABC’s of the alternative risk premium: academic roots," Journal of Asset Management, Palgrave Macmillan, vol. 22(6), pages 405-436, October.
    232. Fernando Rubio, 2004. "Technical Analysis On Foreign Exchange: 1975 - 2004," Finance 0405033, University Library of Munich, Germany, revised 01 Jul 2004.
    233. Dai, Zhifeng & Dong, Xiaodi & Kang, Jie & Hong, Lianying, 2020. "Forecasting stock market returns: New technical indicators and two-step economic constraint method," The North American Journal of Economics and Finance, Elsevier, vol. 53(C).
    234. Jin, Xiaoye, 2021. "What do we know about the popularity of technical analysis in foreign exchange markets? A skewness preference perspective," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 71(C).
    235. Ben Marshall & Sun Qian & Martin Young, 2009. "Is technical analysis profitable on US stocks with certain size, liquidity or industry characteristics?," Applied Financial Economics, Taylor & Francis Journals, vol. 19(15), pages 1213-1221.
    236. Luís Almeida & Elisabete Vieira, 2023. "Technical Analysis, Fundamental Analysis, and Ichimoku Dynamics: A Bibliometric Analysis," Risks, MDPI, vol. 11(8), pages 1-24, August.
    237. Cao, Ji & Muhl, Stefan & Rieger, Marc Oliver & Chen, Hung-Ling, 2023. "Sign matters: Stock-movement-based trading decisions of individual investors," Journal of Banking & Finance, Elsevier, vol. 148(C).
    238. Shynkevich, Andrei, 2013. "Time-series momentum as an intra- and inter-industry effect: Implications for market efficiency," Journal of Economics and Business, Elsevier, vol. 69(C), pages 64-85.
    239. Kukacka, Jiri & Barunik, Jozef, 2017. "Estimation of financial agent-based models with simulated maximum likelihood," Journal of Economic Dynamics and Control, Elsevier, vol. 85(C), pages 21-45.
    240. Dichtl, Hubert, 2020. "Forecasting excess returns of the gold market: Can we learn from stock market predictions?," Journal of Commodity Markets, Elsevier, vol. 19(C).
    241. Shan Wang & Zhi-Qiang Jiang & Sai-Ping Li & Wei-Xing Zhou, 2015. "Testing the performance of technical trading rules in the Chinese market," Papers 1504.06397, arXiv.org.
    242. Konstandinos Chourmouziadis & Dimitra K. Chourmouziadou & Prodromos D. Chatzoglou, 2021. "Embedding Four Medium-Term Technical Indicators to an Intelligent Stock Trading Fuzzy System for Predicting: A Portfolio Management Approach," Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1183-1216, April.
    243. Stephan Schulmeister, 2009. "Technical Trading and Trends in the Dollar-Euro Exchange Rate," WIFO Studies, WIFO, number 37582.
    244. Robert Ślepaczuk & Grzegorz Zakrzewski & Paweł Sakowski, 2012. "Investment strategies beating the market. What can we squeeze from the market?," Working Papers 2012-04, Faculty of Economic Sciences, University of Warsaw.
    245. Damien Challet & Ahmed Bel Hadj Ayed, 2015. "Do Google Trend data contain more predictability than price returns?," Post-Print hal-00960875, HAL.
    246. Yuan, Kathy & Zheng, Lu & Zhu, Qiaoqiao, 2006. "Are investors moonstruck? Lunar phases and stock returns," Journal of Empirical Finance, Elsevier, vol. 13(1), pages 1-23, January.
    247. Peter Reinhard Hansen, 2001. "An Unbiased and Powerful Test for Superior Predictive Ability," Working Papers 2001-06, Brown University, Department of Economics.
    248. Edwin D. Maberly & Daniel F. Waggoner, 2000. "Closing the question on the continuation of turn-of-the-month effects: evidence from the S&P 500 Index futures contract," FRB Atlanta Working Paper 2000-11, Federal Reserve Bank of Atlanta.
    249. Han Hwa Goh & Kim Leng Tan & Chia Ying Khor & Sew Lai Ng, 2016. "Volatility and Market Risk of Rubber Price in Malaysia: Pre- and Post-Global Financial Crisis," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 14(2), pages 323-344, December.
    250. Strobel, Marcus & Auer, Benjamin R., 2018. "Does the predictive power of variable moving average rules vanish over time and can we explain such tendencies?," International Review of Economics & Finance, Elsevier, vol. 53(C), pages 168-184.
    251. Anghel, Dan Gabriel, 2022. "No pain, no gain: You should always incorporate trading costs for a bias-free evaluation of trading rule overperformance," Economics Letters, Elsevier, vol. 216(C).
    252. M. A. H. Dempster & C. M. Jones, 2002. "Can channel pattern trading be profitably automated?," The European Journal of Finance, Taylor & Francis Journals, vol. 8(3), pages 275-301.
    253. Gencay, Ramazan & Dacorogna, Michel & Olsen, Richard & Pictet, Olivier, 2003. "Foreign exchange trading models and market behavior," Journal of Economic Dynamics and Control, Elsevier, vol. 27(6), pages 909-935, April.
    254. Allan Timmermann, 2018. "Forecasting Methods in Finance," Annual Review of Financial Economics, Annual Reviews, vol. 10(1), pages 449-479, November.
    255. Brian Lucey, 2004. "Robust estimates of daily seasonality in the Irish equity market," Applied Financial Economics, Taylor & Francis Journals, vol. 14(7), pages 517-523.
    256. Shintani, Mototsugu & Yabu, Tomoyoshi & Nagakura, Daisuke, 2012. "Spurious regressions in technical trading," Journal of Econometrics, Elsevier, vol. 169(2), pages 301-309.
    257. Hartmann, Daniel & Kempa, Bernd & Pierdzioch, Christian, 2006. "Economic and Financial Crises and the Predictability of U.S. Stock Returns," MPRA Paper 561, University Library of Munich, Germany.
    258. Roy Cerqueti & Paolo Falbo & Cristian Pelizzari & Federica Ricca & Andrea Scozzari, 2017. "A mixed integer linear program to compress transition probability matrices in Markov chain bootstrapping," Annals of Operations Research, Springer, vol. 248(1), pages 163-187, January.
    259. Anarkulova, Aizhan & Cederburg, Scott & O’Doherty, Michael S., 2022. "Stocks for the long run? Evidence from a broad sample of developed markets," Journal of Financial Economics, Elsevier, vol. 143(1), pages 409-433.
    260. Christopher J. Neely & Paul A. Weller, 2011. "Lessons from the evolution of foreign exchange trading strategies," Working Papers 2011-021, Federal Reserve Bank of St. Louis.
    261. Kirt Butler & Katsushi Okada, 2009. "The relative contribution of conditional mean and volatility in bivariate returns to international stock market indices," Applied Financial Economics, Taylor & Francis Journals, vol. 19(1), pages 1-15.
    262. Marshall, Ben R. & Cahan, Rochester H. & Cahan, Jared M., 2008. "Can commodity futures be profitably traded with quantitative market timing strategies?," Journal of Banking & Finance, Elsevier, vol. 32(9), pages 1810-1819, September.
    263. Dichtl, Hubert & Drobetz, Wolfgang & Neuhierl, Andreas & Wendt, Viktoria-Sophie, 2021. "Data snooping in equity premium prediction," International Journal of Forecasting, Elsevier, vol. 37(1), pages 72-94.
    264. Hubert Dichtl & Wolfgang Drobetz & Viktoria‐Sophie Wendt, 2021. "How to build a factor portfolio: Does the allocation strategy matter?," European Financial Management, European Financial Management Association, vol. 27(1), pages 20-58, January.
    265. Georgios Sermpinis & Arman Hassanniakalager & Charalampos Stasinakis & Ioannis Psaradellis, 2018. "Technical Analysis and Discrete False Discovery Rate: Evidence from MSCI Indices," Papers 1811.06766, arXiv.org, revised Jun 2019.
    266. Guo, Bin & Huang, Fuzhe & Li, Kai, 2020. "Time to build and bond risk premia," Journal of Economic Dynamics and Control, Elsevier, vol. 121(C).
    267. Karapandza, Rasa, 2016. "Stock returns and future tense language in 10-K reports," Journal of Banking & Finance, Elsevier, vol. 71(C), pages 50-61.
    268. Stephan Schulmeister, 2007. "Performance of Technical Trading Systems in the Yen/Dollar Market," WIFO Working Papers 291, WIFO.
    269. Panos Pouliasis & Ioannis Kyriakou & Nikos Papapostolou, 2017. "On equity risk prediction and tail spillovers," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 22(4), pages 379-393, October.
    270. Metghalchi, Massoud & Chang, Yung-Ho & Marcucci, Juri, 2008. "Is the Swedish stock market efficient? Evidence from some simple trading rules," International Review of Financial Analysis, Elsevier, vol. 17(3), pages 475-490, June.
    271. Anton Bekkerman, 2011. "Time‐varying hedge ratios in linked agricultural markets," Agricultural Finance Review, Emerald Group Publishing Limited, vol. 71(2), pages 179-200, August.
    272. Robert Sollis, 2005. "Predicting returns and volatility with macroeconomic variables: evidence from tests of encompassing," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(3), pages 221-231.
    273. Jimmy Hilliard & Adam Schwartz & James Squire, 2013. "A Test of Technical Analysis: Matching Time Displaced Generalized Patterns," Financial Management, Financial Management Association International, vol. 42(2), pages 291-314, June.
    274. Didier Sornette & Spencer Wheatley & Peter Cauwels, 2019. "The Fair Reward Problem: The Illusion Of Success And How To Solve It," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-52, May.
    275. Dichtl, Hubert & Drobetz, Wolfgang, 2014. "Are stock markets really so inefficient? The case of the “Halloween Indicator”," Finance Research Letters, Elsevier, vol. 11(2), pages 112-121.
    276. Chen, Shi & Bao, Si & Zhou, Yu, 2016. "The predictive power of Japanese candlestick charting in Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 148-165.
    277. Paye, Bradley S. & Timmermann, Allan, 2006. "Instability of return prediction models," Journal of Empirical Finance, Elsevier, vol. 13(3), pages 274-315, June.
    278. Rosario Dell'Aquila & Elvezio Ronchetti, 2004. "Robust tests of predictive accuracy," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(2), pages 161-184.
    279. Wu, Xiang & Zhang, Bing, 2024. "Retail investors’ escaping from the bottom and clustering at the top of the trend in China," International Review of Economics & Finance, Elsevier, vol. 93(PB), pages 875-904.
    280. Sermpinis, Georgios & Hassanniakalager, Arman & Stasinakis, Charalampos & Psaradellis, Ioannis, 2021. "Technical analysis profitability and Persistence: A discrete false discovery approach on MSCI indices," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 73(C).
    281. Amélie Charles & Olivier Darné & Jae H Kim, 2017. "International Stock Return Predictability: Evidence from New Statistical Tests," Post-Print hal-01626101, HAL.
    282. Skouras, Spyros, 2003. "An algorithm for computing estimators that optimize step functions," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 349-361, March.
    283. Zongwu Cai & Jiancheng Jiang & Jingshuang Zhang, 2013. "A New Test for Superior Predictive Ability," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    284. Diebold, Francis X., 2001. "Econometrics: Retrospect and prospect," Journal of Econometrics, Elsevier, vol. 100(1), pages 73-75, January.
    285. Lee, Tae-Hwy & Saltoglu, Burak, 2002. "Assessing the risk forecasts for Japanese stock market," Japan and the World Economy, Elsevier, vol. 14(1), pages 63-85, January.
    286. Bartram, Söhnke M. & Grinblatt, Mark, 2018. "Agnostic fundamental analysis works," Journal of Financial Economics, Elsevier, vol. 128(1), pages 125-147.
    287. Andreas Gronlund & Il Gu Yi & Beom Jun Kim, 2012. "Fractal Profit Landscape of the Stock Market," Papers 1205.0505, arXiv.org.
    288. Ślepaczuk Robert & Sakowski Paweł & Zakrzewski Grzegorz, 2018. "Investment Strategies that Beat the Market. What Can We Squeeze from the Market?," Financial Internet Quarterly (formerly e-Finanse), Sciendo, vol. 14(4), pages 36-55, December.
    289. Andreas Grönlund & Il Gu Yi & Beom Jun Kim, 2012. "Fractal Profit Landscape of the Stock Market," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-5, April.
    290. Dai, Zhifeng & Zhu, Huan & Kang, Jie, 2021. "New technical indicators and stock returns predictability," International Review of Economics & Finance, Elsevier, vol. 71(C), pages 127-142.
    291. Gerritsen, Dirk F., 2016. "Are chartists artists? The determinants and profitability of recommendations based on technical analysis," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 179-196.
    292. Chung, San-Lin & Hung, Chi-Hsiou & Yeh, Chung-Ying, 2012. "When does investor sentiment predict stock returns?," Journal of Empirical Finance, Elsevier, vol. 19(2), pages 217-240.
    293. Alizadeh, Amir H. & Thanopoulou, Helen & Yip, Tsz Leung, 2017. "Investors’ behavior and dynamics of ship prices: A heterogeneous agent model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 98-114.
    294. Yung-Ho Chang, 2019. "Cross-market information spillover and the performance of technical trading in the foreign exchange market," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 43(2), pages 211-227, April.
    295. Lee, Hsiang-Tai, 2010. "Regime switching correlation hedging," Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2728-2741, November.
    296. Yang, Junmin & Cao, Zhiguang & Han, Qiheng & Wang, Qiyu, 2019. "Tactical asset allocation on technical trading rules and data snooping," Pacific-Basin Finance Journal, Elsevier, vol. 57(C).
    297. Martin Scholtus & Dick van Dijk, 2012. "High-Frequency Technical Trading: The Importance of Speed," Tinbergen Institute Discussion Papers 12-018/4, Tinbergen Institute.

  50. Lunde, Asger & Timmermann, Allan & Blake, David, 1998. "The Hazards of Mutual Fund Underperformance: A Cox Regression Analysis," University of California at San Diego, Economics Working Paper Series qt1pd3z1hm, Department of Economics, UC San Diego.

    Cited by:

    1. Emmanuel Mamatzakis & Mike G. Tsionas, 2021. "Testing for persistence in US mutual funds’ performance: a Bayesian dynamic panel model," Annals of Operations Research, Springer, vol. 299(1), pages 1203-1233, April.
    2. A. Colin Cameron & Anthony D. Hall, 2003. "A Survival Analysis of Australian Equity Mutual Funds," Australian Journal of Management, Australian School of Business, vol. 28(2), pages 209-226, September.
    3. Ma, Tiejun & Tang, Leilei & McGroarty, Frank & Sung, Ming-Chien & Johnson, Johnnie E. V, 2016. "Time is money: Costing the impact of duration misperception in market prices," European Journal of Operational Research, Elsevier, vol. 255(2), pages 397-410.
    4. Kozo Kiyota & Miho Takizawa, 2007. "The Shadow of Death: Pre-exit Performance of Firms in Japan," Hi-Stat Discussion Paper Series d06-204, Institute of Economic Research, Hitotsubashi University.
    5. Blake, David & Cairns, Andrew & Dowd, Kevin, 2008. "Turning pension plans into pension planes: What investment strategy designers of defined contribution pension plans can learn from commercial aircraft designers," MPRA Paper 33749, University Library of Munich, Germany.
    6. Bank for International Settlements, 2003. "Incentive structures in institutional asset management and their implications for financial markets," CGFS Papers, Bank for International Settlements, number 21.
    7. Qiang Bu & Nelson Lacey, 2009. "On understanding mutual fund terminations," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 33(1), pages 80-99, January.
    8. Stephen Brown & William Goetzmann & James Park, 1998. "Conditions for Survival: Changing Risk and the Performance of Hedge Fund Managers and CTAs," Yale School of Management Working Papers ysm83, Yale School of Management, revised 01 Apr 2008.
    9. Darolles, Serge & Florens, Jean-Pierre & Simon, Guillaume, 2010. "Nonparametric Analysis of Hedge Funds Lifetimes," IDEI Working Papers 620, Institut d'Économie Industrielle (IDEI), Toulouse.
    10. Mohammad Mojtahedi & Sidney Newton & Jason Meding, 2017. "Predicting the resilience of transport infrastructure to a natural disaster using Cox’s proportional hazards regression model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 1119-1133, January.
    11. Jung-Min KIM, 2015. "Failure Risk and the Cross-Section of Hedge Fund Returns," Working Papers 2015-13, Economic Research Institute, Bank of Korea.
    12. Emmanuel Mamatzakis & Mike Tsionas, 2018. "A Bayesian dynamic model to test persistence in funds' performance," Working Paper series 18-23, Rimini Centre for Economic Analysis.
    13. Fletcher, Jonathan & Forbes, David, 2002. "An exploration of the persistence of UK unit trust performance," Journal of Empirical Finance, Elsevier, vol. 9(5), pages 475-493, December.
    14. Cogneau, Philippe & Hübner, Georges, 2015. "The prediction of fund failure through performance diagnostics," Journal of Banking & Finance, Elsevier, vol. 50(C), pages 224-241.
    15. Juan Yao & Graham Partington & Max Stevenson, 2005. "Run length and the predictability of stock price reversals," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 45(4), pages 653-671, December.
    16. Yehong Liu & Guosheng Yin, 2018. "Average Holding Price," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 13(01), pages 1-20, March.
    17. Bessler, Wolfgang & Blake, David & Lückoff, Peter & Tonks, Ian, 2010. "Why does mutual fund performance not persist? The impact and interaction of fund flows and manager changes," MPRA Paper 34185, University Library of Munich, Germany.
    18. Matallín-Sáez, Juan Carlos & Soler-Domínguez, Amparo & Tortosa-Ausina, Emili, 2016. "On the robustness of persistence in mutual fund performance," The North American Journal of Economics and Finance, Elsevier, vol. 36(C), pages 192-231.
    19. Carree, Martin A., 2003. "A hazard rate analysis of Russian commercial banks in the period 1994-1997," Economic Systems, Elsevier, vol. 27(3), pages 255-269, September.
    20. Hanke, Bernd & Keswani, Aneel & Quigley, Garrett & Zagonov, Maxim, 2018. "Survivorship bias and comparability of UK open-ended fund databases," Economics Letters, Elsevier, vol. 172(C), pages 110-114.
    21. Boldron, François & Fève, Frédérique & Florens, Jean-Pierre & Panet-Amaro, C. & Valognes, C., 2010. "Econometric Models and the Evolution of Post-Offices Network," IDEI Working Papers 626, Institut d'Économie Industrielle (IDEI), Toulouse.
    22. Peter A. F. Fraser‐Mackenzie & Tiejun Ma & Ming‐Chien Sung & Johnnie E. V. Johnson, 2019. "Let's Call it Quits: Break‐Even Effects in the Decision to Stop Taking Risks," Risk Analysis, John Wiley & Sons, vol. 39(7), pages 1560-1581, July.
    23. Alex Grecu & Burton G. Malkiel & Atanu Saha, 2006. "Why Do Hedge Funds Stop Reporting Their Performance?," Working Papers 78, Princeton University, Department of Economics, Center for Economic Policy Studies..
    24. Boyson, Nicole M., 2010. "Implicit incentives and reputational herding by hedge fund managers," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 283-299, June.
    25. Xisong Jin & Francisco Nadal De Simone, 2015. "Investment funds? vulnerabilities: A tail-risk dynamic CIMDO approach," BCL working papers 95, Central Bank of Luxembourg.
    26. Jin, Xisong & Nadal De Simone, Francisco, 2014. "A framework for tracking changes in the intensity of investment funds' systemic risk," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 343-368.
    27. Naohiko Baba & Hiromichi Goko, 2006. "Survival Analysis of Hedge Funds," Bank of Japan Working Paper Series 06-E-5, Bank of Japan.
    28. Cumming, Douglas & Dai, Na & Johan, Sofia, 2015. "Are hedge funds registered in Delaware different?," Journal of Corporate Finance, Elsevier, vol. 35(C), pages 232-246.
    29. Carree, M.A., 2000. "Interest and Hazard Rates of Russian Saving Banks," ERIM Report Series Research in Management ERS-2000-26-STR, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    30. Yamashita, Takashi, 2007. "House price appreciation, liquidity constraints, and second mortgages," Journal of Urban Economics, Elsevier, vol. 62(3), pages 424-440, November.
    31. Zhao, Xinge, 2004. "Why are some mutual funds closed to new investors?," Journal of Banking & Finance, Elsevier, vol. 28(8), pages 1867-1887, August.

  51. Sullivan, Ryan & Timmermann, Allan & White, Halbert, 1998. "Dangers of Data-Driven Inference: The Case of Calendar Effects in Stock Returns," University of California at San Diego, Economics Working Paper Series qt2z02z6d9, Department of Economics, UC San Diego.

    Cited by:

    1. Ayman Abdalmajeed Ahmad Al-Smadi & Mahmoud Khalid Almsafir & Nur Hanis Hazwani Binti Husni, 2018. "Trends And Calendar Effects In Malaysia’S Stock Market," Romanian Economic Business Review, Romanian-American University, vol. 13(2), pages 15-22, June.
    2. Hendry, David F., 2001. "Achievements and challenges in econometric methodology," Journal of Econometrics, Elsevier, vol. 100(1), pages 7-10, January.
    3. Goran Karanovic & Bisera Karanovic, 2018. "The Day-of-the-Week Effect: Evidence from Selected Balkan Markets," Scientific Annals of Economics and Business (continues Analele Stiintifice), Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, vol. 65(1), pages 1-11, March.
    4. Kunkel, Robert A. & Compton, William S. & Beyer, Scott, 2003. "The turn-of-the-month effect still lives: the international evidence," International Review of Financial Analysis, Elsevier, vol. 12(2), pages 207-221.
    5. Michael P. Clements & Philip Hans Franses & Norman R. Swanson, 2003. "Forecasting economic and financial time-series with non-linear models," Departmental Working Papers 200309, Rutgers University, Department of Economics.
    6. David McMillan & Alan Speight, 2004. "Intra-day periodicity, temporal aggregation and time-to-maturity in FTSE-100 index futures volatility," Applied Financial Economics, Taylor & Francis Journals, vol. 14(4), pages 253-263.
    7. Edwin D. Maberly & Daniel F. Waggoner, 2000. "Closing the question on the continuation of turn-of-the-month effects: evidence from the S&P 500 Index futures contract," FRB Atlanta Working Paper 2000-11, Federal Reserve Bank of Atlanta.
    8. Sasidharan, Anand, 2009. "Does seasonality persists in Indian stock markets?," MPRA Paper 24185, University Library of Munich, Germany, revised Aug 2010.
    9. Philip Kostov & Seamus McErlean, 2004. "Estimating the probability of large negative stock market," Finance 0409011, University Library of Munich, Germany.
    10. Lee, Tae-Hwy & Saltoglu, Burak, 2002. "Assessing the risk forecasts for Japanese stock market," Japan and the World Economy, Elsevier, vol. 14(1), pages 63-85, January.

  52. Blake, David & Lehmann, Bruce N & Timmermann, Allan G, 1997. "Performance Measurement using Multiple Asset Class Portfolio Data," CEPR Discussion Papers 1618, C.E.P.R. Discussion Papers.

    Cited by:

    1. Whitehouse, Edward, 2000. "Pension reform, financial literacy and public information : a case study of the United Kingdom," Social Protection Discussion Papers and Notes 21312, The World Bank.
    2. Whitehouse, Edward, 2000. "Administrative charges for funded pensions : an international comparison and assessment," Social Protection Discussion Papers and Notes 23140, The World Bank.
    3. Whitehouse, Edward, 2000. "Paying for pensions: An international comparison of administrative charges in funded retirement-income systems," MPRA Paper 14171, University Library of Munich, Germany.
    4. Srinivas, P.S. & Whitehouse, Edward & Yermo, Juan, 2000. "Regulating private pension funds'structure, performance, and investments : cross-country evidence," Social Protection Discussion Papers and Notes 23302, The World Bank.
    5. Claudio Borio & Craig Furfine & Philip Lowe, 2001. "Procyclicality of the financial system and financial stability: issues and policy options," BIS Papers chapters, in: Bank for International Settlements (ed.), Marrying the macro- and micro-prudential dimensions of financial stability, volume 1, pages 1-57, Bank for International Settlements.
    6. Manuel Ammann & Andreas Zingg, 2008. "Investment Performance of Swiss Pension Funds and Investment Foundations," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 144(II), pages 153-195, June.

  53. Pesaran, M. H. & Timmermann, A., 1996. "A Recursive Modelling Approach to Predicting UK Stock Returns'," Cambridge Working Papers in Economics 9625, Faculty of Economics, University of Cambridge.

    Cited by:

    1. Döpke, Jörg & Hartmann, Daniel & Pierdzioch, Christian, 2006. "Forecasting stock market volatility with macroeconomic variables in real time," Discussion Paper Series 2: Banking and Financial Studies 2006,01, Deutsche Bundesbank.
    2. M. Hashem Pesaran, 2000. "The Cost Efficiency of UK Debt Management: A Recursive Modelling Approach," CESifo Working Paper Series 346, CESifo.
    3. Lucio Sarno & Giorgio Valente, 2009. "Exchange Rates and Fundamentals: Footloose or Evolving Relationship?," Journal of the European Economic Association, MIT Press, vol. 7(4), pages 786-830, June.
    4. Alan Gregory, 2011. "The Expected Cost of Equity and the Expected Risk Premium in the UK," Review of Behavioral Finance, Emerald Group Publishing Limited, vol. 3(1), pages 1-26, April.
    5. Massimiliano Kaucic, 2009. "Predicting EU Energy Industry Excess Returns on EU Market Index via a Constrained Genetic Algorithm," Computational Economics, Springer;Society for Computational Economics, vol. 34(2), pages 173-193, September.
    6. Todd E. Clark, 2004. "Can out-of-sample forecast comparisons help prevent overfitting?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(2), pages 115-139.
    7. Pesaran, M. Hashem & Timmermann, Allan, 2002. "Market timing and return prediction under model instability," Journal of Empirical Finance, Elsevier, vol. 9(5), pages 495-510, December.
    8. Favero, Carlo A. & Milani, Fabio, 2005. "Parameter Instability, Model Uncertainty and the Choice of Monetary Policy," CEPR Discussion Papers 4909, C.E.P.R. Discussion Papers.
    9. Poshakwale, Sunil S. & Chandorkar, Pankaj & Agarwal, Vineet, 2019. "Implied volatility and the cross section of stock returns in the UK," Research in International Business and Finance, Elsevier, vol. 48(C), pages 271-286.
    10. Groenewold, Nicolaas & Kan Tang, Sam Hak & Wu, Yanrui, 2008. "The profitability of regression-based trading rules for the Shanghai stock market," International Review of Financial Analysis, Elsevier, vol. 17(2), pages 411-430.
    11. Gary Koop & Dimitris Korobilis, 2012. "Forecasting Inflation Using Dynamic Model Averaging," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(3), pages 867-886, August.
    12. M. Hashem Pesaran, 2005. "Market Efficiency Today," IEPR Working Papers 05.41, Institute of Economic Policy Research (IEPR).
    13. Chau, Frankie & Deesomsak, Rataporn & Lau, Marco C.K., 2011. "Investor sentiment and feedback trading: Evidence from the exchange-traded fund markets," International Review of Financial Analysis, Elsevier, vol. 20(5), pages 292-305.
    14. M. Hashem Pesaran, 2010. "Predictability of Asset Returns and the Efficient Market Hypothesis," CESifo Working Paper Series 3116, CESifo.
    15. Phillips, Peter C.B., 2005. "Automated Discovery In Econometrics," Econometric Theory, Cambridge University Press, vol. 21(1), pages 3-20, February.
    16. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
    17. Pierdzioch, Christian & Risse, Marian & Rohloff, Sebastian, 2014. "The international business cycle and gold-price fluctuations," The Quarterly Review of Economics and Finance, Elsevier, vol. 54(2), pages 292-305.
    18. Sen, Chitrakalpa & Chakrabarti, Gagari & Sarkar, Amitava, 1981. "Asymmetric Response in Foreign Exchange Volatility under Structural Break," MPRA Paper 26817, University Library of Munich, Germany.
    19. Dahmene, Meriam & Boughrara, Adel & Slim, Skander, 2021. "Nonlinearity in stock returns: Do risk aversion, investor sentiment and, monetary policy shocks matter?," International Review of Economics & Finance, Elsevier, vol. 71(C), pages 676-699.
    20. Jeffrey Jarrett & Eric Kyper, 2006. "Capital market efficiency and the predictability of daily returns," Applied Economics, Taylor & Francis Journals, vol. 38(6), pages 631-636.
    21. Wolfgang Gohout & Katja Specht, 2007. "Mean-variance portfolios using Bayesian vector-autoregressive forcasts," Statistical Papers, Springer, vol. 48(3), pages 403-418, September.
    22. Gupta, Rangan & Majumdar, Anandamayee & Pierdzioch, Christian & Wohar, Mark E., 2017. "Do terror attacks predict gold returns? Evidence from a quantile-predictive-regression approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 65(C), pages 276-284.
    23. Geweke, J. & Joel Horowitz & Pesaran, M.H., 2006. "Econometrics: A Bird’s Eye View," Cambridge Working Papers in Economics 0655, Faculty of Economics, University of Cambridge.
    24. Bonato, Matteo & Cepni, Oguzhan & Gupta, Rangan & Pierdzioch, Christian, 2023. "Climate risks and state-level stock market realized volatility," Journal of Financial Markets, Elsevier, vol. 66(C).
    25. Villalba-Padilla, Fátima Irina & Flores-Ortega, Miguel, 2012. "Capacidad de predicción de los modelos GARCH simétricos aplicados a variables financieras de México 2001-2011," eseconomía, Escuela Superior de Economía, Instituto Politécnico Nacional, vol. 0(34), pages 81-124, segundo t.
    26. McMillan, David G., 2001. "Nonlinear predictability of stock market returns: Evidence from nonparametric and threshold models," International Review of Economics & Finance, Elsevier, vol. 10(4), pages 353-368, December.
    27. Christian Pierdzioch, 2012. "Macroeconomic Factors and the German Real Estate Market: A Stock-Market-Based Forecasting Experiment," Review of Economics & Finance, Better Advances Press, Canada, vol. 2, pages 87-96, May.
    28. Davis, E. Philip & Madsen, Jakob B., 2008. "Productivity and equity market fundamentals: 80 years of evidence for 11 OECD countries," Journal of International Money and Finance, Elsevier, vol. 27(8), pages 1261-1283, December.
    29. Andrada-Félix Julián & Fernadez-Rodriguez Fernando & Garcia-Artiles Maria-Dolores & Sosvilla-Rivero Simon, 2003. "An Empirical Evaluation of Non-Linear Trading Rules," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 7(3), pages 1-32, October.
    30. Oscar Bajo-Rubio & Simón Sosvilla-Rivero & Fernando Fernández-Rodríguez, "undated". "Non-Linear Forecasting Methods: Some Applications to the Analysis of Financial Series," Working Papers 2002-01, FEDEA.
    31. Ekaterini Tsouma, 2007. "Stock return dynamics and stock market interdependencies," Applied Financial Economics, Taylor & Francis Journals, vol. 17(10), pages 805-825.
    32. Moreno, David & Olmeda, Ignacio, 2007. "Is the predictability of emerging and developed stock markets really exploitable?," European Journal of Operational Research, Elsevier, vol. 182(1), pages 436-454, October.
    33. Massimo Guidolin & Stuart Hyde & David McMillan & Sadayuki Ono, 2010. "Does the macroeconomy predict U.K. asset returns in a nonlinear fashion? comprehensive out-of-sample evidence," Working Papers 2010-039, Federal Reserve Bank of St. Louis.
    34. David McMillan, 2004. "Non-linear predictability of UK stock market returns," Money Macro and Finance (MMF) Research Group Conference 2003 63, Money Macro and Finance Research Group.
    35. Nima Nonejad, 2021. "An Overview Of Dynamic Model Averaging Techniques In Time‐Series Econometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 566-614, April.
    36. Thomadakis, Apostolos, 2016. "Do Combination Forecasts Outperform the Historical Average? Economic and Statistical Evidence," MPRA Paper 71589, University Library of Munich, Germany.
    37. Kadilli, Anjeza, 2015. "Predictability of stock returns of financial companies and the role of investor sentiment: A multi-country analysis," Journal of Financial Stability, Elsevier, vol. 21(C), pages 26-45.
    38. Rohloff, Sebastian & Pierdzioch, Christian & Risse, Marian, 2014. "Fluctuations of the Real Exchange Rate, Real Interest Rates, and the Dynamics of the Price of Gold in a Small Open Economy," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100429, Verein für Socialpolitik / German Economic Association.
    39. Marco Aiolfi & Carlo Ambrogio Favero, "undated". "Model Uncertainty, Thick Modelling and the predictability of Stock Returns," Working Papers 221, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    40. Smith, Ron, 2002. "Comments on 'The state of macroeconomic forecasting'," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 491-493, December.
    41. Christian Pierdzioch & Daniel Hartmann, 2013. "Forecasting Eurozone real-estate returns," Applied Financial Economics, Taylor & Francis Journals, vol. 23(14), pages 1185-1196, July.
    42. Daniel Hartmann & Christian Pierdzioch, 2007. "International equity flows and the predictability of US stock returns," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(8), pages 583-599.
    43. Carlo A. Favero, "undated". "Parameters´ Instability, Model Uncertainty and Optimal Monetary Policy," Working Papers 196, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    44. Guidolin, Massimo & Hyde, Stuart, 2012. "Can VAR models capture regime shifts in asset returns? A long-horizon strategic asset allocation perspective," Journal of Banking & Finance, Elsevier, vol. 36(3), pages 695-716.
    45. George Kapetanios & Vincent Labhard & Simon Price, 2007. "Forecast combination and the Bank of England’s suite of statistical forecasting models," Bank of England working papers 323, Bank of England.
    46. Neil Kellard & John Nankervis & Fotis Papadimitriou, 2007. "Predicting the UK Equity Premium with Dividend Ratios: An Out-Of-Sample Recursive Residuals Graphical Approach," Money Macro and Finance (MMF) Research Group Conference 2006 129, Money Macro and Finance Research Group.
    47. Ioannidis, C. & Peel, D.A. & Matthews, K.P.G., 2006. "Expected stock returns, aggregate consumption and wealth: Some further empirical evidence," Journal of Macroeconomics, Elsevier, vol. 28(2), pages 439-445, June.
    48. Naser, Hanan & Alaali, Fatema, 2015. "Can Oil Prices Help Predict US Stock Market Returns: An Evidence Using a DMA Approach," MPRA Paper 65295, University Library of Munich, Germany, revised 25 Jun 2015.
    49. Angela J. Black & David G. McMillan, 2004. "Non‐linear Predictability of Value and Growth Stocks and Economic Activity," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 31(3‐4), pages 439-474, April.
    50. Aatola, Piia & Ollikka, Kimmo & Ollikainen, Markku, 2012. "Informational Efficiency of the EU ETS market – a study of price predictability and profitable trading," Working Papers 28, VATT Institute for Economic Research.
    51. Jakob B. Madsen & E. Philip Davis, 2004. "Equity Prices, Productivity Growth and 'The New Economy," FRU Working Papers 2004/11, University of Copenhagen. Department of Economics. Finance Research Unit.
    52. Pesaran, M.H. & Timmermann, A., 2004. "‘Real Time Econometrics’," Cambridge Working Papers in Economics 0432, Faculty of Economics, University of Cambridge.
    53. Naser, Hanan, 2016. "Estimating and forecasting the real prices of crude oil: A data rich model using a dynamic model averaging (DMA) approach," Energy Economics, Elsevier, vol. 56(C), pages 75-87.
    54. Hanan Naser & Fatema Alaali, 2018. "Can oil prices help predict US stock market returns? Evidence using a dynamic model averaging (DMA) approach," Empirical Economics, Springer, vol. 55(4), pages 1757-1777, December.
    55. Timmermann, Allan, 2008. "Elusive return predictability," International Journal of Forecasting, Elsevier, vol. 24(1), pages 1-18.
    56. McMillan, David G., 2007. "Non-linear forecasting of stock returns: Does volume help?," International Journal of Forecasting, Elsevier, vol. 23(1), pages 115-126.
    57. Dell'Aquila, Rosario & Ronchetti, Elvezio, 2006. "Stock and bond return predictability: the discrimination power of model selection criteria," Computational Statistics & Data Analysis, Elsevier, vol. 50(6), pages 1478-1495, March.
    58. Michael P. Clements & Philip Hans Franses & Norman R. Swanson, 2003. "Forecasting economic and financial time-series with non-linear models," Departmental Working Papers 200309, Rutgers University, Department of Economics.
    59. Asteriou, Dimitrios & Bashmakova, Yuliya, 2013. "Assessing the impact of oil returns on emerging stock markets: A panel data approach for ten Central and Eastern European Countries," Energy Economics, Elsevier, vol. 38(C), pages 204-211.
    60. Döpke, Jörg & Hartmann, Daniel & Pierdzioch, Christian, 2008. "Real-time macroeconomic data and ex ante stock return predictability," International Review of Financial Analysis, Elsevier, vol. 17(2), pages 274-290.
    61. T. Hendricks & B. Kempa & C. Pierdzioch, 2010. "Do local analysts have an informational advantage in forecasting stock returns? Evidence from the German DAX30," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 24(2), pages 137-158, June.
    62. Smith, Simon C. & Timmermann, Allan & Zhu, Yinchu, 2019. "Variable selection in panel models with breaks," Journal of Econometrics, Elsevier, vol. 212(1), pages 323-344.
    63. Sarantis, Nicholas, 2006. "On the short-term predictability of exchange rates: A BVAR time-varying parameters approach," Journal of Banking & Finance, Elsevier, vol. 30(8), pages 2257-2279, August.
    64. Coe, P.J. & Pesaran, M.H. & Vahey, S.P., 2003. "Scope for Cost Minimization in Public Debt Management: the Case of the UK," Cambridge Working Papers in Economics 0338, Faculty of Economics, University of Cambridge.
    65. Mohammad Hasan, 2008. "Stock returns, inflation and interest rates in the United Kingdom," The European Journal of Finance, Taylor & Francis Journals, vol. 14(8), pages 687-699.
    66. Pierdzioch, Christian & Risse, Marian & Rohloff, Sebastian, 2015. "A real-time quantile-regression approach to forecasting gold returns under asymmetric loss," Resources Policy, Elsevier, vol. 45(C), pages 299-306.
    67. Abhyankar, Abhay & Ho, Keng-Yu, 2006. "Long-run abnormal performance following convertible preference share and convertible bond issues: New evidence from the United Kingdom," International Review of Economics & Finance, Elsevier, vol. 15(1), pages 97-119.
    68. Sakar Hasan Hamza & Qingna Li, 2023. "The Dynamics of US Gasoline Demand and Its Prediction: An Extended Dynamic Model Averaging Approach," Energies, MDPI, vol. 16(12), pages 1-13, June.
    69. David McMillan & Mark Wohar, 2013. "UK stock market predictability: evidence of time variation," Applied Financial Economics, Taylor & Francis Journals, vol. 23(12), pages 1043-1055, June.
    70. Mollick, André Varella & Assefa, Tibebe Abebe, 2013. "U.S. stock returns and oil prices: The tale from daily data and the 2008–2009 financial crisis," Energy Economics, Elsevier, vol. 36(C), pages 1-18.
    71. Carolina Fugazza & Massimo Guidolin & Giovanna Nicodano, 2007. "Investing for the Long-run in European Real Estate," The Journal of Real Estate Finance and Economics, Springer, vol. 34(1), pages 35-80, January.
    72. Dirk Nitzsche & Keith Cuthbertson & Niall O'Sullivan, 2005. "Mutual Fund Performance: Skill Or Luck?," Money Macro and Finance (MMF) Research Group Conference 2005 4, Money Macro and Finance Research Group.
    73. Massimo Guidolin & Alexei G. Orlov & Manuela Pedio, 2018. "How good can heuristic-based forecasts be? A comparative performance of econometric and heuristic models for UK and US asset returns," Quantitative Finance, Taylor & Francis Journals, vol. 18(1), pages 139-169, January.
    74. Nektarios Aslanidis, 2002. "Smooth Transition Regression Models in UK Stock Returns," Working Papers 0201, University of Crete, Department of Economics.
    75. Jeffrey E. Jarrett, 2008. "Predicting Daily Stock Returns: A Lengthy Study of the Hong Kong and Tokyo Stock Exchanges," International Journal of Business and Economics, School of Management Development, Feng Chia University, Taichung, Taiwan, vol. 7(1), pages 37-51, April.
    76. Hartmann, Daniel & Pierdzioch, Christian, 2006. "Nonlinear Links between Stock Returns and Exchange Rate Movements," MPRA Paper 558, University Library of Munich, Germany.
    77. Christos Avdoulas & Stelios Bekiros & Sabri Boubaker, 2018. "Evolutionary-based return forecasting with nonlinear STAR models: evidence from the Eurozone peripheral stock markets," Annals of Operations Research, Springer, vol. 262(2), pages 307-333, March.
    78. Aslanidis, Nektarios & Osborn, Denise R. & Sensier, Marianne, 2008. "Co-movements between US and UK stock prices: the roles of macroeconomic information and time-series varying conditional correlations," Working Papers 2072/8950, Universitat Rovira i Virgili, Department of Economics.
    79. Chronopoulos, Dimitris K. & Papadimitriou, Fotios I. & Vlastakis, Nikolaos, 2018. "Information demand and stock return predictability," Journal of International Money and Finance, Elsevier, vol. 80(C), pages 59-74.
    80. Ali Habibnia & Esfandiar Maasoumi, 2021. "Forecasting in Big Data Environments: An Adaptable and Automated Shrinkage Estimation of Neural Networks (AAShNet)," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 363-381, December.
    81. Kamel Laaradh, 2007. "« Investir Sur Le Marche Inernational Des Actions A-T-Il Plus D'Effet Sur La Persistance De La Performance Des Fonds ? Illustration Britannique »," Post-Print halshs-00544930, HAL.
    82. P. Dorian Owen, 2003. "General‐to‐Specific Modelling Using PcGets," Journal of Economic Surveys, Wiley Blackwell, vol. 17(4), pages 609-628, September.
    83. Kargin, Vladislav, 2002. "Value investing in emerging markets: risks and benefits," Emerging Markets Review, Elsevier, vol. 3(3), pages 233-244, September.
    84. Patrick J. Coe & M. Hashem Pesaran & Shaun P. Vahey, 2005. "The Cost Effectiveness of the UK's Sovereign Debt Portfolio," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(4), pages 467-495, August.
    85. Risse, Marian & Ohl, Ludwig, 2017. "Using dynamic model averaging in state space representation with dynamic Occam’s window and applications to the stock and gold market," Journal of Empirical Finance, Elsevier, vol. 44(C), pages 158-176.
    86. David G. McMillan, 2003. "Non‐linear Predictability of UK Stock Market Returns," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(5), pages 557-573, December.
    87. Chau, Frankie & Deesomsak, Rataporn, 2015. "Business cycle variation in positive feedback trading: Evidence from the G-7 economies," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 35(C), pages 147-159.
    88. N Aslanidis & D R Osborn & M Sensier, 2003. "Explaining Movements in UK Stock Prices: How Important is the US Market?," Economics Discussion Paper Series 0305, Economics, The University of Manchester.
    89. McMillan, David G., 2019. "Stock return predictability: Using the cyclical component of the price ratio," Research in International Business and Finance, Elsevier, vol. 48(C), pages 228-242.
    90. Kloek, T., 1998. "Loss development forecasting models: an econometrician's view," Insurance: Mathematics and Economics, Elsevier, vol. 23(3), pages 251-261, December.
    91. David McMillan & Mark Wohar, 2011. "Sum of the parts stock return forecasting: international evidence," Applied Financial Economics, Taylor & Francis Journals, vol. 21(12), pages 837-845.
    92. Tiwari, Aviral Kumar & Abakah, Emmanuel Joel Aikins & Bonsu, Christiana Osei & Karikari, Nana Kwasi & Hammoudeh, Shawkat, 2022. "The effects of public sentiments and feelings on stock market behavior: Evidence from Australia," Journal of Economic Behavior & Organization, Elsevier, vol. 193(C), pages 443-472.
    93. Julián Andrada Félix & Fernando Fernández Rodríguez & María Dolores García Artiles, 2004. "Non-linear trading rules in the New York Stock Exchange," Documentos de trabajo conjunto ULL-ULPGC 2004-05, Facultad de Ciencias Económicas de la ULPGC.
    94. Hartmann, Daniel & Kempa, Bernd & Pierdzioch, Christian, 2006. "Economic and Financial Crises and the Predictability of U.S. Stock Returns," MPRA Paper 561, University Library of Munich, Germany.
    95. Nektarios Aslanidis & Denise R. Osborn & Marianne Sensier, 2008. "Comovements between US and UK stock prices: the roles of macroeconomic information and timevarying conditional correlations," Economics Discussion Paper Series 0805, Economics, The University of Manchester.
    96. Döpke, Jörg & Müller, Karsten & Tegtmeier, Lars, 2018. "The economic value of business cycle forecasts for potential investors – Evidence from Germany," Research in International Business and Finance, Elsevier, vol. 46(C), pages 445-461.
    97. Nektarios Aslanidis & Denise Osborn & Marianne Sensier, 2003. "Explaining movements in UK stock prices:," Working Papers 0302, University of Crete, Department of Economics.
    98. Najeeb, Faiq & Masih, Mansur, 2016. "Macroeconomic variables and stock returns: evidence from Singapore," MPRA Paper 98778, University Library of Munich, Germany.
    99. Robert Sollis, 2005. "Predicting returns and volatility with macroeconomic variables: evidence from tests of encompassing," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(3), pages 221-231.
    100. Pierdzioch, Christian & Schertler, Andrea, 2005. "Investing in European Stock Markets for High-Technology Firms," Kiel Working Papers 1265, Kiel Institute for the World Economy (IfW Kiel).
    101. Kellard, Neil M. & Nankervis, John C. & Papadimitriou, Fotios I., 2010. "Predicting the equity premium with dividend ratios: Reconciling the evidence," Journal of Empirical Finance, Elsevier, vol. 17(4), pages 539-551, September.
    102. Amélie Charles & Olivier Darné & Jae H Kim, 2017. "International Stock Return Predictability: Evidence from New Statistical Tests," Post-Print hal-01626101, HAL.
    103. Tupac Panigo, Demian & Chena, Pablo Ignacio, 2012. "Regulationist Macro-Models for Developing Countries. An Application to the Argentine New Development Pattern," Revue de la Régulation - Capitalisme, institutions, pouvoirs, Association Recherche et Régulation, vol. 11.
    104. David R Gallagher & Peter A Gardner & Camille H Schmidt, 2015. "Style factor timing: An application to the portfolio holdings of US fund managers," Australian Journal of Management, Australian School of Business, vol. 40(2), pages 318-350, May.
    105. Shamsuddin, Abul F. M. & Hillier, John R., 2004. "Fundamental determinants of the Australian price-earnings multiple," Pacific-Basin Finance Journal, Elsevier, vol. 12(5), pages 565-576, November.
    106. Hartmann, Daniel & Pierdzioch, Christian, 2007. "Exchange rates, interventions, and the predictability of stock returns in Japan," Journal of Multinational Financial Management, Elsevier, vol. 17(2), pages 155-172, April.

  54. Pesaran, M.H. & Timmermann, A.G., 1992. "A Generalisation of the Non-Parametric Henriksson-Merton Test of Market Timing," Cambridge Working Papers in Economics 9218, Faculty of Economics, University of Cambridge.

    Cited by:

    1. M. Hashem Pesaran, 2000. "The Cost Efficiency of UK Debt Management: A Recursive Modelling Approach," CESifo Working Paper Series 346, CESifo.
    2. Dorfmann, Jeffrey & Karali, Berna, 2015. "A Nonparametric Search for Information Effects from USDA Reports," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 40(1), pages 1-20.
    3. Chance, Don M. & Hemler, Michael L., 2001. "The performance of professional market timers: daily evidence from executed strategies," Journal of Financial Economics, Elsevier, vol. 62(2), pages 377-411, November.
    4. Meade, Nigel, 2002. "A comparison of the accuracy of short term foreign exchange forecasting methods," International Journal of Forecasting, Elsevier, vol. 18(1), pages 67-83.
    5. Krishna, Kala & Ozyildirim, Ataman & Swanson, Norman R., 2003. "Trade, investment and growth: nexus, analysis and prognosis," Journal of Development Economics, Elsevier, vol. 70(2), pages 479-499, April.
    6. David Harvey & Paul Newbold, 2000. "Tests for multiple forecast encompassing," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 471-482.
    7. Kajal Lahiri & Huaming Peng & Yongchen Zhao, 2013. "Testing the Value of Probability Forecasts for Calibrated Combining," Discussion Papers 13-02, University at Albany, SUNY, Department of Economics.
    8. Lucian Liviu ALBU & Carlos MatéJIMÉNEZ & Mihaela SIMIONESCU, 2015. "The Assessment of Some Macroeconomic Forecasts for Spain using Aggregated Accuracy Indicators," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 30-47, June.
    9. Utpal Bhattacharya & Benjamin Loos & Steffen Meyer & Andreas Hackethal, 2017. "Abusing ETFs," Review of Finance, European Finance Association, vol. 21(3), pages 1217-1250.
    10. Christian Pierdzioch, 2012. "Macroeconomic Factors and the German Real Estate Market: A Stock-Market-Based Forecasting Experiment," Review of Economics & Finance, Better Advances Press, Canada, vol. 2, pages 87-96, May.
    11. Kladívko, Kamil & Österholm, Pär, 2021. "Do market participants’ forecasts of financial variables outperform the random-walk benchmark?," Finance Research Letters, Elsevier, vol. 40(C).
    12. Swanson, N.R. & White, H., 1995. "A Models Selection Approach to Real-Time Macroeconomic Forecasting Using Linear Models and Artificial Neural Networks," Papers 04-95-12, Pennsylvania State - Department of Economics.
    13. Sentana, Juan, 2022. "Tests for independence between categorical variables," Economics Letters, Elsevier, vol. 220(C).
    14. Jia, Jian & Kang, Sang Baum, 2022. "Do the basis and other predictors of futures return also predict spot return with the same signs and magnitudes? Evidence from the LME," Journal of Commodity Markets, Elsevier, vol. 25(C).
    15. Bakshi, Gurdip & Panayotov, George, 2013. "Predictability of currency carry trades and asset pricing implications," Journal of Financial Economics, Elsevier, vol. 110(1), pages 139-163.
    16. Jordi Pons, 2001. "The rationality of price forecasts: a directional analysis," Applied Financial Economics, Taylor & Francis Journals, vol. 11(3), pages 287-290.
    17. McCracken,M.W. & West,K.D., 2001. "Inference about predictive ability," Working papers 14, Wisconsin Madison - Social Systems.
    18. Serafeim Tsoukas & Marina-Eliza Spaliara, 2014. "Market Implied Ratings and Financing Constraints: Evidence from US Firms," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 41(1-2), pages 242-269, January.
    19. Michael P. Clements & Philip Hans Franses & Norman R. Swanson, 2003. "Forecasting economic and financial time-series with non-linear models," Departmental Working Papers 200309, Rutgers University, Department of Economics.
    20. Mizen, Paul & Tsoukas, Serafeim, 2012. "Forecasting US bond default ratings allowing for previous and initial state dependence in an ordered probit model," International Journal of Forecasting, Elsevier, vol. 28(1), pages 273-287.
    21. Anatolyev, Stanislav & Kosenok, Grigory, 2009. "Tests in contingency tables as regression tests," Economics Letters, Elsevier, vol. 105(2), pages 189-192, November.
    22. Coe, P.J. & Pesaran, M.H. & Vahey, S.P., 2003. "Scope for Cost Minimization in Public Debt Management: the Case of the UK," Cambridge Working Papers in Economics 0338, Faculty of Economics, University of Cambridge.
    23. Sanders, Dwight R. & Manfredo, Mark R. & Boris, Keith, 2008. "Accuracy and efficiency in the U.S. Department of Energy's short-term supply forecasts," Energy Economics, Elsevier, vol. 30(3), pages 1192-1207, May.
    24. Kozhan, Roman & Salmon, Mark, 2009. "Uncertainty aversion in a heterogeneous agent model of foreign exchange rate formation," Journal of Economic Dynamics and Control, Elsevier, vol. 33(5), pages 1106-1122, May.
    25. Vigne, Samuel A. & Lucey, Brian M. & O’Connor, Fergal A. & Yarovaya, Larisa, 2017. "The financial economics of white precious metals — A survey," International Review of Financial Analysis, Elsevier, vol. 52(C), pages 292-308.
    26. Swanson, Norman R. & White, Halbert, 1997. "Forecasting economic time series using flexible versus fixed specification and linear versus nonlinear econometric models," International Journal of Forecasting, Elsevier, vol. 13(4), pages 439-461, December.
    27. Bartolucci F. & Forcina A. & Dardanoni V., 2001. "Positive Quadrant Dependence and Marginal Modeling in Two-Way Tables With Ordered Margins," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1497-1505, December.
    28. Kajal Lahiri, Wenxiong Yao, and Peg Young, 2003. "Cycles in the Transportation Sector and the Aggregate Economy," Discussion Papers 03-14, University at Albany, SUNY, Department of Economics.
    29. Sermpinis, Georgios & Tsoukas, Serafeim & Zhang, Ping, 2018. "Modelling market implied ratings using LASSO variable selection techniques," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 19-35.
    30. Mihaela Simionescu, 2014. "Directional accuracy for inflation and unemployment rate predictions in Romania," International Journal of Business and Economic Sciences Applied Research (IJBESAR), Democritus University of Thrace (DUTH), Kavala Campus, Greece, vol. 7(2), pages 129-138, September.
    31. Choi, Woon Gyu, 1999. "Estimating the Discount Rate Policy Reaction Function of the Monetary Authority," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(4), pages 379-401, July-Aug..
    32. Arshad, Shaista & Rizvi, Syed Aun R. & Ghani, Gairuzazmi Mat & Duasa, Jarita, 2016. "Investigating stock market efficiency: A look at OIC member countries," Research in International Business and Finance, Elsevier, vol. 36(C), pages 402-413.
    33. Wu, Yih-Jiuan, 1998. "Exchange rate forecasting: an application of radial basis function neural networks," ISU General Staff Papers 1998010108000013540, Iowa State University, Department of Economics.
    34. Anusha, "undated". "Evaluating reliability of some symmetric and asymmetric univariate filters," Indira Gandhi Institute of Development Research, Mumbai Working Papers 2015-030, Indira Gandhi Institute of Development Research, Mumbai, India.
    35. Dahl, Christian M. & Hylleberg, Svend, 2004. "Flexible regression models and relative forecast performance," International Journal of Forecasting, Elsevier, vol. 20(2), pages 201-217.
    36. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    37. Sanders, Dwight R. & Manfredo, Mark R., 2003. "USDA Livestock Price Forecasts: A Comprehensive Evaluation," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 28(2), pages 1-19, August.

  55. Pesaran, M.H. & Timmermann, A., 1992. "Forecasting Stock Returns," Cambridge Working Papers in Economics 9216, Faculty of Economics, University of Cambridge.

    Cited by:

    1. Carl Chiarella & Xue-Zhong He & Cars Hommes, 2004. "A Dynamic Analysis of Moving Average Rules," Research Paper Series 133, Quantitative Finance Research Centre, University of Technology, Sydney.
    2. Granger, C.W.J. & Pesaran, M. H., 1999. "Economic and Statistical Measures of Forecast Accuracy," Cambridge Working Papers in Economics 9910, Faculty of Economics, University of Cambridge.
    3. M. Hashem Pesaran & Simon M. Potter, 1993. "Equilibrium Asset Pricing Models and Predictability of Excess Returns," UCLA Economics Working Papers 694, UCLA Department of Economics.
    4. Stephen E. Satchell & Shaun A. Bond, 2004. "Asymmetry, Loss Aversion and Forecasting," Econometric Society 2004 Australasian Meetings 160, Econometric Society.

  56. Pesaran, M.H. & Timmermann, A., 1990. "A Simple, Non-Parametric Test Of Predictive Performance," Cambridge Working Papers in Economics 9021, Faculty of Economics, University of Cambridge.

    Cited by:

    1. Driffill, John & Sola, Martin & Kenc, Turalay & Spagnolo, Fabio, 2004. "On Model Selection and Markov Switching: A Empirical Examination of Term Structure Models with Regime Shifts," CEPR Discussion Papers 4165, C.E.P.R. Discussion Papers.
    2. M. Hashem Pesaran, 2000. "The Cost Efficiency of UK Debt Management: A Recursive Modelling Approach," CESifo Working Paper Series 346, CESifo.
    3. João Valle e Azevedo & Ana Pereira, 2008. "Approximating and Forecasting Macroeconomic Signals in Real-Time," Working Papers w200819, Banco de Portugal, Economics and Research Department.
    4. Lo Cascio, Iolanda, 2021. "A wavelet analysis of the ripple effect in UK regional housing markets," International Review of Economics & Finance, Elsevier, vol. 76(C), pages 1093-1105.
    5. Tsuchiya, Yoichi, 2013. "Do corporate executives have accurate predictions for the economy? A directional analysis," Economic Modelling, Elsevier, vol. 30(C), pages 167-174.
    6. Constantin Bürgi & Mengdi Song, 2024. "Do Professional Forecasters Follow Uncovered Interest Rate Parity?," CESifo Working Paper Series 11338, CESifo.
    7. Boriss Siliverstovs, 2012. "Are GDP Revisions Predictable? Evidence for Switzerland," EcoMod2012 4219, EcoMod.
    8. Leal, Teresa & Pérez, Javier J. & Tujula, Mika & Vidal, Jean-Pierre, 2007. "Fiscal forecasting: lessons from the literature and challenges," Working Paper Series 843, European Central Bank.
    9. Kilian, Lutz & Alquist, Ron, 2007. "What Do We Learn from the Price of Crude Oil Futures?," CEPR Discussion Papers 6548, C.E.P.R. Discussion Papers.
    10. Guo, Honggang & Wang, Jianzhou & Li, Zhiwu & Lu, Haiyan & Zhang, Linyue, 2022. "A non-ferrous metal price ensemble prediction system based on innovative combined kernel extreme learning machine and chaos theory," Resources Policy, Elsevier, vol. 79(C).
    11. Degiannakis, Stavros & Filis, George & Klein, Tony & Walther, Thomas, 2019. "Forecasting Realized Volatility of Agricultural Commodities," MPRA Paper 96267, University Library of Munich, Germany.
    12. Lei, Hao & Zhu, Yu & Tan, Jinlong & Zhang, Xiaofeng, 2024. "Blending financial innovation with natural resource utilization: Pathways to green economic expansion," Resources Policy, Elsevier, vol. 89(C).
    13. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2019. "How is Machine Learning Useful for Macroeconomic Forecasting?," CIRANO Working Papers 2019s-22, CIRANO.
    14. Dai, Zhifeng & Kang, Jie & Hu, Yangli, 2021. "Efficient predictability of oil price: The role of number of IPOs and U.S. dollar index," Resources Policy, Elsevier, vol. 74(C).
    15. Marcos Álvarez-Díaz & Alberto Álvarez, 2002. "Predicción No-Lineal De Tipos De Cambio: Algoritmos Genéticos, Redes Neuronales Y Fusión De Datos," Working Papers 0205, Universidade de Vigo, Departamento de Economía Aplicada.
    16. Rossi, Barbara, 2013. "Exchange Rate Predictability," CEPR Discussion Papers 9575, C.E.P.R. Discussion Papers.
    17. Marie Bessec, 2013. "Short‐Term Forecasts of French GDP: A Dynamic Factor Model with Targeted Predictors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(6), pages 500-511, September.
    18. Odile Chagny & Matthieu Lemoine, 2004. "An estimation of the Euro Area potential output with a semi-structural multivariate Hodrick-Prescott filter," SciencePo Working papers Main hal-00972840, HAL.
    19. Onorante, Luca & Pedregal, Diego J. & Pérez, Javier J. & Signorini, Sara, 2010. "The usefulness of infra-annual government cash budgetary data for fiscal forecasting in the euro area," Journal of Policy Modeling, Elsevier, vol. 32(1), pages 98-119, January.
    20. Kelly Burns, 2016. "A Reconsideration of the Meese-Rogoff Puzzle: An Alternative Approach to Model Estimation and Forecast Evaluation," Multinational Finance Journal, Multinational Finance Journal, vol. 20(1), pages 41-83, March.
    21. Gradojevic, Nikola, 2007. "Non-linear, hybrid exchange rate modeling and trading profitability in the foreign exchange market," Journal of Economic Dynamics and Control, Elsevier, vol. 31(2), pages 557-574, February.
    22. Silvio John, Camilleri & Nicolanne, Scicluna & Ye, Bai, 2019. "Do Stock Markets Lead or Lag Macroeconomic Variables? Evidence from Select European Countries," MPRA Paper 95299, University Library of Munich, Germany.
    23. Pesaran, M. Hashem & Timmermann, Allan, 2002. "Market timing and return prediction under model instability," Journal of Empirical Finance, Elsevier, vol. 9(5), pages 495-510, December.
    24. Chao Liang & Yin Liao & Feng Ma & Bo Zhu, 2022. "United States Oil Fund volatility prediction: the roles of leverage effect and jumps," Empirical Economics, Springer, vol. 62(5), pages 2239-2262, May.
    25. Jayawardena, Nirodha I. & Todorova, Neda & Li, Bin & Su, Jen-Je, 2020. "Volatility forecasting using related markets’ information for the Tokyo stock exchange," Economic Modelling, Elsevier, vol. 90(C), pages 143-158.
    26. Don Bredin & Stuart Hyde, 2008. "Regime Change and the Role of International Markets on the Stock Returns of Small Open Economies," European Financial Management, European Financial Management Association, vol. 14(2), pages 315-346, March.
    27. Schrimpf, Andreas, 2008. "International Stock Return Predictability Under Model Uncertainty," ZEW Discussion Papers 08-048, ZEW - Leibniz Centre for European Economic Research.
    28. Breen, John David & Hu, Liang, 2021. "The predictive content of oil price and volatility: New evidence on exchange rate forecasting," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 75(C).
    29. Tezel, Ahmet & McManus, Ginette, 2001. "Evaluating a stock market timing strategy: the case of RTE Asset Management," Financial Services Review, Elsevier, vol. 10(1-4), pages 173-186.
    30. Stelios D. Bekiros, 2013. "Irrational fads, short‐term memory emulation, and asset predictability," Review of Financial Economics, John Wiley & Sons, vol. 22(4), pages 213-219, November.
    31. Maximo Camacho & Marcos Dal Bianco & Gabriel Perez Quiros, 2012. "Short-run forecasting of the euro-dollar exchange rate with economic fundamentals," Working Papers 1201, BBVA Bank, Economic Research Department.
    32. He, Kaijian & Yu, Lean & Lai, Kin Keung, 2012. "Crude oil price analysis and forecasting using wavelet decomposed ensemble model," Energy, Elsevier, vol. 46(1), pages 564-574.
    33. Parisi, Antonino & Parisi, Franco & Díaz, David, 2008. "Forecasting gold price changes: Rolling and recursive neural network models," Journal of Multinational Financial Management, Elsevier, vol. 18(5), pages 477-487, December.
    34. Guo, Lili & Huang, Xinya & Li, Yanjiao & Li, Houjian, 2023. "Forecasting crude oil futures price using machine learning methods: Evidence from China," Energy Economics, Elsevier, vol. 127(PA).
    35. Edda Claus, 2011. "Seven Leading Indexes of New Zealand Employment," The Economic Record, The Economic Society of Australia, vol. 87(276), pages 76-89, March.
    36. Don Harding & Adrian Pagan, 2004. "Synchronization of cycles," CAMA Working Papers 2004-03, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    37. Fernando Fernández-Rodríguez & Christian González-Martel* & Simón Sosvilla-Rivero, "undated". "On the profitability of technical trading rules based on arifitial neural networks : evidence from the Madrid stock market," Working Papers 99-07, FEDEA.
    38. Carlos Alves & Victor Mendes, 2007. "Are mutual fund investors in jail?," Applied Financial Economics, Taylor & Francis Journals, vol. 17(16), pages 1301-1312.
    39. Dunis, Christian & Kellard, Neil M. & Snaith, Stuart, 2013. "Forecasting EUR–USD implied volatility: The case of intraday data," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 4943-4957.
    40. Thitithep Sitthiyot & Kanyarat Holasut, 2024. "A simple method for joint evaluation of skill in directional forecasts of multiple variables," Papers 2402.01142, arXiv.org.
    41. Xiafei Li & Dongxin Li & Xuhui Zhang & Guiwu Wei & Lan Bai & Yu Wei, 2021. "Forecasting regular and extreme gold price volatility: The roles of asymmetry, extreme event, and jump," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1501-1523, December.
    42. Francis X. Diebold & Jose A. Lopez, 1996. "Forecast Evaluation and Combination," NBER Technical Working Papers 0192, National Bureau of Economic Research, Inc.
    43. Dorfmann, Jeffrey & Karali, Berna, 2015. "A Nonparametric Search for Information Effects from USDA Reports," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 40(1), pages 1-20.
    44. Qadan, Mahmoud & Aharon, David Y., 2019. "Can investor sentiment predict the size premium?," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 10-26.
    45. Groenewold, Nicolaas & Kan Tang, Sam Hak & Wu, Yanrui, 2008. "The profitability of regression-based trading rules for the Shanghai stock market," International Review of Financial Analysis, Elsevier, vol. 17(2), pages 411-430.
    46. PREMINGER, Arie & FRANCK, Raphael, 2007. "Forecasting exchange rates: a robust regression approach," LIDAM Reprints CORE 1917, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    47. Tsuchiya, Yoichi, 2013. "Are government and IMF forecasts useful? An application of a new market-timing test," Economics Letters, Elsevier, vol. 118(1), pages 118-120.
    48. Hassanniakalager, Arman & Sermpinis, Georgios & Stasinakis, Charalampos & Verousis, Thanos, 2020. "A conditional fuzzy inference approach in forecasting," European Journal of Operational Research, Elsevier, vol. 283(1), pages 196-216.
    49. Bahaji, Hamza & Aberkane, Salah, 2016. "How rational could VIX investing be?," Economic Modelling, Elsevier, vol. 58(C), pages 556-568.
    50. Sarno, Lucio & Schneider, Paul & Wagner, Christian, 2012. "Properties of foreign exchange risk premiums," Journal of Financial Economics, Elsevier, vol. 105(2), pages 279-310.
    51. Hanan Naser, 2015. "Estimating and forecasting Bahrain quarterly GDP growth using simple regression and factor-based methods," Empirical Economics, Springer, vol. 49(2), pages 449-479, September.
    52. Lu, Xinjie & Ma, Feng & Wang, Tianyang & Wen, Fenghua, 2023. "International stock market volatility: A data-rich environment based on oil shocks," Journal of Economic Behavior & Organization, Elsevier, vol. 214(C), pages 184-215.
    53. Nuno Silva, 2015. "Time-Varying Stock Return Predictability: The Eurozone Case," Notas Económicas, Faculty of Economics, University of Coimbra, issue 41, pages 28-38, June.
    54. Jaehun Chung & Yongmiao Hong, 2007. "Model-free evaluation of directional predictability in foreign exchange markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(5), pages 855-889.
    55. Michael Funke & Julius Loermann & Richhild Moessner, 2017. "The discontinuation of the EUR/CHF minimum exchange rate in January 2015: was it expected?," BIS Working Papers 652, Bank for International Settlements.
    56. Michał Rubaszek, 2019. "Forecasting crude oil prices with DSGE models," GRU Working Paper Series GRU_2019_024, City University of Hong Kong, Department of Economics and Finance, Global Research Unit.
    57. Pesaran, M. Hashem & Timmermann, Allan, 2004. "How costly is it to ignore breaks when forecasting the direction of a time series?," International Journal of Forecasting, Elsevier, vol. 20(3), pages 411-425.
    58. Kosei Fukuda, 2009. "Forecasting growth cycle turning points using US and Japanese professional forecasters," Empirical Economics, Springer, vol. 36(2), pages 243-267, May.
    59. Christopher Krauss & Xuan Anh Do & Nicolas Huck, 2017. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," Post-Print hal-01515120, HAL.
    60. Michał Dominik Stasiak & Żaneta Staszak, 2024. "Modelling and Forecasting Crude Oil Prices Using Trend Analysis in a Binary-Temporal Representation," Energies, MDPI, vol. 17(14), pages 1-13, July.
    61. Baris Soybilgen & Ege Yazgan, 2017. "An evaluation of inflation expectations in Turkey," Central Bank Review, Research and Monetary Policy Department, Central Bank of the Republic of Turkey, vol. 17(1), pages 1-31–38.
    62. Marco Tronzano, 2020. "Safe-Haven Assets, Financial Crises, and Macroeconomic Variables: Evidence from the Last Two Decades (2000–2018)," JRFM, MDPI, vol. 13(3), pages 1-21, February.
    63. Dendramis, Yiannis & Kapetanios, George & Tzavalis, Elias, 2014. "Level shifts in stock returns driven by large shocks," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 41-51.
    64. Feng, Lingbing & Qi, Jiajun & Lucey, Brian, 2024. "Enhancing cryptocurrency market volatility forecasting with daily dynamic tuning strategy," International Review of Financial Analysis, Elsevier, vol. 94(C).
    65. Meade, Nigel, 2002. "A comparison of the accuracy of short term foreign exchange forecasting methods," International Journal of Forecasting, Elsevier, vol. 18(1), pages 67-83.
    66. Adam G. Walke & Thomas M. Fullerton Jr., 2019. "Metropolitan Hotel Sector Forecast Accuracy in El Paso," Atlantic Economic Journal, Springer;International Atlantic Economic Society, vol. 47(2), pages 179-191, June.
    67. Pierdzioch, Christian & Risse, Marian & Rohloff, Sebastian, 2014. "The international business cycle and gold-price fluctuations," The Quarterly Review of Economics and Finance, Elsevier, vol. 54(2), pages 292-305.
    68. Joseph Agyapong, 2021. "Application of Taylor Rule Fundamentals in Forecasting Exchange Rates," Economies, MDPI, vol. 9(2), pages 1-27, June.
    69. Marcos Alvarez Díaz & Lucy Amigo Dobano & Francisco Rodríguez de Prado, "undated". "Taxing on Housing: A Welfare Evaluation of the Spanish Personal Income Tax," Studies on the Spanish Economy 142, FEDEA.
    70. Ippei Fujiwara & Maiko Koga, 2002. "A Statistical Forecasting Method for Inflation Forecasting," Bank of Japan Working Paper Series Research and Statistics D, Bank of Japan.
    71. Dahmene, Meriam & Boughrara, Adel & Slim, Skander, 2021. "Nonlinearity in stock returns: Do risk aversion, investor sentiment and, monetary policy shocks matter?," International Review of Economics & Finance, Elsevier, vol. 71(C), pages 676-699.
    72. Peter F. Christoffersen & Francis X. Diebold, 2006. "Financial Asset Returns, Direction-of-Change Forecasting, and Volatility Dynamics," Management Science, INFORMS, vol. 52(8), pages 1273-1287, August.
    73. Artur Tarassow, 2017. "Forecasting growth of U.S. aggregate and household-sector M2 after 2000 using economic uncertainty measures," Macroeconomics and Finance Series 201702, University of Hamburg, Department of Socioeconomics.
    74. Li, Zhao-Chen & Xie, Chi & Wang, Gang-Jin & Zhu, You & Zeng, Zhi-Jian & Gong, Jue, 2024. "Forecasting global stock market volatilities: A shrinkage heterogeneous autoregressive (HAR) model with a large cross-market predictor set," International Review of Economics & Finance, Elsevier, vol. 93(PB), pages 673-711.
    75. Nyberg, Henri & Pönkä, Harri, 2016. "International sign predictability of stock returns: The role of the United States," Economic Modelling, Elsevier, vol. 58(C), pages 323-338.
    76. Amin Aminimehr & Ali Raoofi & Akbar Aminimehr & Amirhossein Aminimehr, 2022. "A Comprehensive Study of Market Prediction from Efficient Market Hypothesis up to Late Intelligent Market Prediction Approaches," Computational Economics, Springer;Society for Computational Economics, vol. 60(2), pages 781-815, August.
    77. Pönkä, Harri, 2014. "Predicting the direction of US stock markets using industry returns," MPRA Paper 62942, University Library of Munich, Germany.
    78. Francisco J. Eransus & Alfonso Novales Cinca, 2011. "A statistical test for forecast evaluation under a discrete loss function," Documentos de Trabajo del ICAE 2011-07, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    79. Krkoska, Libor & Teksoz, Utku, 2009. "How reliable are forecasts of GDP growth and inflation for countries with limited coverage?," Economic Systems, Elsevier, vol. 33(4), pages 376-388, December.
    80. Massacci, D., 2007. "Identification and Estimation in an Incoherent Model of Contagion," Cambridge Working Papers in Economics 0744, Faculty of Economics, University of Cambridge.
    81. Sermpinis, Georgios & Stasinakis, Charalampos & Hassanniakalager, Arman, 2017. "Reverse adaptive krill herd locally weighted support vector regression for forecasting and trading exchange traded funds," European Journal of Operational Research, Elsevier, vol. 263(2), pages 540-558.
    82. Michele Ca' Zorzi & Jakub Muck & Michal Rubaszek, 2015. "Real exchange rate forecasting and ppp: this time the random walk loses," Globalization Institute Working Papers 229, Federal Reserve Bank of Dallas.
    83. IIZUKA Nobuo, 2013. "Predicting Business Cycle Phases by Professional Forecasters- Are They Useful ?," ESRI Discussion paper series 305, Economic and Social Research Institute (ESRI).
    84. Yang Zhao & Charalampos Stasinakis & Georgios Sermpinis & Filipa Da Silva Fernandes, 2019. "Revisiting Fama–French factors' predictability with Bayesian modelling and copula‐based portfolio optimization," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 24(4), pages 1443-1463, October.
    85. Lee, Kevin & Shields, Kalvinder K., 2011. "Decision-making in hard times: What is a recession, why do we care and how do we know when we are in one?," The North American Journal of Economics and Finance, Elsevier, vol. 22(1), pages 43-60, January.
    86. Kajal Lahiri & Huaming Peng & Yongchen Zhao, 2013. "Testing the Value of Probability Forecasts for Calibrated Combining," Discussion Papers 13-02, University at Albany, SUNY, Department of Economics.
    87. Qi, Min & Wu, Yangru, 2003. "Nonlinear prediction of exchange rates with monetary fundamentals," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 623-640, December.
    88. Don Harding & Adrian Pagan, 2006. "The Econometric Analysis of Constructed Binary Time Series," Department of Economics - Working Papers Series 963, The University of Melbourne.
    89. Cameron Fen & Samir Undavia, 2022. "Improving Macroeconomic Model Validity and Forecasting Performance with Pooled Country Data using Structural, Reduced Form, and Neural Network Model," Papers 2203.06540, arXiv.org.
    90. Ferrara, Laurent & Marcellino, Massimiliano & Mogliani, Matteo, 2015. "Macroeconomic forecasting during the Great Recession: The return of non-linearity?," International Journal of Forecasting, Elsevier, vol. 31(3), pages 664-679.
    91. Nyberg, Henri, 2011. "Forecasting the direction of the US stock market with dynamic binary probit models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 561-578.
    92. Aslanidis, Nektarios & Cipollini, Andrea, 2010. "Leading indicator properties of US high-yield credit spreads," Journal of Macroeconomics, Elsevier, vol. 32(1), pages 145-156, March.
    93. Li, Zhao-Chen & Xie, Chi & Zeng, Zhi-Jian & Wang, Gang-Jin & Zhang, Ting, 2023. "Forecasting global stock market volatilities in an uncertain world," International Review of Financial Analysis, Elsevier, vol. 85(C).
    94. John D. Burger & Francis E. Warnock & Veronica Cacdac Warnock, 2018. "Benchmarking Portfolio Flows," NBER Working Papers 24761, National Bureau of Economic Research, Inc.
    95. Camba-Méndez, Gonzalo & Rodriguez-Palenzuela, Diego, 2001. "Assessment criteria for output gap estimates," Working Paper Series 54, European Central Bank.
    96. Ca' Zorzi, Michele & Rubaszek, Michał & Muck, Jakub, 2013. "Real exchange rate forecasting: a calibrated half-life PPP model can beat the random walk," Working Paper Series 1576, European Central Bank.
    97. Fu, Sibao & Li, Yongwu & Sun, Shaolong & Li, Hongtao, 2019. "Evolutionary support vector machine for RMB exchange rate forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 692-704.
    98. G. Boero & E. Marrocu, 2000. "La performance di modelli non lineari per i tassi di cambio: un'applicazione con dati a diversa frequenza," Working Paper CRENoS 200014, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    99. Lahiri, Kajal & Wang, J. George, 2013. "Evaluating probability forecasts for GDP declines using alternative methodologies," International Journal of Forecasting, Elsevier, vol. 29(1), pages 175-190.
    100. M. Mogliani & T. Ferrière, 2016. "Rationality of announcements, business cycle asymmetry, and predictability of revisions. The case of French GDP," Working papers 600, Banque de France.
    101. Francisco Ledesma-Rodriguez & Manuel Navarro-Ibanez & Jorge Perez-Rodriguez & Simon Sosvilla-Rivero, 2011. "Implicit bands in the yen/dollar exchange rate," Applied Economics, Taylor & Francis Journals, vol. 43(10), pages 1241-1255.
    102. David Gray, 2018. "An application of two non-parametric techniques to the prices of British dwellings: An examination of cyclicality," Urban Studies, Urban Studies Journal Limited, vol. 55(10), pages 2286-2299, August.
    103. Christian Pierdzioch, 2012. "Macroeconomic Factors and the German Real Estate Market: A Stock-Market-Based Forecasting Experiment," Review of Economics & Finance, Better Advances Press, Canada, vol. 2, pages 87-96, May.
    104. Bangzhu Zhu & Shunxin Ye & Ping Wang & Julien Chevallier & Yi‐Ming Wei, 2022. "Forecasting carbon price using a multi‐objective least squares support vector machine with mixture kernels," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 100-117, January.
    105. Baltas, Nick & Karyampas, Dimitrios, 2018. "Forecasting the equity risk premium: The importance of regime-dependent evaluation," Journal of Financial Markets, Elsevier, vol. 38(C), pages 83-102.
    106. Guo, Jingjun & Kang, Weiyi & Wang, Yubing, 2024. "Multi-perspective option price forecasting combining parametric and non-parametric pricing models with a new dynamic ensemble framework," Technological Forecasting and Social Change, Elsevier, vol. 204(C).
    107. He, Kaijian & Xu, Yang & Zou, Yingchao & Tang, Ling, 2015. "Electricity price forecasts using a Curvelet denoising based approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 425(C), pages 1-9.
    108. Garratt, Anthony & Koop, Gary & Mise, Emi & Vahey, Shaun P., 2009. "Real-Time Prediction With U.K. Monetary Aggregates in the Presence of Model Uncertainty," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 480-491.
    109. McAdam, Peter & McNelis, Paul, 2005. "Forecasting inflation with thick models and neural networks," Economic Modelling, Elsevier, vol. 22(5), pages 848-867, September.
    110. Cem Cakmakli & Dick van Dijk, 2010. "Getting the Most out of Macroeconomic Information for Predicting Stock Returns and Volatility," Tinbergen Institute Discussion Papers 10-115/4, Tinbergen Institute.
    111. Oscar Bajo-Rubio & Simón Sosvilla-Rivero & Fernando Fernández-Rodríguez, "undated". "Non-Linear Forecasting Methods: Some Applications to the Analysis of Financial Series," Working Papers 2002-01, FEDEA.
    112. Zhang, Yaojie & Ma, Feng & Shi, Benshan & Huang, Dengshi, 2018. "Forecasting the prices of crude oil: An iterated combination approach," Energy Economics, Elsevier, vol. 70(C), pages 472-483.
    113. Zhu, Bangzhu & Ye, Shunxin & Wang, Ping & He, Kaijian & Zhang, Tao & Wei, Yi-Ming, 2018. "A novel multiscale nonlinear ensemble leaning paradigm for carbon price forecasting," Energy Economics, Elsevier, vol. 70(C), pages 143-157.
    114. Kizilaslan, Recep & Freund, Steven & Iseri, Ali, 2016. "A data analytic approach to forecasting daily stock returns in an emerging marketAuthor-Name: Oztekin, Asil," European Journal of Operational Research, Elsevier, vol. 253(3), pages 697-710.
    115. Young Bin Ahn & Yoichi Tsuchiya, 2016. "Directional analysis of consumers’ forecasts of inflation in a small open economy: evidence from South Korea," Applied Economics, Taylor & Francis Journals, vol. 48(10), pages 854-864, February.
    116. Mishra, Vinod & Smyth, Russell, 2016. "Are natural gas spot and futures prices predictable?," Economic Modelling, Elsevier, vol. 54(C), pages 178-186.
    117. Marzo, Massimiliano & Zagaglia, Paolo, 2007. "Volatility forecasting for crude oil futures," Research Papers in Economics 2007:9, Stockholm University, Department of Economics.
    118. Firat Melih Yilmaz & Engin Yildiztepe, 2024. "Statistical Evaluation of Deep Learning Models for Stock Return Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 63(1), pages 221-244, January.
    119. Stekler, H. O. & Petrei, G., 2003. "Diagnostics for evaluating the value and rationality of economic forecasts," International Journal of Forecasting, Elsevier, vol. 19(4), pages 735-742.
    120. Fernando N. de Oliveira, 2015. "Financial and Real Sector Leading Indicators of Recessions in Brazil using Probabilistic Models," Working Papers Series 402, Central Bank of Brazil, Research Department.
    121. Guidolin, Massimo & Hyde, Stuart & McMillan, David & Ono, Sadayuki, 2009. "Non-linear predictability in stock and bond returns: When and where is it exploitable?," International Journal of Forecasting, Elsevier, vol. 25(2), pages 373-399.
    122. Clements, Michael P & Smith, Jeremy, 1996. "A Monte Carlo Study of the Forecasting Performance of Empirical Setar Models," The Warwick Economics Research Paper Series (TWERPS) 464, University of Warwick, Department of Economics.
    123. Massimo Guidolin & Stuart Hyde & David McMillan & Sadayuki Ono, 2010. "Does the macroeconomy predict U.K. asset returns in a nonlinear fashion? comprehensive out-of-sample evidence," Working Papers 2010-039, Federal Reserve Bank of St. Louis.
    124. David G. McMillan, 2017. "Stock return predictability: the role of inflation and threshold dynamics," International Review of Applied Economics, Taylor & Francis Journals, vol. 31(3), pages 357-375, May.
    125. Pan, Zhiyuan & Liu, Li, 2018. "Forecasting stock return volatility: A comparison between the roles of short-term and long-term leverage effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 168-180.
    126. Yaojie Zhang & Yudong Wang & Feng Ma, 2021. "Forecasting US stock market volatility: How to use international volatility information," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 733-768, August.
    127. Ana María Abarca G. & Felipe Alarcón G. & Pablo Pincheira B. & Jorge Selaive C., 2007. "Nominal Exchange Rate in Chile: Predictions based on technical analysis," Journal Economía Chilena (The Chilean Economy), Central Bank of Chile, vol. 10(2), pages 57-80, August.
    128. Agnieszka P. Markiewicz & Ralph C. Verhoeks & Willem F. C. Verschoor & Remco C. J. Zwinkels, 2023. "Inattentive Search for Currency Fundamentals," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 71(4), pages 907-952, December.
    129. Laurence Fung & Ip-wing Yu, 2008. "Predicting Stock Market Returns by Combining Forecasts," Working Papers 0801, Hong Kong Monetary Authority.
    130. Steve Cook & Duncan Watson, 2016. "A new perspective on the ripple effect in the UK housing market: Comovement, cyclical subsamples and alternative indices," Urban Studies, Urban Studies Journal Limited, vol. 53(14), pages 3048-3062, November.
    131. Kladívko, Kamil & Österholm, Pär, 2021. "Do market participants’ forecasts of financial variables outperform the random-walk benchmark?," Finance Research Letters, Elsevier, vol. 40(C).
    132. Michael P. Clements & Ana Beatriz Galvão, 2009. "Forecasting US output growth using leading indicators: an appraisal using MIDAS models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(7), pages 1187-1206, November.
    133. Giacomo di Tollo & Joseph Andria & Gianni Filograsso, 2023. "The Predictive Power of Social Media Sentiment: Evidence from Cryptocurrencies and Stock Markets Using NLP and Stochastic ANNs," Mathematics, MDPI, vol. 11(16), pages 1-18, August.
    134. Stanislav Anatolyev, 2006. "Testing for predictability (in Russian)," Quantile, Quantile, issue 1, pages 39-42, September.
    135. Anthony Garratt & Gary Koop & Shaun P. Vahey, 2008. "Forecasting Substantial Data Revisions in the Presence of Model Uncertainty," Economic Journal, Royal Economic Society, vol. 118(530), pages 1128-1144, July.
    136. Michael ARTIS & Ana Beatriz C. GALVÃO & Massimiliano MARCELLINO, 2003. "The transmission mechanism in a changing world," Economics Working Papers ECO2003/18, European University Institute.
    137. Erick Lahura & Marco Vega, 2011. "Evaluation of Wavelet-based Core Inflation Measures: Evidence from Peru," Documentos de Trabajo / Working Papers 2011-320, Departamento de Economía - Pontificia Universidad Católica del Perú.
    138. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, January.
    139. Carlos F. Alves & Victor Mendes, 2006. "Mutual fund flows’ performance reaction: does convexity apply to small markets?," FEP Working Papers 204, Universidade do Porto, Faculdade de Economia do Porto.
    140. Chang, Lei & Baloch, Zulfiqar Ali & Saydaliev, Hayot Berk & Hyder, Mansoor & Dilanchiev, Azer, 2022. "Testing oil price volatility during Covid-19: Global economic impact," Resources Policy, Elsevier, vol. 78(C).
    141. Chris Doucouliagos, 2005. "Price exhaustion and number preference: time and price confluence in Australian stock prices," The European Journal of Finance, Taylor & Francis Journals, vol. 11(3), pages 207-221.
    142. Marco Tedeschi, 2023. "Idiosyncratic and systematic spillovers through the renewable energy financial systems," Working Papers 483, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    143. Tsuchiya, Yoichi, 2016. "Directional analysis of fiscal sustainability: Revisiting Domar's debt sustainability condition," International Review of Economics & Finance, Elsevier, vol. 41(C), pages 189-201.
    144. Cooray, Arusha & Wickremasinghe, Guneratne, 2005. "The Efficiency of Emerging Stock Markets: Empirical Evidence from the South Asian Region," MPRA Paper 23626, University Library of Munich, Germany.
    145. Zhang, Li & Liang, Chao & Huynh, Luu Duc Toan & Wang, Lu & Damette, Olivier, 2024. "Measuring the impact of climate risk on renewable energy stock volatility: A case study of G20 economies," Journal of Economic Behavior & Organization, Elsevier, vol. 223(C), pages 168-184.
    146. Ca' Zorzi, Michele & Kolasa, Marcin & Rubaszek, Michał, 2016. "Exchange rate forecasting with DSGE models," Working Paper Series 1905, European Central Bank.
    147. Marco Aiolfi & Carlo Ambrogio Favero, "undated". "Model Uncertainty, Thick Modelling and the predictability of Stock Returns," Working Papers 221, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    148. Ana-Maria Fuertes & Elena Kalotychou, 2004. "Forecasting sovereign default using panel models: A comparative analysis," Computing in Economics and Finance 2004 228, Society for Computational Economics.
    149. Artur Tarassow & Sven Schreiber, 2018. "FEP - the forecast evaluation package for gretl," IMK Working Paper 190-2018, IMK at the Hans Boeckler Foundation, Macroeconomic Policy Institute.
    150. Tara Sinclair & H. O. Stekler & L. Kitzinger, 2010. "Directional forecasts of GDP and inflation: a joint evaluation with an application to Federal Reserve predictions," Applied Economics, Taylor & Francis Journals, vol. 42(18), pages 2289-2297.
    151. Guo, Xiaozhu & Huang, Dengshi & Li, Xiafei & Liang, Chao, 2023. "Are categorical EPU indices predictable for carbon futures volatility? Evidence from the machine learning method," International Review of Economics & Finance, Elsevier, vol. 83(C), pages 672-693.
    152. Janusz Brzeszczynski & Robert Kelm, 2004. "Short-Term Dependencies between the Volatility of Currency, Money and Capital Markets: The Case of Poland," CERT Discussion Papers 0409, Centre for Economic Reform and Transformation, Heriot Watt University.
    153. Tian, Guangning & Peng, Yuchao & Meng, Yuhao, 2023. "Forecasting crude oil prices in the COVID-19 era: Can machine learn better?," Energy Economics, Elsevier, vol. 125(C).
    154. Kwas, Marek & Paccagnini, Alessia & Rubaszek, Michał, 2021. "Common factors and the dynamics of industrial metal prices. A forecasting perspective," Resources Policy, Elsevier, vol. 74(C).
    155. Maxime Leroux & Rachidi Kotchoni & Dalibor Stevanovic, 2017. "Forecasting economic activity in data-rich environment," Working Papers hal-04141668, HAL.
    156. Ana-Maria Fuertes & Elena Kalotychou & Natasa Todorovic, 2015. "Daily volume, intraday and overnight returns for volatility prediction: profitability or accuracy?," Review of Quantitative Finance and Accounting, Springer, vol. 45(2), pages 251-278, August.
    157. Fernandez, Viviana, 2020. "The predictive power of convenience yields," Resources Policy, Elsevier, vol. 65(C).
    158. María Gil & Javier J. Pérez & Alberto Urtasun, 2019. "Nowcasting private consumption: traditional indicators, uncertainty measures, credit cards and some internet data," IFC Bulletins chapters, in: Bank for International Settlements (ed.), The use of big data analytics and artificial intelligence in central banking, volume 50, Bank for International Settlements.
    159. Christian Pierdzioch & Daniel Hartmann, 2013. "Forecasting Eurozone real-estate returns," Applied Financial Economics, Taylor & Francis Journals, vol. 23(14), pages 1185-1196, July.
    160. Daniel Hartmann & Christian Pierdzioch, 2007. "International equity flows and the predictability of US stock returns," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(8), pages 583-599.
    161. Wei, Yu & Wang, Yizhi & Lucey, Brian M. & Vigne, Samuel A., 2023. "Cryptocurrency uncertainty and volatility forecasting of precious metal futures markets," Journal of Commodity Markets, Elsevier, vol. 29(C).
    162. Yusui Tang & Feng Ma & Yaojie Zhang & Yu Wei, 2022. "Forecasting the oil price realized volatility: A multivariate heterogeneous autoregressive model," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4770-4783, October.
    163. Jennifer Castle & David Hendry, 2012. "Forecasting by factors, by variables, or both?," Economics Series Working Papers 600, University of Oxford, Department of Economics.
    164. Fernando Fernández-Rodríguez & Simón Sosvilla-Rivero & Julián Andrada, "undated". "Exchange-rate forecasts with simultaneous nearest-neighbour methods: Evidence from the EMS," Working Papers 98-17, FEDEA.
    165. David Shepherd & Ciaran Driver, 2003. "Inflation and Capacity Constraints in Australian Manufacturing Industry," The Economic Record, The Economic Society of Australia, vol. 79(245), pages 182-195, June.
    166. Huang, Yisu & Xu, Weiju & Huang, Dengshi & Zhao, Chenchen, 2023. "Chinese crude oil futures volatility and sustainability: An uncertainty indices perspective," Resources Policy, Elsevier, vol. 80(C).
    167. Ballestra, Luca Vincenzo & Guizzardi, Andrea & Palladini, Fabio, 2019. "Forecasting and trading on the VIX futures market: A neural network approach based on open to close returns and coincident indicators," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1250-1262.
    168. Anatolyev Stanislav, 2009. "Multi-Market Direction-of-Change Modeling Using Dependence Ratios," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(1), pages 1-24, March.
    169. Lehmann, Bruce & Timmermann, Allan, 2007. "Performance measurement and evaluation," LSE Research Online Documents on Economics 24505, London School of Economics and Political Science, LSE Library.
    170. Bai, Yu & Carriero, Andrea & Clark, Todd & Marcellino, Massimiliano, 2022. "Macroeconomic Forecasting in a Multi-country Context," CEPR Discussion Papers 16994, C.E.P.R. Discussion Papers.
    171. Chauvet, Marcelle & Potter, Simon, 2013. "Forecasting Output," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 141-194, Elsevier.
    172. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    173. Walter Engert & Scott Hendry, 1998. "Forecasting Inflation with the M1-VECM: Part Two," Staff Working Papers 98-6, Bank of Canada.
    174. Granger, C.W.J. & Pesaran, M. H., 1999. "Economic and Statistical Measures of Forecast Accuracy," Cambridge Working Papers in Economics 9910, Faculty of Economics, University of Cambridge.
    175. Camilleri, Silvio John & Green, Christopher J., 2014. "Stock market predictability: Non-synchronous trading or inefficient markets? Evidence from the National Stock Exchange of India," MPRA Paper 95302, University Library of Munich, Germany.
    176. Tim Meyer, 2019. "On the Directional Accuracy of United States Housing Starts Forecasts: Evidence from Survey Data," The Journal of Real Estate Finance and Economics, Springer, vol. 58(3), pages 457-488, April.
    177. Donkers, A.C.D. & Melenberg, B., 2002. "Testing predictive performance of binary choice models," Econometric Institute Research Papers EI 2002-01, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    178. Murat Midilic, 2016. "Estimation Of Star-Garch Models With Iteratively Weighted Least Squares," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 16/918, Ghent University, Faculty of Economics and Business Administration.
    179. Sun, Shaolong & Wang, Shouyang & Wei, Yunjie, 2019. "A new multiscale decomposition ensemble approach for forecasting exchange rates," Economic Modelling, Elsevier, vol. 81(C), pages 49-58.
    180. Mei, Dexiang & Zhao, Chenchen & Luo, Qin & Li, Yan, 2022. "Forecasting the Chinese low-carbon index volatility," Resources Policy, Elsevier, vol. 77(C).
    181. Stanislav Anatolyev, 2006. "Nonparametric retrospection and monitoring of predictability of financial returns," Working Papers w0071, Center for Economic and Financial Research (CEFIR).
    182. ROSA, Carlo, 2009. "Forecasting the direction of policy rate changes : the importance of ECB words," LIDAM Discussion Papers CORE 2009001, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    183. Fuat C. Beylunioglu & Thanasis Stengos & Ege Yazgan, 2016. "Detecting Convergence Clubs," Working Papers 1604, University of Guelph, Department of Economics and Finance.
    184. Christopher Kath & Florian Ziel, 2018. "The value of forecasts: Quantifying the economic gains of accurate quarter-hourly electricity price forecasts," Papers 1811.08604, arXiv.org.
    185. Sermpinis, Georgios & Theofilatos, Konstantinos & Karathanasopoulos, Andreas & Georgopoulos, Efstratios F. & Dunis, Christian, 2013. "Forecasting foreign exchange rates with adaptive neural networks using radial-basis functions and Particle Swarm Optimization," European Journal of Operational Research, Elsevier, vol. 225(3), pages 528-540.
    186. Zhao, Zhengling & Sun, Shaolong & Sun, Jingyun & Wang, Shouyang, 2024. "A novel hybrid model with two-layer multivariate decomposition for crude oil price forecasting," Energy, Elsevier, vol. 288(C).
    187. Fabio Trojani & Francesco Audrino, 2006. "Estimating and predicting multivariate volatility thresholds in global stock markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(3), pages 345-369.
    188. Sarno, Lucio & Schneider, Paul & Wagner, Christian, 2010. "Properties of Foreign Exchange Risk Premia," MPRA Paper 21302, University Library of Munich, Germany.
    189. Pincheira-Brown, Pablo & Neumann, Federico, 2020. "Can we beat the Random Walk? The case of survey-based exchange rate forecasts in Chile," Finance Research Letters, Elsevier, vol. 37(C).
    190. Y. Tsuchiya, 2014. "A directional evaluation of corporate executives' exchange rate forecasts," Applied Economics, Taylor & Francis Journals, vol. 46(1), pages 95-101, January.
    191. Huck, Nicolas, 2009. "Pairs selection and outranking: An application to the S&P 100 index," European Journal of Operational Research, Elsevier, vol. 196(2), pages 819-825, July.
    192. Sudarshan Kumar & Sobhesh Kumar Agarwalla & Jayanth R. Varma & Vineet Virmani, 2023. "Harvesting the volatility smile in a large emerging market: A Dynamic Nelson–Siegel approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(11), pages 1615-1644, November.
    193. Massimiliano Mazzanti & Antonio Musolesi, 2012. "The heterogeneity of Carbon Kuznets Curves for advanced countries. Comparing homogeneous, heterogeneous and shrinkage/Bayesian estimators," Working Papers 201206, University of Ferrara, Department of Economics.
    194. Ahoniemi, Katja & Lanne, Markku, 2009. "Joint modeling of call and put implied volatility," International Journal of Forecasting, Elsevier, vol. 25(2), pages 239-258.
    195. Gencay, Ramazan, 1998. "Optimization of technical trading strategies and the profitability in security markets," Economics Letters, Elsevier, vol. 59(2), pages 249-254, May.
    196. Hamid Baghestani, 2010. "Evaluating Blue Chip forecasts of the trade-weighted dollar exchange rate," Applied Financial Economics, Taylor & Francis Journals, vol. 20(24), pages 1879-1889.
    197. Castle, Jennifer L. & Clements, Michael P. & Hendry, David F., 2013. "Forecasting by factors, by variables, by both or neither?," Journal of Econometrics, Elsevier, vol. 177(2), pages 305-319.
    198. Dai, Zhifeng & Kang, Jie, 2021. "Bond yield and crude oil prices predictability," Energy Economics, Elsevier, vol. 97(C).
    199. Filipa Fernandes & Charalampos Stasinakis & Zivile Zekaite, 2019. "Forecasting government bond spreads with heuristic models: evidence from the Eurozone periphery," Annals of Operations Research, Springer, vol. 282(1), pages 87-118, November.
    200. Eric Hillebrand & Jakob Guldbæk Mikkelsen & Lars Spreng & Giovanni Urga, 2023. "Exchange rates and macroeconomic fundamentals: Evidence of instabilities from time‐varying factor loadings," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(6), pages 857-877, September.
    201. Jia, Jian & Kang, Sang Baum, 2022. "Do the basis and other predictors of futures return also predict spot return with the same signs and magnitudes? Evidence from the LME," Journal of Commodity Markets, Elsevier, vol. 25(C).
    202. Anthony Garratt & Shaun P Vahey, 2006. "UK Real-Time Macro Data Characteristics," Economic Journal, Royal Economic Society, vol. 116(509), pages 119-135, February.
    203. Bauer, Gregory H., 2017. "International house price cycles, monetary policy and credit," Journal of International Money and Finance, Elsevier, vol. 74(C), pages 88-114.
    204. Laurent Ferrara & Thomas Raffinot, 2008. "A non-parametric method to nowcast the Euro Area IPI," Post-Print halshs-00275769, HAL.
    205. Kim, Young Min & Lee, Seojin, 2020. "Exchange rate predictability: A variable selection perspective," International Review of Economics & Finance, Elsevier, vol. 70(C), pages 117-134.
    206. Su-Jane Chen & Ming-Hsiang Chen, 2009. "Discount Rate Changes and Market Timing: A Multinational Study," Annals of Economics and Finance, Society for AEF, vol. 10(2), pages 329-349, November.
    207. Blaskowitz, Oliver & Herwartz, Helmut, 2014. "Testing the value of directional forecasts in the presence of serial correlation," International Journal of Forecasting, Elsevier, vol. 30(1), pages 30-42.
    208. Carine Brasseur & Marcelo Espinoza & Johan A. K. Suykens & Tony Van Gestel & Bart Baesens & Bart De Moor, 2006. "A Bayesian nonlinear support vector machine error correction model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(2), pages 77-100.
    209. Massimo Guidolin & Kai Wang, 2022. "The Empirical Performance of Option Implied Volatility Surface-Driven Optimal Portfolios," BAFFI CAREFIN Working Papers 22190, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    210. Kajal Lahiri & Gultekin Isiklar & Prakash Loungani, 2006. "How quickly do forecasters incorporate news? Evidence from cross-country surveys," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(6), pages 703-725.
    211. Marcos Álvarez-Díaz & Alberto Álvarez, 2003. "Predicción No-Lineal De Tipos De Cambio: Algoritmos Genéticos, Redes Neuronales Y Fusión De Datos," Working Papers 0301, Universidade de Vigo, Departamento de Economía Aplicada.
    212. Jordi Pons, 2001. "The rationality of price forecasts: a directional analysis," Applied Financial Economics, Taylor & Francis Journals, vol. 11(3), pages 287-290.
    213. Thomas A. Knetsch, 2007. "Forecasting the price of crude oil via convenience yield predictions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(7), pages 527-549.
    214. Amano, R. A. & van Norden, S., 1998. "Oil prices and the rise and fall of the US real exchange rate," Journal of International Money and Finance, Elsevier, vol. 17(2), pages 299-316, April.
    215. Dimitris P. Louzis, 2014. "Macroeconomic and credit forecasts in a small economy during crisis: A large Bayesian VAR approach," Working Papers 184, Bank of Greece.
    216. Timmermann, Allan, 2008. "Elusive return predictability," International Journal of Forecasting, Elsevier, vol. 24(1), pages 1-18.
    217. Filippo Altissimo & Riccardo Cristadoro & Mario Forni & Marco Lippi & Giovanni Veronese, 2010. "New Eurocoin: Tracking Economic Growth in Real Time," The Review of Economics and Statistics, MIT Press, vol. 92(4), pages 1024-1034, November.
    218. Yue-Jun Zhang & Ting Yao & Ling-Yun He, 2015. "Forecasting crude oil market volatility: can the Regime Switching GARCH model beat the single-regime GARCH models?," Papers 1512.01676, arXiv.org.
    219. McCracken,M.W. & West,K.D., 2001. "Inference about predictive ability," Working papers 14, Wisconsin Madison - Social Systems.
    220. Zhang, Li & Wang, Lu & Wang, Xunxiao & Zhang, Yaojie & Pan, Zhigang, 2022. "How macro-variables drive crude oil volatility? Perspective from the STL-based iterated combination method," Resources Policy, Elsevier, vol. 77(C).
    221. Kladivko, Kamil & Österholm, Pär, 2020. "Can Households Predict where the Macroeconomy is Headed?," Working Papers 2020:11, Örebro University, School of Business.
    222. Daniele Valenti & Matteo Manera & Alessandro Sbuelz, 2018. "Interpreting the Oil Risk Premium: do Oil Price Shocks Matter?," Working Papers 2018.03, Fondazione Eni Enrico Mattei.
    223. Trapani, Lorenzo & Urga, Giovanni, 2009. "Optimal forecasting with heterogeneous panels: A Monte Carlo study," International Journal of Forecasting, Elsevier, vol. 25(3), pages 567-586, July.
    224. Nektarios Aslanidis & Andrea Cipollini, 2007. "Leading indicator properties of the US corporate spreads," Money Macro and Finance (MMF) Research Group Conference 2006 115, Money Macro and Finance Research Group.
    225. Gerardo Esquivel & Felipe B. Larrain, 2000. "Currency Crises: Is Central America Different?," Econometric Society World Congress 2000 Contributed Papers 0566, Econometric Society.
    226. Pierre L. Siklos, 2012. "Sources of Disagreement in Inflation Forecasts: An International Empirical Investigation," CAMA Working Papers 2012-42, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    227. Hamid Baghestani, 2011. "A directional analysis of Federal Reserve predictions of growth in unit labor costs and productivity," International Review of Applied Economics, Taylor & Francis Journals, vol. 25(3), pages 303-311.
    228. Pedro N. Rodríguez, & Simón Sosvilla-Rivero, 2006. "Forecasting Stock Price Changes: Is it Possible?," Working Papers 2006-22, FEDEA.
    229. Lu-Tao Zhao & Shun-Gang Wang & Zhi-Gang Zhang, 2020. "Oil Price Forecasting Using a Time-Varying Approach," Energies, MDPI, vol. 13(6), pages 1-16, March.
    230. Darvas, Zsolt & Schepp, Zoltán, 2024. "Exchange rates and fundamentals: Forecasting with long maturity forward rates," Journal of International Money and Finance, Elsevier, vol. 143(C).
    231. Fu, Tong & Huang, Dasen & Feng, Lingbing & Tang, Xiaoping, 2024. "More is better? The impact of predictor choice on the INE oil futures volatility forecasting," Energy Economics, Elsevier, vol. 134(C).
    232. Vrontos, Spyridon D. & Galakis, John & Vrontos, Ioannis D., 2021. "Modeling and predicting U.S. recessions using machine learning techniques," International Journal of Forecasting, Elsevier, vol. 37(2), pages 647-671.
    233. Rubaszek, Michał & Karolak, Zuzanna & Kwas, Marek, 2020. "Mean-reversion, non-linearities and the dynamics of industrial metal prices. A forecasting perspective," Resources Policy, Elsevier, vol. 65(C).
    234. Michael P. Clements & Philip Hans Franses & Norman R. Swanson, 2003. "Forecasting economic and financial time-series with non-linear models," Departmental Working Papers 200309, Rutgers University, Department of Economics.
    235. Joshy Easaw & Saeed Heravi, 2009. "Are household subjective forecasts of personal finances accurate and useful? A directional analysis of the British Household Panel Survey," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(8), pages 667-680.
    236. Döpke, Jörg & Hartmann, Daniel & Pierdzioch, Christian, 2008. "Real-time macroeconomic data and ex ante stock return predictability," International Review of Financial Analysis, Elsevier, vol. 17(2), pages 274-290.
    237. T. Hendricks & B. Kempa & C. Pierdzioch, 2010. "Do local analysts have an informational advantage in forecasting stock returns? Evidence from the German DAX30," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 24(2), pages 137-158, June.
    238. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    239. Rachidi Kotchoni & Maxime Leroux & Dalibor Stevanovic, 2019. "Macroeconomic Forecast Accuracy in data-rich environment," Post-Print hal-02435757, HAL.
    240. M. Marzo & P. Zagaglia, 2007. "Domestic political constraints to foreign aid effectiveness," Working Papers 599, Dipartimento Scienze Economiche, Universita' di Bologna.
    241. Tsuchiya, Yoichi, 2016. "Do production managers predict turning points? A directional analysis," Economic Modelling, Elsevier, vol. 58(C), pages 1-8.
    242. Moosa, Imad & Burns, Kelly, 2014. "The unbeatable random walk in exchange rate forecasting: Reality or myth?," Journal of Macroeconomics, Elsevier, vol. 40(C), pages 69-81.
    243. Antonios K. Alexandridis & Ekaterini Panopoulou & Ioannis Souropanis, 2024. "Forecasting exchange rates: An iterated combination constrained predictor approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(4), pages 983-1017, July.
    244. Çakmaklı, Cem & van Dijk, Dick, 2016. "Getting the most out of macroeconomic information for predicting excess stock returns," International Journal of Forecasting, Elsevier, vol. 32(3), pages 650-668.
    245. Mills, Terence C. & Pepper, Gordon T., 1999. "Assessing the forecasters: an analysis of the forecasting records of the Treasury, the London Business School and the National Institute," International Journal of Forecasting, Elsevier, vol. 15(3), pages 247-257, July.
    246. Kapetanios, G., 1999. "Threshold Models for Trended Time Series," Cambridge Working Papers in Economics 9905, Faculty of Economics, University of Cambridge.
    247. Miao, Hong & Ramchander, Sanjay & Wang, Tianyang & Yang, Dongxiao, 2017. "Influential factors in crude oil price forecasting," Energy Economics, Elsevier, vol. 68(C), pages 77-88.
    248. Kouwenberg, Roy & Markiewicz, Agnieszka & Verhoeks, Ralph & Zwinkels, Remco C. J., 2017. "Model Uncertainty and Exchange Rate Forecasting," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 52(1), pages 341-363, February.
    249. Dube, Smile, 2016. "Exchange Rate Pass-Through (ERPT) and Inflation-Targeting (IT): Evidence from South Africa - Exchange rate pass-through and inflation targeting: evidenze dal Sud Africa," Economia Internazionale / International Economics, Camera di Commercio Industria Artigianato Agricoltura di Genova, vol. 69(2), pages 121-150.
    250. Anatolyev, Stanislav & Kosenok, Grigory, 2009. "Tests in contingency tables as regression tests," Economics Letters, Elsevier, vol. 105(2), pages 189-192, November.
    251. Coe, P.J. & Pesaran, M.H. & Vahey, S.P., 2003. "Scope for Cost Minimization in Public Debt Management: the Case of the UK," Cambridge Working Papers in Economics 0338, Faculty of Economics, University of Cambridge.
    252. Baltagi, Badi H., 2013. "Panel Data Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 995-1024, Elsevier.
    253. Hutson, Mark & Joutz, Fred & Stekler, Herman, 2014. "Interpreting and evaluating CESIfo's World Economic Survey directional forecasts," Economic Modelling, Elsevier, vol. 38(C), pages 6-11.
    254. Tang, Ling & Yu, Lean & Wang, Shuai & Li, Jianping & Wang, Shouyang, 2012. "A novel hybrid ensemble learning paradigm for nuclear energy consumption forecasting," Applied Energy, Elsevier, vol. 93(C), pages 432-443.
    255. Kiss, Tamás & Kladívko, Kamil & Silfverberg, Oliwer & Österholm, Pär, 2023. "Market participants or the random walk – who forecasts better? Evidence from micro-level survey data," Finance Research Letters, Elsevier, vol. 54(C).
    256. Vogl, Konstantin & Maltritz, Dominik & Huschens, Stefan & Karmann, Alexander, 2006. "Country Default Probabilities: Assessing and Backtesting," Dresden Discussion Paper Series in Economics 12/06, Technische Universität Dresden, Faculty of Business and Economics, Department of Economics.
    257. Garratt A. & Lee K. & Pesaran M.H. & Shin Y., 2003. "Forecast Uncertainties in Macroeconomic Modeling: An Application to the U.K. Economy," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 829-838, January.
    258. Hardy, Nicolás & Ferreira, Tiago & Quinteros, Maria J. & Magner, Nicolás S., 2023. "“Watch your tone!”: Forecasting mining industry commodity prices with financial report tone," Resources Policy, Elsevier, vol. 86(PA).
    259. Filip Bašić & Tomislav Globan, 2023. "Early bird catches the worm: finding the most effective early warning indicators of recessions," Economic Research-Ekonomska Istraživanja, Taylor & Francis Journals, vol. 36(1), pages 2120040-212, December.
    260. Jying-Nan Wang & Jiangze Du & Chonghui Jiang & Kin-Keung Lai, 2019. "Chinese Currency Exchange Rates Forecasting with EMD-Based Neural Network," Complexity, Hindawi, vol. 2019, pages 1-15, October.
    261. Kath, Christopher & Ziel, Florian, 2018. "The value of forecasts: Quantifying the economic gains of accurate quarter-hourly electricity price forecasts," Energy Economics, Elsevier, vol. 76(C), pages 411-423.
    262. Gao, Yuyang & Wang, Jianzhou & Yang, Hufang, 2022. "A multi-component hybrid system based on predictability recognition and modified multi-objective optimization for ultra-short-term onshore wind speed forecasting," Renewable Energy, Elsevier, vol. 188(C), pages 384-401.
    263. Zhang, Yaojie & Ma, Feng & Wei, Yu, 2019. "Out-of-sample prediction of the oil futures market volatility: A comparison of new and traditional combination approaches," Energy Economics, Elsevier, vol. 81(C), pages 1109-1120.
    264. Fujiwara, Ippei & Koga, Maiko, 2004. "A Statistical Forecasting Method for Inflation Forecasting: Hitting Every Vector Autoregression and Forecasting under Model Uncertainty," Monetary and Economic Studies, Institute for Monetary and Economic Studies, Bank of Japan, vol. 22(1), pages 123-142, March.
    265. Wang, Ping & Han, Wei & Huang, Chengcheng & Duong, Duy, 2022. "Forecasting realised volatility from search volume and overnight sentiment: Evidence from China," Research in International Business and Finance, Elsevier, vol. 62(C).
    266. Ince, Onur & Molodtsova, Tanya & Papell, David H., 2016. "Taylor rule deviations and out-of-sample exchange rate predictability," Journal of International Money and Finance, Elsevier, vol. 69(C), pages 22-44.
    267. Luisa Corrado & Thanasis Stengos & Melvyn Weeks & M. Ege Yazgan, 2019. "Robust Tests for Convergence Clubs," CEIS Research Paper 451, Tor Vergata University, CEIS, revised 14 Feb 2019.
    268. Òscar Jordà & Alan M. Taylor, 2009. "The Carry Trade and Fundamentals: Nothing to Fear But FEER Itself," NBER Working Papers 15518, National Bureau of Economic Research, Inc.
    269. Marek Kwas & Alessia Paccagnini & Michal Rubaszek, 2020. "Common factors and the dynamics of cereal prices. A forecasting perspective," CAMA Working Papers 2020-47, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    270. Blaskowitz, Oliver J. & Herwartz, Helmut, 2009. "On economic evaluation of directional forecasts," SFB 649 Discussion Papers 2009-052, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    271. Luo, Tao & Zhang, Lixia & Sun, Huaping & Bai, Jiancheng, 2023. "Enhancing exchange rate volatility prediction accuracy: Assessing the influence of different indices on the USD/CNY exchange rate," Finance Research Letters, Elsevier, vol. 58(PB).
    272. Hamid Baghestani & Bassam Abual-Foul, 2010. "Evidence on Forecasting Inflation Under Asymmetric Loss," The American Economist, Sage Publications, vol. 55(1), pages 105-110, May.
    273. Rapach, David E. & Wohar, Mark E., 2006. "The out-of-sample forecasting performance of nonlinear models of real exchange rate behavior," International Journal of Forecasting, Elsevier, vol. 22(2), pages 341-361.
    274. Zhang, Yaojie & Wei, Yu & Zhang, Yi & Jin, Daxiang, 2019. "Forecasting oil price volatility: Forecast combination versus shrinkage method," Energy Economics, Elsevier, vol. 80(C), pages 423-433.
    275. Bangzhu Zhu & Xuetao Shi & Julien Chevallier & Ping Wang & Yi‐Ming Wei, 2016. "An Adaptive Multiscale Ensemble Learning Paradigm for Nonstationary and Nonlinear Energy Price Time Series Forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(7), pages 633-651, November.
    276. Blaskowitz, Oliver & Herwartz, Helmut, 2011. "On economic evaluation of directional forecasts," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1058-1065, October.
    277. Nektarios Aslanidis, 2002. "Smooth Transition Regression Models in UK Stock Returns," Working Papers 0201, University of Crete, Department of Economics.
    278. Zhang, Yaojie & Ma, Feng & Wang, Yudong, 2019. "Forecasting crude oil prices with a large set of predictors: Can LASSO select powerful predictors?," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 97-117.
    279. He, Kaijian & Chen, Yanhui & Tso, Geoffrey K.F., 2017. "Price forecasting in the precious metal market: A multivariate EMD denoising approach," Resources Policy, Elsevier, vol. 54(C), pages 9-24.
    280. Fernando Fernández-Rodríguez & Simón Sosvilla-Rivero & Julián Andrada-Félix, "undated". "Nearest-Neighbour Predictions in Foreign Exchange Markets," Working Papers 2002-05, FEDEA.
    281. Kozhan, Roman & Salmon, Mark, 2009. "Uncertainty aversion in a heterogeneous agent model of foreign exchange rate formation," Journal of Economic Dynamics and Control, Elsevier, vol. 33(5), pages 1106-1122, May.
    282. Hartmann, Daniel & Pierdzioch, Christian, 2006. "Nonlinear Links between Stock Returns and Exchange Rate Movements," MPRA Paper 558, University Library of Munich, Germany.
    283. Vigne, Samuel A. & Lucey, Brian M. & O’Connor, Fergal A. & Yarovaya, Larisa, 2017. "The financial economics of white precious metals — A survey," International Review of Financial Analysis, Elsevier, vol. 52(C), pages 292-308.
    284. Swanson, Norman R. & White, Halbert, 1997. "Forecasting economic time series using flexible versus fixed specification and linear versus nonlinear econometric models," International Journal of Forecasting, Elsevier, vol. 13(4), pages 439-461, December.
    285. Lee A. Smales, 2013. "The Determinants of RBA Target Rate Decisions: A Choice Modelling Approach," The Economic Record, The Economic Society of Australia, vol. 89(287), pages 556-569, December.
    286. Sermpinis, Georgios & Stasinakis, Charalampos & Theofilatos, Konstantinos & Karathanasopoulos, Andreas, 2015. "Modeling, forecasting and trading the EUR exchange rates with hybrid rolling genetic algorithms—Support vector regression forecast combinations," European Journal of Operational Research, Elsevier, vol. 247(3), pages 831-846.
    287. Guo, Jingjun & Zhao, Zhengling & Sun, Jingyun & Sun, Shaolong, 2022. "Multi-perspective crude oil price forecasting with a new decomposition-ensemble framework," Resources Policy, Elsevier, vol. 77(C).
    288. Adrian pagan & Don Harding, 2006. "The Econometric Analysis of Constructed Binary Time Series. Working paper #1," NCER Working Paper Series 1, National Centre for Econometric Research.
    289. Liu, Li & Bu, Ruijun & Pan, Zhiyuan & Xu, Yuhua, 2019. "Are financial returns really predictable out-of-sample?: Evidence from a new bootstrap test," Economic Modelling, Elsevier, vol. 81(C), pages 124-135.
    290. Alves, P.R.L. & Duarte, L.G.S. & da Mota, L.A.C.P., 2018. "Detecting chaos and predicting in Dow Jones Index," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 232-238.
    291. Markopoulou, Chrysi E. & Skintzi, Vasiliki D. & Refenes, Apostolos-Paul N., 2016. "Realized hedge ratio: Predictability and hedging performance," International Review of Financial Analysis, Elsevier, vol. 45(C), pages 121-133.
    292. Elias Katsikas & Theologos Dergiades, 2012. "Revising higher education policy in Greece: filling the Danaids’ Jar," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 39(3), pages 279-292, August.
    293. Garratt, Anthony & Mise, Emi, 2014. "Forecasting exchange rates using panel model and model averaging," Economic Modelling, Elsevier, vol. 37(C), pages 32-40.
    294. Ana María Abarca & Felipe Alarcón & Pablo Pincheira & Jorge Selaive, 2007. "Chilean Nominal Exchange Rate: Forecasting Based Upon Technical Analysis," Working Papers Central Bank of Chile 425, Central Bank of Chile.
    295. Zacharias Psaradakis & Fabio Spagnolo, 2005. "Forecast performance of nonlinear error-correction models with multiple regimes," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(2), pages 119-138.
    296. Y. Tsuchiya, 2014. "Are consumer sentiments useful in Japan? An application of a new market-timing test," Applied Economics Letters, Taylor & Francis Journals, vol. 21(5), pages 356-359, March.
    297. M. Hashem Pesaran & Allan Timmermann, 2006. "Testing Dependence among Serially Correlated Multi-category Variables," CESifo Working Paper Series 1770, CESifo.
    298. Liang, Chao & Li, Yan & Ma, Feng & Wei, Yu, 2021. "Global equity market volatilities forecasting: A comparison of leverage effects, jumps, and overnight information," International Review of Financial Analysis, Elsevier, vol. 75(C).
    299. Joseph Zhi Bin Ling & Albert K. Tsui & Zhaoyong Zhang, 2021. "Trading Macro-Cycles of Foreign Exchange Markets Using Hybrid Models," Sustainability, MDPI, vol. 13(17), pages 1-20, September.
    300. Silvio John Camilleri & Christopher J. Green, 2005. "An Analysis of the Impacts of Non-Synchronous Trading On," Finance 0504020, University Library of Munich, Germany.
    301. Chen, Wang & Lu, Xinjie & Wang, Jiqian, 2022. "Modeling and managing stock market volatility using MRS-MIDAS model," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 625-635.
    302. Raymund Abara, 2006. "Estimation and evaluation of asset pricing models with habit formation using Philippine data," Applied Economics Letters, Taylor & Francis Journals, vol. 13(8), pages 493-497.
    303. Carlo Altavilla & Riccardo Costantini & Raffaella Giacomini, 2013. "Bond returns and market expectations," CeMMAP working papers 20/13, Institute for Fiscal Studies.
    304. Per Bjarte Solibakke, 2007. "An Artificial Neural Network Application Predicting the Nordic Electric Spot Market," EcoMod2007 23900084, EcoMod.
    305. Sermpinis, Georgios & Stasinakis, Charalampos & Rosillo, Rafael & de la Fuente, David, 2017. "European Exchange Trading Funds Trading with Locally Weighted Support Vector Regression," European Journal of Operational Research, Elsevier, vol. 258(1), pages 372-384.
    306. Veress, Aron & Kaiser, Lars, 2017. "Forecasting quality of professionals: Does affiliation matter?," The Quarterly Review of Economics and Finance, Elsevier, vol. 66(C), pages 159-168.
    307. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    308. Massimo Guidolin & Erwin Hansen & Gabriel Cabrera, 2023. "Time-Varying Risk Aversion and International Stock Returns," BAFFI CAREFIN Working Papers 23203, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    309. Marco Tronzano, 2021. "Financial Crises, Macroeconomic Variables, and Long-Run Risk: An Econometric Analysis of Stock Returns Correlations (2000 to 2019)," JRFM, MDPI, vol. 14(3), pages 1-25, March.
    310. Perez, Javier J., 2007. "Leading indicators for euro area government deficits," International Journal of Forecasting, Elsevier, vol. 23(2), pages 259-275.
    311. Guo, Xiaozhu & Huang, Yisu & Liang, Chao & Umar, Muhammad, 2022. "Forecasting volatility of EUA futures: New evidence," Energy Economics, Elsevier, vol. 110(C).
    312. Xinjie Lu & Feng Ma & Jiqian Wang & Jing Liu, 2022. "Forecasting oil futures realized range‐based volatility with jumps, leverage effect, and regime switching: New evidence from MIDAS models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(4), pages 853-868, July.
    313. Li, Xiafei & Liang, Chao & Chen, Zhonglu & Umar, Muhammad, 2022. "Forecasting crude oil volatility with uncertainty indicators: New evidence," Energy Economics, Elsevier, vol. 108(C).
    314. Ren, Yu & Liang, Xuanxuan & Wang, Qin, 2021. "Short-term exchange rate forecasting: A panel combination approach," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 73(C).
    315. Baghestani, Hamid & Khallaf, Ashraf, 2012. "Predictions of growth in U.S. corporate profits: Asymmetric vs. symmetric loss," International Review of Economics & Finance, Elsevier, vol. 22(1), pages 222-229.
    316. Mihaela Simionescu, 2014. "Directional accuracy for inflation and unemployment rate predictions in Romania," International Journal of Business and Economic Sciences Applied Research (IJBESAR), Democritus University of Thrace (DUTH), Kavala Campus, Greece, vol. 7(2), pages 129-138, September.
    317. Kömm, Holger & Küsters, Ulrich, 2015. "Forecasting zero-inflated price changes with a Markov switching mixture model for autoregressive and heteroscedastic time series," International Journal of Forecasting, Elsevier, vol. 31(3), pages 598-608.
    318. Eric Hillebrand & Jakob Mikkelsen & Lars Spreng & Giovanni Urga, 2020. "Exchange Rates and Macroeconomic Fundamentals: Evidence of Instabilities from Time-Varying Factor Loadings," CREATES Research Papers 2020-19, Department of Economics and Business Economics, Aarhus University.
    319. Guan, Keqin & Gong, Xu, 2023. "A new hybrid deep learning model for monthly oil prices forecasting," Energy Economics, Elsevier, vol. 128(C).
    320. Risse, Marian & Ohl, Ludwig, 2017. "Using dynamic model averaging in state space representation with dynamic Occam’s window and applications to the stock and gold market," Journal of Empirical Finance, Elsevier, vol. 44(C), pages 158-176.
    321. Liang, Chao & Huynh, Luu Duc Toan & Li, Yan, 2023. "Market momentum amplifies market volatility risk: Evidence from China’s equity market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 88(C).
    322. Choi, Woon Gyu, 1999. "Estimating the Discount Rate Policy Reaction Function of the Monetary Authority," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(4), pages 379-401, July-Aug..
    323. Qadan, Mahmoud & Nama, Hazar, 2018. "Investor sentiment and the price of oil," Energy Economics, Elsevier, vol. 69(C), pages 42-58.
    324. N Aslanidis & D R Osborn & M Sensier, 2003. "Explaining Movements in UK Stock Prices: How Important is the US Market?," Economics Discussion Paper Series 0305, Economics, The University of Manchester.
    325. Murat Midiliç, 2020. "Estimation of STAR–GARCH Models with Iteratively Weighted Least Squares," Computational Economics, Springer;Society for Computational Economics, vol. 55(1), pages 87-117, January.
    326. Marcos Alvarez Díaz & Manuel González Gómez, 2003. "Modelización semiparamétrica y validación teórica del método de valoración contingente. Aplicación de un algoritmo genético," Hacienda Pública Española / Review of Public Economics, IEF, vol. 164(1), pages 29-47, march.
    327. Krkoska, Libor & Teksoz, Utku, 2007. "Accuracy of GDP growth forecasts for transition countries: Ten years of forecasting assessed," International Journal of Forecasting, Elsevier, vol. 23(1), pages 29-45.
    328. Marek Kwas & Michał Rubaszek, 2021. "Forecasting Commodity Prices: Looking for a Benchmark," Forecasting, MDPI, vol. 3(2), pages 1-13, June.
    329. Nuno Silva, 2013. "Equity Premia Predictability in the EuroZone," GEMF Working Papers 2013-22, GEMF, Faculty of Economics, University of Coimbra.
    330. Fernandez, Viviana, 2017. "A historical perspective of the informational content of commodity futures," Resources Policy, Elsevier, vol. 51(C), pages 135-150.
    331. Dichtl, Hubert, 2020. "Forecasting excess returns of the gold market: Can we learn from stock market predictions?," Journal of Commodity Markets, Elsevier, vol. 19(C).
    332. Lu, Fei & Ma, Feng & Li, Pan & Huang, Dengshi, 2022. "Natural gas volatility predictability in a data-rich world," International Review of Financial Analysis, Elsevier, vol. 83(C).
    333. Zhang, Yaojie & He, Mengxi & Wang, Yudong & Liang, Chao, 2023. "Global economic policy uncertainty aligned: An informative predictor for crude oil market volatility," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1318-1332.
    334. Chen, Zhonglu & Ye, Yong & Li, Xiafei, 2022. "Forecasting China's crude oil futures volatility: New evidence from the MIDAS-RV model and COVID-19 pandemic," Resources Policy, Elsevier, vol. 75(C).
    335. McMillan, David G., 2019. "Stock return predictability: Using the cyclical component of the price ratio," Research in International Business and Finance, Elsevier, vol. 48(C), pages 228-242.
    336. Fuertes, Ana-Maria & Kalotychou, Elena, 2006. "Early warning systems for sovereign debt crises: The role of heterogeneity," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1420-1441, November.
    337. Juan Reboredo & José Matías & Raquel Garcia-Rubio, 2012. "Nonlinearity in Forecasting of High-Frequency Stock Returns," Computational Economics, Springer;Society for Computational Economics, vol. 40(3), pages 245-264, October.
    338. He, Kaijian & Yu, Lean & Tang, Ling, 2015. "Electricity price forecasting with a BED (Bivariate EMD Denoising) methodology," Energy, Elsevier, vol. 91(C), pages 601-609.
    339. Perez-Rodriguez, Jorge V. & Torra, Salvador & Andrada-Felix, Julian, 2005. "STAR and ANN models: forecasting performance on the Spanish "Ibex-35" stock index," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 490-509, June.
    340. Oguzhan Cepni & Rangan Gupta & I. Ethem Guney & M. Hasan Yilmaz, 2019. "Forecasting Local Currency Bond Risk Premia of Emerging Markets: The Role of Cross-Country Macro-Financial Linkages," Working Papers 201957, University of Pretoria, Department of Economics.
    341. Rubaszek Michal & Karolak Zuzanna & Kwas Marek & Uddin Gazi Salah, 2020. "The role of the threshold effect for the dynamics of futures and spot prices of energy commodities," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 24(5), pages 1-20, December.
    342. Firat Melih Yilmaz & Ozer Arabaci, 2021. "Should Deep Learning Models be in High Demand, or Should They Simply be a Very Hot Topic? A Comprehensive Study for Exchange Rate Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 217-245, January.
    343. Blaskowitz, Oliver J. & Herwartz, Helmut, 2008. "Testing directional forecast value in the presence of serial correlation," SFB 649 Discussion Papers 2008-073, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    344. Adrian Pagan, 2005. "Some Econometric Analysis Of Constructed Binary Time Series," CAMA Working Papers 2005-07, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    345. Ash, J. C. K. & Smyth, D. J. & Heravi, S. M., 1998. "Are OECD forecasts rational and useful?: a directional analysis," International Journal of Forecasting, Elsevier, vol. 14(3), pages 381-391, September.
    346. Olson, Dennis & Zoubi, Taisier A., 2008. "Using accounting ratios to distinguish between Islamic and conventional banks in the GCC region," The International Journal of Accounting, Elsevier, vol. 43(1), pages 45-65, March.
    347. Richard D. F. Harris & Murat Mazibas, 2022. "A component Markov regime‐switching autoregressive conditional range model," Bulletin of Economic Research, Wiley Blackwell, vol. 74(2), pages 650-683, April.
    348. Karlyn Mitchell & Douglas K. Pearce, 2004. "Professional Forecasts of Interest Rates and Exchange Rates: Evidence from the Wall Street Journal's Panel of Economists," Working Paper Series 004, North Carolina State University, Department of Economics.
    349. Gaglianone, Wagner Piazza & Marins, Jaqueline Terra Moura, 2017. "Evaluation of exchange rate point and density forecasts: An application to Brazil," International Journal of Forecasting, Elsevier, vol. 33(3), pages 707-728.
    350. Ahmed, Rashad & Pesaran, M. Hashem, 2022. "Regional heterogeneity and U.S. presidential elections: Real-time 2020 forecasts and evaluation," International Journal of Forecasting, Elsevier, vol. 38(2), pages 662-687.
    351. Ince, Onur & Molodtsova, Tanya, 2017. "Rationality and forecasting accuracy of exchange rate expectations: Evidence from survey-based forecasts," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 47(C), pages 131-151.
    352. David McMillan & Mark Wohar, 2011. "Sum of the parts stock return forecasting: international evidence," Applied Financial Economics, Taylor & Francis Journals, vol. 21(12), pages 837-845.
    353. Mohsin, Muhammad & Jamaani, Fouad, 2023. "Green finance and the socio-politico-economic factors’ impact on the future oil prices: Evidence from machine learning," Resources Policy, Elsevier, vol. 85(PA).
    354. Jozef Baruník, 2008. "How Do Neural Networks Enhance the Predictability of Central European Stock Returns?," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 58(07-08), pages 358-376, Oktober.
    355. Pami Dua & Nishita Raje & Satyananda Sahoo, 2008. "Forecasting Interest Rates in India," Margin: The Journal of Applied Economic Research, National Council of Applied Economic Research, vol. 2(1), pages 1-41, March.
    356. Alex Botsis & Kevin Lee, 2022. "Nowcasting Using Firm-Level Survey Data; Tracking UK Output Fluctuations and Recessionary Events," Economic Statistics Centre of Excellence (ESCoE) Technical Reports ESCOE-TR-20, Economic Statistics Centre of Excellence (ESCoE).
    357. Herrera, Ana María & Hu, Liang & Pastor, Daniel, 2018. "Forecasting crude oil price volatility," International Journal of Forecasting, Elsevier, vol. 34(4), pages 622-635.
    358. Wu, Yih-Jiuan, 1998. "Exchange rate forecasting: an application of radial basis function neural networks," ISU General Staff Papers 1998010108000013540, Iowa State University, Department of Economics.
    359. Hartmann, Daniel & Kempa, Bernd & Pierdzioch, Christian, 2006. "Economic and Financial Crises and the Predictability of U.S. Stock Returns," MPRA Paper 561, University Library of Munich, Germany.
    360. Zhang, Yaojie & Ma, Feng & Liao, Yin, 2020. "Forecasting global equity market volatilities," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1454-1475.
    361. Christian Pierdzioch & Rangan Gupta & Hossein Hassani & Emmanuel Silva, 2018. "Forecasting Changes of Economic Inequality: A Boosting Approach," Working Papers 201868, University of Pretoria, Department of Economics.
    362. Dudda, Tom L. & Klein, Tony & Nguyen, Duc Khuong & Walther, Thomas, 2022. "Common Drivers of Commodity Futures?," QBS Working Paper Series 2022/05, Queen's University Belfast, Queen's Business School.
    363. Kontogeorgos, Georgios & Lambrias, Kyriacos, 2019. "An analysis of the Eurosystem/ECB projections," Working Paper Series 2291, European Central Bank.
    364. Shang, Yue & Wei, Yu & Chen, Yongfei, 2022. "Cryptocurrency policy uncertainty and gold return forecasting: A dynamic Occam's window approach," Finance Research Letters, Elsevier, vol. 50(C).
    365. Nektarios Aslanidis & Denise Osborn & Marianne Sensier, 2003. "Explaining movements in UK stock prices:," Working Papers 0302, University of Crete, Department of Economics.
    366. Murillo Garza José Antonio & Sánchez-Romeu Paula, 2012. "Testing the Predictive Power of Mexican Consumers' Inflation Expectations," Working Papers 2012-13, Banco de México.
    367. Kao, Erin H., 2011. "Momentum and reversals in Taiwan index futures returns during periods of extreme trading imbalance," International Review of Economics & Finance, Elsevier, vol. 20(3), pages 459-467, June.
    368. Fernandez, Viviana, 2019. "A readily computable commodity price index: 1900–2016," Finance Research Letters, Elsevier, vol. 31(C).
    369. Wang, Lu & Wu, Rui & Ma, WeiChun & Xu, Weiju, 2023. "Examining the volatility of soybean market in the MIDAS framework: The importance of bagging-based weather information," International Review of Financial Analysis, Elsevier, vol. 89(C).
    370. Wang, Lu & Zhao, Chenchen & Liang, Chao & Jiu, Song, 2022. "Predicting the volatility of China's new energy stock market: Deep insight from the realized EGARCH-MIDAS model," Finance Research Letters, Elsevier, vol. 48(C).
    371. Zhang, Yaojie & Lei, Likun & Wei, Yu, 2020. "Forecasting the Chinese stock market volatility with international market volatilities: The role of regime switching," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    372. Schnake, Kristin N. & Karali, Berna & Dorfman, Jeffrey H., 2012. "The Informational Content of Distant-Delivery Futures Contracts," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 37(2), pages 1-15, August.
    373. Becker, Janis & Leschinski, Christian, 2018. "Directional Predictability of Daily Stock Returns," Hannover Economic Papers (HEP) dp-624, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    374. Mizen, Paul, 2009. "What can we learn from central bankers' words? Some nonparametric tests for the ECB," Economics Letters, Elsevier, vol. 103(1), pages 29-32, April.
    375. Raihan, Tasneem, 2017. "Performance of Markov-Switching GARCH Model Forecasting Inflation Uncertainty," MPRA Paper 82343, University Library of Munich, Germany.
    376. Marcos Álvarez-Díaz, 2020. "Is it possible to accurately forecast the evolution of Brent crude oil prices? An answer based on parametric and nonparametric forecasting methods," Empirical Economics, Springer, vol. 59(3), pages 1285-1305, September.
    377. Anusha, "undated". "Evaluating reliability of some symmetric and asymmetric univariate filters," Indira Gandhi Institute of Development Research, Mumbai Working Papers 2015-030, Indira Gandhi Institute of Development Research, Mumbai, India.
    378. Matthieu LEMOINE & Odile CHAGNY, 2005. "Estimating the potential output of the euro area with a semi-structural multivariate Hodrick-Prescott filter," Computing in Economics and Finance 2005 344, Society for Computational Economics.
    379. Panayiotis Tzeremes, 2022. "The Asymmetric Effects of Regional House Prices in the UK: New Evidence from Panel Quantile Regression Framework," Studies in Microeconomics, , vol. 10(1), pages 7-22, June.
    380. Tsuchiya, Yoichi, 2014. "Purchasing and supply managers provide early clues on the direction of the US economy: An application of a new market-timing test," International Review of Economics & Finance, Elsevier, vol. 29(C), pages 599-618.
    381. Fernandez, Viviana, 2016. "Futures markets and fundamentals of base metals," International Review of Financial Analysis, Elsevier, vol. 45(C), pages 215-229.
    382. Bekiros, S. & Georgoutsos, D., 2006. "Direction-of-Change Forecasting using a Volatility- Based Recurrent Neural Network," CeNDEF Working Papers 06-16, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    383. Lolić, Ivana & Matošec, Marina & Sorić, Petar, 2024. "DIY google trends indicators in social sciences: A methodological note," Technology in Society, Elsevier, vol. 77(C).
    384. Wang, Lu & Ma, Feng & Hao, Jianyang & Gao, Xinxin, 2021. "Forecasting crude oil volatility with geopolitical risk: Do time-varying switching probabilities play a role?," International Review of Financial Analysis, Elsevier, vol. 76(C).
    385. G. Boero & E. Marrocu, 1999. "Modelli non lineari per i tassi di cambio: un confronto previsivo," Working Paper CRENoS 199914, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    386. Chu, Chia-Shang & Lu, Liping & Shi, Zhentao, 2009. "Pitfalls in market timing test," Economics Letters, Elsevier, vol. 103(3), pages 123-126, June.
    387. Pierdzioch, Christian & Schertler, Andrea, 2005. "Investing in European Stock Markets for High-Technology Firms," Kiel Working Papers 1265, Kiel Institute for the World Economy (IfW Kiel).
    388. Markopoulou, Chryssa & Skintzi, Vasiliki & Refenes, Apostolos, 2016. "On the predictability of model-free implied correlation," International Journal of Forecasting, Elsevier, vol. 32(2), pages 527-547.
    389. Artis, Michael & Nachane, Dilip M & Hoffmann, Mathias & Clavel, Jose Garcia, 2007. "Analyzing Strongly Periodic Series in the Frequency Domain: A Comparison of Alternative Approaches with Applications," CEPR Discussion Papers 6517, C.E.P.R. Discussion Papers.
    390. Driffill John & Kenc Turalay & Sola Martin & Spagnolo Fabio, 2009. "The Effects of Different Parameterizations of Markov-Switching in a CIR Model of Bond Pricing," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(1), pages 1-24, March.
    391. Danyan Wen & Mengxi He & Yaojie Zhang & Yudong Wang, 2022. "Forecasting realized volatility of Chinese stock market: A simple but efficient truncated approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 230-251, March.
    392. Elias Katsikas & Theologos Dergiades, 2009. "Higher Education Policy in Greece: Filling the Danaids' Jar," Discussion Paper Series 2009_16, Department of Economics, University of Macedonia, revised Nov 2009.
    393. Lu Wang & Shan Li & Chao Liang, 2024. "Exploring the impact of oil security attention on oil volatility: A new perspective," International Finance, Wiley Blackwell, vol. 27(1), pages 61-80, April.
    394. Amélie Charles & Olivier Darné & Jae H Kim, 2017. "International Stock Return Predictability: Evidence from New Statistical Tests," Post-Print hal-01626101, HAL.
    395. Nyberg, Henri, 2011. "Forecasting the direction of the US stock market with dynamic binary probit models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 561-578, April.
    396. Manahov, Viktor & Hudson, Robert & Gebka, Bartosz, 2014. "Does high frequency trading affect technical analysis and market efficiency? And if so, how?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 28(C), pages 131-157.
    397. Adam Clements & Yin Liao & Yusui Tang, 2022. "Moving beyond Volatility Index (VIX): HARnessing the term structure of implied volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 86-99, January.
    398. Mc Cracken, Michael W., 2000. "Robust out-of-sample inference," Journal of Econometrics, Elsevier, vol. 99(2), pages 195-223, December.
    399. Leandro Maciel & Rosangela Ballini, 2021. "Functional Fuzzy Rule-Based Modeling for Interval-Valued Data: An Empirical Application for Exchange Rates Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 57(2), pages 743-771, February.
    400. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    401. Berg, Andrew & Pattillo, Catherine, 1999. "Predicting currency crises:: The indicators approach and an alternative," Journal of International Money and Finance, Elsevier, vol. 18(4), pages 561-586, August.
    402. Constantin Bürgi & Dorine Boumans, 2020. "Categorical Forecasts and Non-Categorical Loss Functions," CESifo Working Paper Series 8266, CESifo.
    403. Li, Xiafei & Guo, Qiang & Liang, Chao & Umar, Muhammad, 2023. "Forecasting gold volatility with geopolitical risk indices," Research in International Business and Finance, Elsevier, vol. 64(C).
    404. Hartmann, Daniel & Pierdzioch, Christian, 2007. "Exchange rates, interventions, and the predictability of stock returns in Japan," Journal of Multinational Financial Management, Elsevier, vol. 17(2), pages 155-172, April.

  57. Pesaran, M.H. & Timmermann, G., 1990. "The Statistical And Economic Significance Of The Predictability Of Exess Returns On Common Stocks," Cambridge Working Papers in Economics 9022, Faculty of Economics, University of Cambridge.

    Cited by:

    1. Chen, Shiyi & Jeong, Kiho & Härdle, Wolfgang Karl, 2008. "Recurrent support vector regression for a nonlinear ARMA model with applications to forecasting financial returns," SFB 649 Discussion Papers 2008-051, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.

Articles

  1. Pettenuzzo, Davide & Timmermann, Allan, 2011. "Predictability of stock returns and asset allocation under structural breaks," Journal of Econometrics, Elsevier, vol. 164(1), pages 60-78, September.

    Cited by:

    1. Wang, Yudong & Hao, Xianfeng, 2023. "Forecasting the real prices of crude oil: What is the role of parameter instability?," Energy Economics, Elsevier, vol. 117(C).
    2. Liming Chen & Zhi Zhang & Ziqing Du & Lingling Deng, 2021. "Heterogeneous determinants of the exchange rate market in China with structural breaks," Applied Economics, Taylor & Francis Journals, vol. 53(59), pages 6839-6854, December.
    3. Fabian Baetje & Lukas Menkhoff, 2016. "Equity Premium Prediction: Are Economic and Technical Indicators Unstable?," Discussion Papers of DIW Berlin 1552, DIW Berlin, German Institute for Economic Research.
    4. Senyuz, Zeynep, 2009. "Factor Analysis of Permanent and Transitory Dynamics of the U.S. Economy and the Stock Market," MPRA Paper 26855, University Library of Munich, Germany, revised Mar 2010.
    5. Davide Pettenuzzo & Francesco Ravazzolo, 2014. "Optimal portfolio choice under decision-based model combinations," Working Paper 2014/15, Norges Bank.
    6. Andrew Ang & Allan Timmermann, 2011. "Regime Changes and Financial Markets," NBER Working Papers 17182, National Bureau of Economic Research, Inc.
    7. Marco J. Lombardi & Francesco Ravazzolo, 2012. "Oil price density forecasts: exploring the linkages with stock markets," Working Paper 2012/24, Norges Bank.
    8. Nuno Silva, 2015. "Time-Varying Stock Return Predictability: The Eurozone Case," Notas Económicas, Faculty of Economics, University of Coimbra, issue 41, pages 28-38, June.
    9. Chiang, Thomas C., 2019. "Empirical analysis of intertemporal relations between downside risks and expected returns—Evidence from Asian markets," Research in International Business and Finance, Elsevier, vol. 47(C), pages 264-278.
    10. Frydman, Roman & Goldberg, Michael D. & Mangee, Nicholas, 2015. "Knightian uncertainty and stock-price movements: Why the REH present-value model failed empirically," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 9, pages 1-50.
    11. Avdis, Efstathios & Wachter, Jessica A., 2017. "Maximum likelihood estimation of the equity premium," Journal of Financial Economics, Elsevier, vol. 125(3), pages 589-609.
    12. Yang, Jianlei & Yang, Chunpeng, 2021. "The impact of mixed-frequency geopolitical risk on stock market returns," Economic Analysis and Policy, Elsevier, vol. 72(C), pages 226-240.
    13. Chen, Xiaoyu & Chiang, Thomas C., 2020. "Empirical investigation of changes in policy uncertainty on stock returns—Evidence from China’s market," Research in International Business and Finance, Elsevier, vol. 53(C).
    14. Lombardi, Marco J. & Ravazzolo, Francesco, 2016. "On the correlation between commodity and equity returns: Implications for portfolio allocation," Journal of Commodity Markets, Elsevier, vol. 2(1), pages 45-57.
    15. Maheu, John M & Song, Yong, 2017. "An Efficient Bayesian Approach to Multiple Structural Change in Multivariate Time Series," MPRA Paper 79211, University Library of Munich, Germany.
    16. Harry J. Turtle & Chengping Zhang, 2015. "Structural breaks and portfolio performance in global equity markets," Quantitative Finance, Taylor & Francis Journals, vol. 15(6), pages 909-922, June.
    17. Dendramis, Yiannis & Kapetanios, George & Tzavalis, Elias, 2014. "Level shifts in stock returns driven by large shocks," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 41-51.
    18. Smith, Simon C., 2021. "International stock return predictability," International Review of Financial Analysis, Elsevier, vol. 78(C).
    19. Carlos Carvalho & Jared D. Fisher & Davide Pettenuzzo, 2018. "Optimal Asset Allocation with Multivariate Bayesian Dynamic Linear Models," Working Papers 123, Brandeis University, Department of Economics and International Business School.
    20. Paulo M.M. Rodrigues & Matei Demetrescu, 2019. "Testing for Episodic Predictability in Stock Returns," Working Papers w201906, Banco de Portugal, Economics and Research Department.
    21. Felix Haase & Matthias Neuenkirch, 2020. "Predictability of Bull and Bear Markets: A New Look at Forecasting Stock Market Regimes (and Returns) in the US," Research Papers in Economics 2020-01, University of Trier, Department of Economics.
    22. Katrin Wölfel & Christoph S. Weber, 2017. "Searching for the Fed’s reaction function," Empirical Economics, Springer, vol. 52(1), pages 191-227, February.
    23. Timmermann, Allan, 2018. "Forecasting Methods in Finance," CEPR Discussion Papers 12692, C.E.P.R. Discussion Papers.
    24. Yannick Hoga, 2024. "Persistence-Robust Break Detection in Predictive Quantile and CoVaR Regressions," Papers 2410.05861, arXiv.org.
    25. Chatzitzisi, Evanthia & Fountas, Stilianos & Panagiotidis, Theodore, 2021. "Another look at calendar anomalies," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 823-840.
    26. Thomas Conlon & John Cotter & Iason Kynigakis, 2021. "Machine Learning and Factor-Based Portfolio Optimization," Papers 2107.13866, arXiv.org.
    27. Casas Villalba, Maria Isabel, 2020. "Adaptative predictability of stock market returns," DES - Working Papers. Statistics and Econometrics. WS 31648, Universidad Carlos III de Madrid. Departamento de Estadística.
    28. Chun Liu & John M. Maheu, 2008. "Are There Structural Breaks in Realized Volatility?," Journal of Financial Econometrics, Oxford University Press, vol. 6(3), pages 326-360, Summer.
    29. Nima Nonejad, 2021. "An Overview Of Dynamic Model Averaging Techniques In Time‐Series Econometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 566-614, April.
    30. Massimo Guidolin, 2011. "Markov Switching Models in Empirical Finance," Working Papers 415, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    31. Michael D. Goldberg & Olesia Kozlova & Deniz Ozabaci, 2020. "Forward Rate Bias in Developed and Developing Countries: More Risky Not Less Rational," Econometrics, MDPI, vol. 8(4), pages 1-26, December.
    32. Hammerschmid, Regina & Lohre, Harald, 2018. "Regime shifts and stock return predictability," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 138-160.
    33. Erik Hjalmarsson, 2008. "Predicting global stock returns," International Finance Discussion Papers 933, Board of Governors of the Federal Reserve System (U.S.).
    34. Chevillon, Guillaume, 2016. "Multistep forecasting in the presence of location shifts," International Journal of Forecasting, Elsevier, vol. 32(1), pages 121-137.
    35. Goodarzi, Milad & Meinerding, Christoph, 2023. "Asset allocation with recursive parameter updating and macroeconomic regime identifiers," Discussion Papers 06/2023, Deutsche Bundesbank.
    36. Dangl, Thomas & Halling, Michael, 2012. "Predictive regressions with time-varying coefficients," Journal of Financial Economics, Elsevier, vol. 106(1), pages 157-181.
    37. Bart Diris & Franz Palm & Peter Schotman, 2015. "Long-Term Strategic Asset Allocation: An Out-of-Sample Evaluation," Management Science, INFORMS, vol. 61(9), pages 2185-2202, September.
    38. Roy P. P. M. Hoevenaars & Roderick D. J. Molenaar & Peter C. Schotman & Tom B. M. Steenkamp, 2014. "Strategic Asset Allocation For Long‐Term Investors: Parameter Uncertainty And Prior Information," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(3), pages 353-376, April.
    39. Caroline Michere Ndei & Stephen Muchina & Kennedy Waweru, 2019. "Modeling stock market return volatility in the presence of structural breaks: Evidence from Nairobi Securities Exchange, Kenya," International Journal of Research in Business and Social Science (2147-4478), Center for the Strategic Studies in Business and Finance, vol. 8(5), pages 156-171, September.
    40. Jiawen Xu & Pierre Perron, 2017. "Forecasting in the presence of in and out of sample breaks," Boston University - Department of Economics - Working Papers Series WP2018-014, Boston University - Department of Economics, revised Nov 2018.
    41. Arnaud Dufays & Zhuo Li & Jeroen V.K. Rombouts & Yong Song, 2021. "Sparse change‐point VAR models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(6), pages 703-727, September.
    42. Chen, Xiaoyu & Chiang, Thomas C., 2016. "Stock returns and economic forces—An empirical investigation of Chinese markets," Global Finance Journal, Elsevier, vol. 30(C), pages 45-65.
    43. Luo, Shikong & Yan, Xinyan & Yang, Haoyi, 2021. "Let’s take a smooth break: Stock return predictability revisited," International Review of Economics & Finance, Elsevier, vol. 75(C), pages 300-314.
    44. Hollstein, Fabian & Prokopczuk, Marcel & Tharann, Björn & Wese Simen, Chardin, 2021. "Predictability in commodity markets: Evidence from more than a century," Journal of Commodity Markets, Elsevier, vol. 24(C).
    45. Seema Narayan & Russell Smyth, 2015. "The Financial Econometrics of Price Discovery and Predictability," Monash Economics Working Papers 06-15, Monash University, Department of Economics.
    46. Çakmaklı, Cem & van Dijk, Dick, 2016. "Getting the most out of macroeconomic information for predicting excess stock returns," International Journal of Forecasting, Elsevier, vol. 32(3), pages 650-668.
    47. Roman Frydman & Soren Johansen & Anders Rahbek & Morten Nyboe Tabor, 2021. "Asset Prices Under Knightian Uncertainty," Working Papers Series inetwp172, Institute for New Economic Thinking.
    48. Markwat, T.D. & Kole, H.J.W.G. & van Dijk, D.J.C., 2009. "Time Variation in Asset Return Dependence: Strength or Structure?," ERIM Report Series Research in Management ERS-2009-052-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    49. Zhu, Xiaoneng & Zhu, Jie, 2013. "Predicting stock returns: A regime-switching combination approach and economic links," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4120-4133.
    50. Hong, Hui & Chen, Naiwei & O’Brien, Fergal & Ryan, James, 2018. "Stock return predictability and model instability: Evidence from mainland China and Hong Kong," The Quarterly Review of Economics and Finance, Elsevier, vol. 68(C), pages 132-142.
    51. Xu, Ke-Li, 2013. "Powerful tests for structural changes in volatility," Journal of Econometrics, Elsevier, vol. 173(1), pages 126-142.
    52. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    53. Simon C. Smith, 2020. "Equity premium prediction and structural breaks," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 25(3), pages 412-429, July.
    54. Bali, Turan G. & Demirtas, K. Ozgur & Levy, Haim, 2008. "Nonlinear mean reversion in stock prices," Journal of Banking & Finance, Elsevier, vol. 32(5), pages 767-782, May.
    55. Zhang, Yugui & Zhu, Jie & Zhu, Xiaoneng, 2020. "Investing for the long run when expected equity premium is nonnegative," Pacific-Basin Finance Journal, Elsevier, vol. 63(C).
    56. Zhu, Xiaoneng, 2013. "Perpetual learning and stock return predictability," Economics Letters, Elsevier, vol. 121(1), pages 19-22.
    57. Chen, Cathy Yi-Hsuan & Chiang, Thomas C. & Härdle, Wolfgang Karl, 2016. "Downside risk and stock returns: An empirical analysis of the long-run and short-run dynamics from the G-7 Countries," SFB 649 Discussion Papers 2016-001, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    58. Ravazzolo, F. & van Dijk, D.J.C. & Paap, R. & Franses, Ph.H.B.F., 2006. "Bayesian Model Averaging in the Presence of Structural Breaks," Econometric Institute Research Papers EI 2006-33, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    59. Focardi, Sergio M. & Fabozzi, Frank J. & Mazza, Davide, 2019. "Modeling local trends with regime shifting models with time-varying probabilities," International Review of Financial Analysis, Elsevier, vol. 66(C).
    60. Li, Chenxing, 2022. "A multivariate GARCH model with an infinite hidden Markov mixture," MPRA Paper 112792, University Library of Munich, Germany.
    61. Sensoy, Ahmet, 2013. "Dynamic relationship between precious metals," Resources Policy, Elsevier, vol. 38(4), pages 504-511.
    62. Elliott, Graham & Gargano, Antonio & Timmermann, Allan, 2013. "Complete subset regressions," Journal of Econometrics, Elsevier, vol. 177(2), pages 357-373.
    63. Masahiko Egami & Yuki Shigeta & Katsutoshi Wakai, 2014. "The change of correlation structure across industries:an analysis in the regime-switching framework," Discussion papers e-14-002, Graduate School of Economics Project Center, Kyoto University.
    64. Chiang, Thomas C., 2019. "Economic policy uncertainty, risk and stock returns: Evidence from G7 stock markets," Finance Research Letters, Elsevier, vol. 29(C), pages 41-49.
    65. Boot, Tom & Pick, Andreas, 2020. "Does modeling a structural break improve forecast accuracy?," Journal of Econometrics, Elsevier, vol. 215(1), pages 35-59.
    66. Cathy Yi†Hsuan Chen & Thomas C. Chiang, 2016. "Empirical Analysis of the Intertemporal Relationship between Downside Risk and Expected Returns: Evidence from Time†varying Transition Probability Models," European Financial Management, European Financial Management Association, vol. 22(5), pages 749-796, November.
    67. Luis A. Gil-Alana & Goodness C. Aye & Rangan Gupta, 2012. "Testing for Persistence with Breaks and Outliers in South African House Prices," Faculty Working Papers 20/12, School of Economics and Business Administration, University of Navarra.
    68. Allan Timmermann, 2018. "Forecasting Methods in Finance," Annual Review of Financial Economics, Annual Reviews, vol. 10(1), pages 449-479, November.
    69. Bachmeier, Lance J. & Nadimi, Soheil R., 2018. "Oil shocks and stock return volatility," The Quarterly Review of Economics and Finance, Elsevier, vol. 68(C), pages 1-9.
    70. Barras, Laurent, 2007. "International conditional asset allocation under specification uncertainty," Journal of Empirical Finance, Elsevier, vol. 14(4), pages 443-464, September.
    71. Daniel Borup & Jonas N. Eriksen & Mads M. Kjær & Martin Thyrsgaard, 2024. "Predicting Bond Return Predictability," Management Science, INFORMS, vol. 70(2), pages 931-951, February.
    72. Jiawen Xu & Pierre Perron, 2023. "Forecasting in the presence of in-sample and out-of-sample breaks," Empirical Economics, Springer, vol. 64(6), pages 3001-3035, June.
    73. Nuno Silva, 2015. "Industry based equity premium forecasts," GEMF Working Papers 2015-19, GEMF, Faculty of Economics, University of Coimbra.
    74. Paye, Bradley S. & Timmermann, Allan, 2006. "Instability of return prediction models," Journal of Empirical Finance, Elsevier, vol. 13(3), pages 274-315, June.
    75. Joscha Beckmann & Rainer Schüssler, 2014. "Forecasting Equity Premia using Bayesian Dynamic Model Averaging," CQE Working Papers 2914, Center for Quantitative Economics (CQE), University of Muenster.

  2. Pesaran, M. Hashem & Pick, Andreas & Timmermann, Allan, 2011. "Variable selection, estimation and inference for multi-period forecasting problems," Journal of Econometrics, Elsevier, vol. 164(1), pages 173-187, September.

    Cited by:

    1. Mario Porqueddu & Fabrizio Venditti, 2012. "Do food commodity prices have asymmetric effects on Euro-Area inflation?," Temi di discussione (Economic working papers) 878, Bank of Italy, Economic Research and International Relations Area.
    2. Leonardo Nogueira Ferreira & Silvia Miranda-Agrippino & Giovanni Ricco, 2023. "Bayesian Local Projections," Working Papers Series 581, Central Bank of Brazil, Research Department.
    3. Kourentzes, Nikolaos & Trapero, Juan R. & Barrow, Devon K., 2020. "Optimising forecasting models for inventory planning," International Journal of Production Economics, Elsevier, vol. 225(C).
    4. Boriss Siliverstovs & Daniel S. Wochner, 2021. "State‐dependent evaluation of predictive ability," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 547-574, April.
    5. Y. Dendramis & G. Kapetanios & M. Marcellino, 2020. "A similarity‐based approach for macroeconomic forecasting," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 801-827, June.
    6. Buncic, Daniel & Piras, Gion Donat, 2014. "Heterogeneous Agents, the Financial Crisis and Exchange Rate Predictability," Economics Working Paper Series 1436, University of St. Gallen, School of Economics and Political Science, revised Oct 2015.
    7. Miranda-Agrippino, Silvia & Ricco, Giovanni, 2017. "The transmission of monetary policy shocks," Bank of England working papers 657, Bank of England.
    8. Tanya Araujo & João Dias & Samuel Eleutério & Francisco Louçã, 2012. "How Fama Went Wrong: Measures of Multivariate Kurtosis for the Identification of the Dynamics of a N-Dimensional Market," Working Papers Department of Economics 2012/21, ISEG - Lisbon School of Economics and Management, Department of Economics, Universidade de Lisboa.
    9. International Monetary Fund, 2012. "Short-Term Wholesale Funding and Systemic Risk: A Global Covar Approach," IMF Working Papers 2012/046, International Monetary Fund.
    10. Gianluca Cubadda & Alain Hecq, 2022. "Dimension Reduction for High Dimensional Vector Autoregressive Models," CEIS Research Paper 534, Tor Vergata University, CEIS, revised 24 Mar 2022.
    11. Fabricio Tourrucôo & João F. Caldeira & Guilherme V. Moura & André A. P. Santos, 2016. "Forecasting The Yield Curve With The Arbitrage-Free Dynamic Nelson-Siegel Model: Brazilian Evidence," Anais do XLII Encontro Nacional de Economia [Proceedings of the 42nd Brazilian Economics Meeting] 028, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    12. Boriss Siliverstovs & Daniel Wochner, 2019. "Recessions as Breadwinner for Forecasters State-Dependent Evaluation of Predictive Ability: Evidence from Big Macroeconomic US Data," KOF Working papers 19-463, KOF Swiss Economic Institute, ETH Zurich.
    13. Cheng, Xu & Hansen, Bruce E., 2015. "Forecasting with factor-augmented regression: A frequentist model averaging approach," Journal of Econometrics, Elsevier, vol. 186(2), pages 280-293.
    14. Mikkel Plagborg-Møller & Christian K. Wolf, 2020. "Local Projections and VARs Estimate the Same Impulse Responses," Working Papers 2020-16, Princeton University. Economics Department..
    15. Sultan Mehmood, 2014. "Terrorism and the macroeconomy: Evidence from Pakistan," Defence and Peace Economics, Taylor & Francis Journals, vol. 25(5), pages 509-534, October.
    16. Hännikäinen, Jari, 2014. "Multi-step forecasting in the presence of breaks," MPRA Paper 55816, University Library of Munich, Germany.
    17. Kohei Maehashi & Mototsugu Shintani, 2020. "Macroeconomic Forecasting Using Factor Models and Machine Learning: An Application to Japan," CIRJE F-Series CIRJE-F-1146, CIRJE, Faculty of Economics, University of Tokyo.
    18. Tanya Ara'ujo & Jo~ao Dias & Samuel Eleut'erio & Francisco Louc{c}~a, 2012. "How Fama Went Wrong: Measures of Multivariate Kurtosis for the Identification of the Dynamics of a N-Dimensional Market," Papers 1207.1202, arXiv.org.
    19. Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    20. Erik Kole & Thijs Markwat & Anne Opschoor & Dick van Dijk, 2017. "Forecasting Value-at-Risk under Temporal and Portfolio Aggregation," Journal of Financial Econometrics, Oxford University Press, vol. 15(4), pages 649-677.
    21. Carriero, Andrea & Kapetanios, George & Marcellino, Massimiliano, 2012. "Forecasting government bond yields with large Bayesian vector autoregressions," Journal of Banking & Finance, Elsevier, vol. 36(7), pages 2026-2047.
    22. Buncic, Daniel & Gisler, Katja I. M., 2015. "Global Equity Market Volatility Spillovers: A Broader Role for the United States," Economics Working Paper Series 1508, University of St. Gallen, School of Economics and Political Science.
    23. Hou, Linke & Lv, Yuxia & Geng, Hao & Li, Feiyue, 2019. "To tell the truth or the perceived truth: Structural estimation of peer effects in China’s macroeconomic forecast," Economic Systems, Elsevier, vol. 43(2), pages 1-1.
    24. Caldeira, João F. & Moura, Guilherme V. & Santos, André A.P., 2016. "Predicting the yield curve using forecast combinations," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 79-98.
    25. Kim, Hyun Hak & Swanson, Norman R., 2014. "Forecasting financial and macroeconomic variables using data reduction methods: New empirical evidence," Journal of Econometrics, Elsevier, vol. 178(P2), pages 352-367.
    26. Jia Chen & Degui Li & Oliver Linton & Zudi Lu, 2015. "Semiparametric Model Averaging of Ultra-High Dimensional Time Series," Discussion Papers 15/18, Department of Economics, University of York.
    27. Alexander Chudik & Valerie Grossman & M. Hashem Pesaran, 2014. "A multi-country approach to forecasting output growth using PMIs," Globalization Institute Working Papers 213, Federal Reserve Bank of Dallas.
    28. Chevillon, Guillaume, 2016. "Multistep forecasting in the presence of location shifts," International Journal of Forecasting, Elsevier, vol. 32(1), pages 121-137.
    29. Pesaran, M. Hashem & Pick, Andreas & Pranovich, Mikhail, 2013. "Optimal forecasts in the presence of structural breaks," Journal of Econometrics, Elsevier, vol. 177(2), pages 134-152.
    30. Germán López-Espinosa & Antonio Moreno & Antonio Rubia & Laura Valderrama, 2012. "Short-term Wholesale Funding and Systemic Risk: A Global CoVaR Approach," Faculty Working Papers 02/12, School of Economics and Business Administration, University of Navarra.
    31. Ng, Serena, 2013. "Variable Selection in Predictive Regressions," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 752-789, Elsevier.
    32. Buncic, Daniel & Moretto, Carlo, 2015. "Forecasting copper prices with dynamic averaging and selection models," The North American Journal of Economics and Finance, Elsevier, vol. 33(C), pages 1-38.
    33. Peter Reinhard Hansen & Allan Timmermann, 2012. "Choice of Sample Split in Out-of-Sample Forecast Evaluation," CREATES Research Papers 2012-43, Department of Economics and Business Economics, Aarhus University.
    34. Xu Cheng & Bruce E. Hansen, 2012. "Forecasting with Factor-Augmented Regression: A Frequentist Model Averaging Approach, Second Version," PIER Working Paper Archive 13-061, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 03 Sep 2013.
    35. Boudoukh, Jacob & Israel, Ronen & Richardson, Matthew, 2022. "Biases in long-horizon predictive regressions," Journal of Financial Economics, Elsevier, vol. 145(3), pages 937-969.
    36. Pesaran, M.H. & Pick, A. & Pranovich, M., 2011. "Optimal Forecasts in the Presence of Structural Breaks (Updated 14 November 2011)," Cambridge Working Papers in Economics 1163, Faculty of Economics, University of Cambridge.
    37. Valeriy Zakamulin, 2014. "The real-life performance of market timing with moving average and time-series momentum rules," Journal of Asset Management, Palgrave Macmillan, vol. 15(4), pages 261-278, August.
    38. Smeekes, Stephan & Wijler, Etiënne, 2016. "Macroeconomic Forecasting Using Penalized Regression Methods," Research Memorandum 039, Maastricht University, Graduate School of Business and Economics (GSBE).
    39. Gianluca Cubadda & Barbara Guardabascio, 2017. "Representation, Estimation and Forecasting of the Multivariate Index-Augmented Autoregressive Model," CEIS Research Paper 397, Tor Vergata University, CEIS, revised 13 Jul 2018.
    40. Adam Elbourne & Coen Teulings, 2011. "The potential of a small model," CPB Discussion Paper 193, CPB Netherlands Bureau for Economic Policy Analysis.
    41. Daniel Borup & Bent Jesper Christensen & Yunus Emre Ergemen, 2019. "Assessing predictive accuracy in panel data models with long-range dependence," CREATES Research Papers 2019-04, Department of Economics and Business Economics, Aarhus University.
    42. Ryan R. Brady, 2021. "Direct Forecasting for Applied Regional Analysis," Departmental Working Papers 67, United States Naval Academy Department of Economics.
    43. Venditti, Fabrizio, 2013. "From oil to consumer energy prices: How much asymmetry along the way?," Energy Economics, Elsevier, vol. 40(C), pages 468-473.
    44. Yechi Zhang & Jianzhou Wang & Haiyan Lu, 2019. "Research and Application of a Novel Combined Model Based on Multiobjective Optimization for Multistep-Ahead Electric Load Forecasting," Energies, MDPI, vol. 12(10), pages 1-27, May.
    45. Song Shi & Vince Mangioni & Xin Janet Ge & Shanaka Herath & Fethi Rabhi & Rachida Ouysse, 2021. "House Price Forecasting from Investment Perspectives," Land, MDPI, vol. 10(10), pages 1-17, September.
    46. Araújo, Tanya & Dias, João & Eleutério, Samuel & Louçã, Francisco, 2013. "A measure of multivariate kurtosis for the identification of the dynamics of a N-dimensional market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3708-3714.
    47. Heaton, Chris, 2015. "Testing for multiple-period predictability between serially dependent time series," International Journal of Forecasting, Elsevier, vol. 31(3), pages 587-597.
    48. Boot, Tom & Pick, Andreas, 2020. "Does modeling a structural break improve forecast accuracy?," Journal of Econometrics, Elsevier, vol. 215(1), pages 35-59.

  3. Issler, João Victor & Linton, Oliver & Timmermann, Allan, 2011. "Annals issue on forecasting--Guest editors' introduction," Journal of Econometrics, Elsevier, vol. 164(1), pages 1-3, September.

    Cited by:

    1. Mikkel Plagborg-Møller & Christian K. Wolf, 2020. "Local Projections and VARs Estimate the Same Impulse Responses," Working Papers 2020-16, Princeton University. Economics Department..

  4. Patton, Andrew J. & Timmermann, Allan, 2011. "Predictability of Output Growth and Inflation: A Multi-Horizon Survey Approach," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(3), pages 397-410.

    Cited by:

    1. Kajal Lahiri & Huaming Peng & Xuguang Simon Sheng, 2021. "Measuring Uncertainty of a Combined Forecast and Some Tests for Forecaster Heterogeneity," Working Papers 2021-005, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    2. Camba-Méndez, Gonzalo & Werner, Thomas, 2017. "The inflation risk premium in the post-Lehman period," Working Paper Series 2033, European Central Bank.
    3. Hecq, Alain & Jacobs, Jan P.A.M. & Stamatogiannis, Michalis P., 2019. "Testing for news and noise in non-stationary time series subject to multiple historical revisions," Journal of Macroeconomics, Elsevier, vol. 60(C), pages 396-407.
    4. Atalla, Tarek & Joutz, Fred & Pierru, Axel, 2016. "Does disagreement among oil price forecasters reflect volatility? Evidence from the ECB surveys," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1178-1192.
    5. Burban, Valentin & De Backer, Bruno & Vladu, Andreea Liliana, 2024. "Inflation (de-)anchoring in the euro area," Working Paper Series 2964, European Central Bank.
    6. Beckmann, Joscha & Czudaj, Robert L., 2020. "Fundamental determinants of exchange rate expectations," VfS Annual Conference 2020 (Virtual Conference): Gender Economics 224617, Verein für Socialpolitik / German Economic Association.
    7. Marcela De Castro-Valderrama & Santiago Forero-Alvarado & Nicolás Moreno-Arias & Sara Naranjo-Saldarriaga, 2021. "Unraveling the Exogenous Forces Behind Analysts’ Macroeconomic Forecasts," Borradores de Economia 1184, Banco de la Republica de Colombia.
    8. Beckmann, Joscha & Czudaj, Robert L. & Murach, Michael, 2024. "Macroeconomic Effects from Media Coverage of the China-U.S. Trade War on selected EU Countries," MPRA Paper 121751, University Library of Munich, Germany.
    9. Qu, Ritong & Timmermann, Allan & Zhu, Yinchu, 2024. "Comparing forecasting performance with panel data," International Journal of Forecasting, Elsevier, vol. 40(3), pages 918-941.
    10. Czudaj, Robert & Beckmann, Joscha, 2018. "Monetary policy shocks, expectations and information rigidities," VfS Annual Conference 2018 (Freiburg, Breisgau): Digital Economy 181573, Verein für Socialpolitik / German Economic Association.
    11. Todd E. Clark & Gergely Ganics & Elmar Mertens, 2024. "Constructing fan charts from the ragged edge of SPF forecasts," Working Papers 2429, Banco de España.
    12. Meade, Nigel & Driver, Ciaran, 2023. "Differing behaviours of forecasters of UK GDP growth," International Journal of Forecasting, Elsevier, vol. 39(2), pages 772-790.
    13. Bruno Deschamps & Christos Ioannidis, 2014. "The Efficiency of Multivariate Macroeconomic Forecasts," Manchester School, University of Manchester, vol. 82(5), pages 509-523, September.
    14. Wojciech Charemza & Carlos Diaz Vela & Svetlana Makarova, 2013. "Inflation fan charts, monetary policy and skew normal distribution," Discussion Papers in Economics 13/06, Division of Economics, School of Business, University of Leicester.
    15. William A. Branch, 2014. "Nowcasting and the Taylor Rule," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 46(5), pages 1035-1055, August.
    16. Robert L. Czudaj, 2019. "Is the negative interest rate policy effective?," Chemnitz Economic Papers 034, Department of Economics, Chemnitz University of Technology, revised Dec 2019.
    17. Andrew J. Patton & Allan Timmermann, 2011. "Forecast Rationality Tests Based on Multi-Horizon Bounds," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 1-17, June.
    18. Bennett Schmanski & Chiara Scotti & Clara Vega, 2023. "Fed Communication, News, Twitter, and Echo Chambers," Finance and Economics Discussion Series 2023-036, Board of Governors of the Federal Reserve System (U.S.).
    19. Valentin Burban & Bruno De Backer & Andreea Liliana Vladu, 2024. "Inflation (De-)Anchoring in the Euro Area," Working papers 965, Banque de France.
    20. Clements, Michael P. & Galvão, Ana Beatriz, 2017. "Model and survey estimates of the term structure of US macroeconomic uncertainty," International Journal of Forecasting, Elsevier, vol. 33(3), pages 591-604.
    21. Feunou Bruno & Fontaine Jean-Sébastien & Jin Jianjian, 2021. "What model for the target rate," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 25(1), pages 1-23, February.
    22. Todd E. Clark & Gergely Ganics & Elmar Mertens, 2022. "What is the Predictive Value of SPF Point and Density Forecasts?," Working Papers 22-37, Federal Reserve Bank of Cleveland.
    23. Clements, Michael P., 2012. "Subjective and Ex Post Forecast Uncertainty: US Inflation and Output Growth," Economic Research Papers 270629, University of Warwick - Department of Economics.
    24. Joscha Beckmann & Robert L. Czudaj, 2023. "The role of expectations for currency crisis dynamics—The case of the Turkish lira," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(3), pages 625-642, April.
    25. Michele Bernardi & Jaqueson K. Galimberti, 2014. "A Note on the Representative Adaptive Learning Algorithm," KOF Working papers 14-356, KOF Swiss Economic Institute, ETH Zurich.
    26. Michael P. Clements, 2020. "Individual Forecaster Perceptions of the Persistence of Shocks to GDP," ICMA Centre Discussion Papers in Finance icma-dp2020-02, Henley Business School, University of Reading.
    27. Timmermann, Allan & Zhu, Yinchu, 2019. "Comparing Forecasting Performance with Panel Data," CEPR Discussion Papers 13746, C.E.P.R. Discussion Papers.
    28. Knüppel, Malte, 2018. "Forecast-error-based estimation of forecast uncertainty when the horizon is increased," International Journal of Forecasting, Elsevier, vol. 34(1), pages 105-116.
    29. Lahiri, Kajal & Zhao, Yongchen, 2019. "International propagation of shocks: A dynamic factor model using survey forecasts," International Journal of Forecasting, Elsevier, vol. 35(3), pages 929-947.
    30. Dybowski, T. Philipp & Kempa, Bernd, 2020. "The European Central Bank’s monetary pillar after the financial crisis," Journal of Banking & Finance, Elsevier, vol. 121(C).
    31. Michael P Clements, 2014. "Assessing the Evidence of Macro- Forecaster Herding: Forecasts of Inflation and Output Growth," ICMA Centre Discussion Papers in Finance icma-dp2014-12, Henley Business School, University of Reading.
    32. Busetto, Filippo, 2024. "Asymmetric expectations of monetary policy," Bank of England working papers 1058, Bank of England.
    33. Joscha Beckmann & Robert L. Czudaj, 2020. "Professional forecasters' expectations, consistency, and international spillovers," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(7), pages 1001-1024, November.
    34. Michele Berardi & Jaqueson K. Galimberti, 2012. "On the plausibility of adaptive learning in macroeconomics: A puzzling conflict in the choice of the representative algorithm," Centre for Growth and Business Cycle Research Discussion Paper Series 177, Economics, The University of Manchester.
    35. Fabian Kruger & Hendrik Plett, 2022. "Prediction intervals for economic fixed-event forecasts," Papers 2210.13562, arXiv.org, revised Mar 2024.

  5. Aiolfi, Marco & Catão, Luis A.V. & Timmermann, Allan, 2011. "Common factors in Latin America's business cycles," Journal of Development Economics, Elsevier, vol. 95(2), pages 212-228, July.
    See citations under working paper version above.
  6. Patton, Andrew J. & Timmermann, Allan, 2010. "Why do forecasters disagree? Lessons from the term structure of cross-sectional dispersion," Journal of Monetary Economics, Elsevier, vol. 57(7), pages 803-820, October.

    Cited by:

    1. Park, Sunjin, 2022. "Heterogeneous beliefs in macroeconomic growth prospects and the carry risk premium," Journal of Banking & Finance, Elsevier, vol. 136(C).
    2. Gergely Ganics & Barbara Rossi & Tatevik Sekhposyan, 2019. "From fixed-event to fixed-horizon density forecasts: Obtaining measures of multi-horizon uncertainty from survey density forecasts," Economics Working Papers 1689, Department of Economics and Business, Universitat Pompeu Fabra.
    3. Kajal Lahiri & Huaming Peng & Xuguang Simon Sheng, 2021. "Measuring Uncertainty of a Combined Forecast and Some Tests for Forecaster Heterogeneity," Working Papers 2021-005, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    4. Atalla, Tarek & Joutz, Fred & Pierru, Axel, 2016. "Does disagreement among oil price forecasters reflect volatility? Evidence from the ECB surveys," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1178-1192.
    5. Soojin Jo & Rodrigo Sekkel, 2019. "Macroeconomic Uncertainty Through the Lens of Professional Forecasters," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(3), pages 436-446, July.
    6. Michael D. Bauer & Carolin Pflueger & Adi Sunderam, 2023. "Perceptions about Monetary Policy," Working Paper Series 2023-31, Federal Reserve Bank of San Francisco.
    7. Jonathan Benchimol & Makram El-Shagi & Yossi Saadon, 2020. "Do Expert Experience and Characteristics Affect Inflation Forecasts?," Bank of Israel Working Papers 2020.11, Bank of Israel.
    8. Maiko Koga & Haruko Kato, 2017. "Behavioral Biases in Firms' Growth Expectations," Bank of Japan Working Paper Series 17-E-9, Bank of Japan.
    9. Richard K. Crump & Stefano Eusepi & Emanuel Moench, 2016. "The term structure of expectations and bond yields," Staff Reports 775, Federal Reserve Bank of New York.
    10. Osnat Zohar, 2021. "Cyclicality of Uncertainty and Disagreement," Bank of Israel Working Papers 2021.09, Bank of Israel.
    11. Cordeiro, Yara de Almeida Campos & Gaglianone, Wagner Piazza & Issler, João Victor, 2016. "Inattention in individual expectations," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 776, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    12. Andrew C. Chang & Trace J. Levinson, 2023. "Raiders of the lost high‐frequency forecasts: New data and evidence on the efficiency of the Fed's forecasting," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(1), pages 88-104, January.
    13. Coibion, Olivier & Gorodnichenko, Yuriy & Kumar, Saten & Ryngaert, Jane, 2021. "Do You Know that I Know that You Know…? Higher-Order Beliefs in Survey Data," Department of Economics, Working Paper Series qt5cd1r3bd, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
    14. Clements, Michael P., 2014. "Probability distributions or point predictions? Survey forecasts of US output growth and inflation," International Journal of Forecasting, Elsevier, vol. 30(1), pages 99-117.
    15. James Yetman, 2018. "The perils of approximating fixed-horizon inflation forecasts with fixed-event forecasts," BIS Working Papers 700, Bank for International Settlements.
    16. Robert Rich & Joseph Tracy, 2021. "A Closer Look at the Behavior of Uncertainty and Disagreement: Micro Evidence from the Euro Area," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 53(1), pages 233-253, February.
    17. Marcela De Castro-Valderrama & Santiago Forero-Alvarado & Nicolás Moreno-Arias & Sara Naranjo-Saldarriaga, 2021. "Unraveling the Exogenous Forces Behind Analysts’ Macroeconomic Forecasts," Borradores de Economia 1184, Banco de la Republica de Colombia.
    18. Dovern, Jonas, 2014. "A Multivariate Analysis of Forecast Disagreement: Confronting Models of Disagreement with SPF Data," Working Papers 0571, University of Heidelberg, Department of Economics.
    19. Alice Hsiaw & Ing-Haw Cheng, 2016. "Distrust in Experts and the Origins of Disagreement," Working Papers 110R2, Brandeis University, Department of Economics and International Business School, revised Jan 2017.
    20. Conrad, Christian & Lahiri, Kajal, 2023. "Heterogeneous expectations among professional forecasters," ZEW Discussion Papers 23-062, ZEW - Leibniz Centre for European Economic Research.
    21. Dick, Christian D. & Schmeling, Maik & Schrimpf, Andreas, 2010. "Macro expectations, aggregate uncertainty, and expected term premia," ZEW Discussion Papers 10-064, ZEW - Leibniz Centre for European Economic Research.
    22. Lena Dräger & Michael J. Lamla, 2015. "Disagreement à la Taylor: Evidence from Survey Microdata," Macroeconomics and Finance Series 201503, University of Hamburg, Department of Socioeconomics.
    23. Mikhail Anufriev & Aleksei Chernulich & Jan Tuinstra, 2020. "Asset Price Volatility and Investment Horizons: An Experimental Investigation," Working Papers 20200053, New York University Abu Dhabi, Department of Social Science, revised Aug 2020.
    24. Alonso, Ricardo & Câmara, Odilon, 2016. "Bayesian persuasion with heterogeneous priors," LSE Research Online Documents on Economics 67950, London School of Economics and Political Science, LSE Library.
    25. James M. Nason & Gregor W. Smith, 2013. "Measuring The Slowly Evolving Trend In Us Inflation With Professional Forecasts," Working Paper 1316, Economics Department, Queen's University.
    26. Giacomini, Raffaella & Skreta, Vasiliki & Turen, Javier, 2016. "Models, inattention and expectation updates," LSE Research Online Documents on Economics 86245, London School of Economics and Political Science, LSE Library.
    27. Oscar Claveria, 2021. "Uncertainty indicators based on expectations of business and consumer surveys," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 48(2), pages 483-505, May.
    28. Charles F. Manski, 2018. "Survey Measurement of Probabilistic Macroeconomic Expectations: Progress and Promise," NBER Macroeconomics Annual, University of Chicago Press, vol. 32(1), pages 411-471.
    29. Qu, Ritong & Timmermann, Allan & Zhu, Yinchu, 2024. "Comparing forecasting performance with panel data," International Journal of Forecasting, Elsevier, vol. 40(3), pages 918-941.
    30. Andrew J. Patton & Allan Timmermann, 2008. "The Resolution of Macroeconomic Uncertainty: Evidence from Survey Forecast," CREATES Research Papers 2008-54, Department of Economics and Business Economics, Aarhus University.
    31. Michael Clements, 2017. "Do forecasters target first or later releases of national accounts data?," ICMA Centre Discussion Papers in Finance icma-dp2017-03, Henley Business School, University of Reading.
    32. Robert A. Connolly & Chris Stivers & Licheng Sun, 2022. "Stock returns and inflation shocks in weaker economic times," Financial Management, Financial Management Association International, vol. 51(3), pages 827-867, September.
    33. Paul Hubert, 2014. "FOMC Forecasts as a Focal Point for Private Expectations," Post-Print hal-03399408, HAL.
    34. Andrade, Philippe & Le Bihan, Hervé, 2013. "Inattentive professional forecasters," Journal of Monetary Economics, Elsevier, vol. 60(8), pages 967-982.
    35. Michael P. Clements, 2018. "Do Macroforecasters Herd?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(2-3), pages 265-292, March.
    36. Richard K. Crump & Stefano Eusepi & Emanuel Moench & Bruce Preston, 2021. "The Term Structure of Expectations," Staff Reports 992, Federal Reserve Bank of New York.
    37. Fernando Nascimento de Oliveira & Wagner Piazza Gaglianone, 2019. "Expectations Anchoring Indexes for Brazil using Kalman Filter: exploring signals of inflation anchoring in the long term," Working Papers Series 497, Central Bank of Brazil, Research Department.
    38. Tsiaplias, Sarantis, 2020. "Time-Varying Consumer Disagreement and Future Inflation," Journal of Economic Dynamics and Control, Elsevier, vol. 116(C).
    39. Huisman, Ronald & Van der Sar, Nico L. & Zwinkels, Remco C.J., 2021. "Volatility expectations and disagreement," Journal of Economic Behavior & Organization, Elsevier, vol. 188(C), pages 379-393.
    40. Cao, Shuo & Crump, Richard K. & ,, 2020. "Fundamental Disagreement about Monetary Policy and the Term Structure of Interest Rates," CEPR Discussion Papers 15122, C.E.P.R. Discussion Papers.
    41. Ethan Struby, 2018. "Macroeconomic Disagreement in Treasury Yields," Working Papers 2018-04, Carleton College, Department of Economics.
    42. Rossi, Barbara & Ganics, Gergely & Sekhposyan, Tatevik, 2020. "From Fixed-event to Fixed-horizon Density Forecasts: Obtaining Measures of Multi-horizon Uncertainty from Survey Density Foreca," CEPR Discussion Papers 14267, C.E.P.R. Discussion Papers.
    43. Hassan, Tarek & Mertens, Thomas M., 2014. "The Social Cost of Near-Rational Investment," CEPR Discussion Papers 10007, C.E.P.R. Discussion Papers.
    44. Muñoz, Manuel A. & Soons, Oscar, 2023. "Public money as a store of value, heterogeneous beliefs, and banks: implications of CBDC," Working Paper Series 2801, European Central Bank.
    45. Michael P. Clements, 2022. "Forecaster Efficiency, Accuracy, and Disagreement: Evidence Using Individual‐Level Survey Data," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 54(2-3), pages 537-568, March.
    46. Meade, Nigel & Driver, Ciaran, 2023. "Differing behaviours of forecasters of UK GDP growth," International Journal of Forecasting, Elsevier, vol. 39(2), pages 772-790.
    47. Alexander Ballantyne & Christian Gillitzer & David Jacobs & Ewan Rankin, 2016. "Disagreement about Inflation Expectations," RBA Research Discussion Papers rdp2016-02, Reserve Bank of Australia.
    48. Driver, Ciaran & Trapani, Lorenzo & Urga, Giovanni, 2013. "On the use of cross-sectional measures of forecast uncertainty," International Journal of Forecasting, Elsevier, vol. 29(3), pages 367-377.
    49. Evren Erdogan Cosar & Sayg�n Sahinoz, 2018. "Quantifying Uncertainty and Identifying its Impacts on the Turkish Economy," Working Papers 1806, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
    50. Lien, Donald & Sun, Yuchen & Zhang, Chengsi, 2021. "Uncertainty, confidence, and monetary policy in China," International Review of Economics & Finance, Elsevier, vol. 76(C), pages 1347-1358.
    51. Pietro Ortoleva & Erik Snowberg, 2015. "Overconfidence in Political Behavior," American Economic Review, American Economic Association, vol. 105(2), pages 504-535, February.
    52. Juan Camilo Galvis-Ciro & Juan Camilo Anzoátegui-Zapata & Cristina Isabel Ramos-Barroso, 2022. "The Effect of Communication and Credibility on Fiscal Disagreement: Empirical Evidence from Colombia," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 18(3), pages 215-238, November.
    53. Hassan Afrouzi, 2020. "Strategic Inattention, Inflation Dynamics, and the Non-Neutrality of Money," CESifo Working Paper Series 8218, CESifo.
    54. Buchheim, Lukas & Link, Sebastian, 2017. "The Effect of Disaggregate Information on the Expectation Formation of Firms," Discussion Papers in Economics 41214, University of Munich, Department of Economics.
    55. Tim Bollerslev & Jia Li & Yuan Xue, 2018. "Volume, Volatility, and Public News Announcements," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 85(4), pages 2005-2041.
    56. Chini, Emilio Zanetti, 2023. "Can we estimate macroforecasters’ mis-behavior?," Journal of Economic Dynamics and Control, Elsevier, vol. 149(C).
    57. Montes, Gabriel Caldas & Curi, Alexandre, 2017. "Disagreement in expectations about public debt, monetary policy credibility and inflation risk premium," Journal of Economics and Business, Elsevier, vol. 93(C), pages 46-61.
    58. Volha Audzei, 2022. "Confidence Cycles and Liquidity Hoarding," International Journal of Central Banking, International Journal of Central Banking, vol. 18(3), pages 281-320, September.
    59. Constantin Bürgi & Tara M. Sinclair, 2020. "What Does Forecaster Disagreement Tell Us about the State of the Economy?," Working Papers 2020-001, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    60. Olivier Coibion & Jane Ryngaert & Saten Kumar & Yuriy Gorodnichenko, 2019. "Do You Know That I Know That You Know?: Higher Order Beliefs in Survey Data," 2019 Meeting Papers 280, Society for Economic Dynamics.
    61. Tomasz Łyziak & Xuguang Sheng, 2018. "Disagreement in consumer inflation expectations," NBP Working Papers 278, Narodowy Bank Polski.
    62. Wojciech Charemza & Carlos Diaz Vela & Svetlana Makarova, 2013. "Inflation fan charts, monetary policy and skew normal distribution," Discussion Papers in Economics 13/06, Division of Economics, School of Business, University of Leicester.
    63. Cahen-Fourot, Louison & Campiglio, Emanuele & Daumas, Louis & Miess, Michael Gregor & Yardley, Andrew, 2023. "Stranding ahoy? Heterogeneous transition beliefs and capital investment choices," Journal of Economic Behavior & Organization, Elsevier, vol. 216(C), pages 535-567.
    64. Martinez, Andrew & Schibuola, Alex, 2021. "The Expectations Gap: An Alternative Measure of Economic Slack," Working Papers 11284, George Mason University, Mercatus Center.
    65. Papastamos, Dimitrios & Matysiak, George & Stevenson, Simon, 2015. "Assessing the accuracy and dispersion of real estate investment forecasts," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 141-152.
    66. Robert W. Rich & Joseph Tracy, 2017. "The behavior of uncertainty and disagreement and their roles in economic prediction: a panel analysis," Staff Reports 808, Federal Reserve Bank of New York.
    67. Michael P. Clements, 2014. "US Inflation Expectations and Heterogeneous Loss Functions, 1968–2010," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(1), pages 1-14, January.
    68. Andrew J. Patton & Allan Timmermann, 2011. "Forecast Rationality Tests Based on Multi-Horizon Bounds," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 1-17, June.
    69. Daniel Andrei & Bruce Carlin & Michael Hasler, 2019. "Asset Pricing with Disagreement and Uncertainty About the Length of Business Cycles," Management Science, INFORMS, vol. 67(6), pages 2900-2923, June.
    70. Edward P. Herbst & Fabian Winkler, 2021. "The Factor Structure of Disagreement," Finance and Economics Discussion Series 2021-046, Board of Governors of the Federal Reserve System (U.S.).
    71. Gabriel C Montes & Caio F Ferreira, 2022. "Monetary policy opacity and disagreements in expectations about variables under central bank control," Economics Bulletin, AccessEcon, vol. 42(2), pages 703-721.
    72. Macaulay, Alistair & Song, Wenting, 2022. "Narrative-Driven Fluctuations in Sentiment: Evidence Linking Traditional and Social Media," MPRA Paper 113620, University Library of Munich, Germany.
    73. Monica Jain, 2013. "Perceived Inflation Persistence," Staff Working Papers 13-43, Bank of Canada.
    74. Junichi Kikuchi & Yoshiyuki Nakazono, 2023. "The Formation of Inflation Expectations: Microdata Evidence from Japan," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 55(6), pages 1609-1632, September.
    75. Clements, Michael P., 2012. "Do professional forecasters pay attention to data releases?," International Journal of Forecasting, Elsevier, vol. 28(2), pages 297-308.
    76. Carlos Madeira & Basit Zafar, 2015. "Heterogeneous Inflation Expectations and Learning," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 47(5), pages 867-896, August.
    77. Ehrmann, Michael & Hubert, Paul, 2023. "Information acquisition ahead of monetary policy announcements," Working Paper Series 2770, European Central Bank.
    78. Wang, Yiyao & Lee, Tae-Hwy, 2014. "Asymmetric loss in the Greenbook and the Survey of Professional Forecasters," International Journal of Forecasting, Elsevier, vol. 30(2), pages 235-245.
    79. James M. Nason & Gregor W. Smith, 2013. "Reverse Kalman filtering U.S. inflation with sticky professional forecasts," Working Papers 13-34, Federal Reserve Bank of Philadelphia.
    80. Annarita Colasante & Simone Alfarano & Eva Camacho-Cuena, 2018. "The term structure of cross-sectional dispersion of expectations in a Learning-to-Forecast Experiment," Working Papers 2018/02, Economics Department, Universitat Jaume I, Castellón (Spain).
    81. Lee, Deok-Hyeon & Min, Byoung-Kyu & Kim, Tong Suk, 2019. "Dispersion of beliefs, ambiguity, and the cross-section of stock returns," Journal of Empirical Finance, Elsevier, vol. 50(C), pages 43-56.
    82. Stefano Eusepi & Richard Crump & Emanuel Moench & Philippe Andrade, 2014. "Noisy Information and Fundamental Disagreement," 2014 Meeting Papers 797, Society for Economic Dynamics.
    83. Michael J. Lamla & Thomas Maag, 2012. "The Role of Media for Inflation Forecast Disagreement of Households and Professional Forecasters," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(7), pages 1325-1350, October.
    84. Karlyn Mitchell & Douglas K. Pearce, 2017. "Direct Evidence on Sticky Information from the Revision Behavior of Professional Forecasters," Southern Economic Journal, John Wiley & Sons, vol. 84(2), pages 637-653, October.
    85. Goldstein, Nathan & Zilberfarb, Ben-Zion, 2017. "Rationality and seasonality: Evidence from inflation forecasts," Economics Letters, Elsevier, vol. 150(C), pages 86-90.
    86. Montes, Gabriel Caldas & Nicolay, Rodolfo Tomás da Fonseca & Acar, Tatiana, 2019. "Do fiscal communication and clarity of fiscal announcements affect public debt uncertainty? Evidence from Brazil," Journal of Economics and Business, Elsevier, vol. 103(C), pages 38-60.
    87. Clements, Michael P., 2012. "Subjective and Ex Post Forecast Uncertainty: US Inflation and Output Growth," Economic Research Papers 270629, University of Warwick - Department of Economics.
    88. Meeks, Roland & Monti, Francesca, 2023. "Heterogeneous beliefs and the Phillips curve," Journal of Monetary Economics, Elsevier, vol. 139(C), pages 41-54.
    89. Michael P. Clements, 2020. "Do Survey Joiners and Leavers Differ from Regular Participants? The US SPF GDP Growth and Inflation Forecasts," ICMA Centre Discussion Papers in Finance icma-dp2020-01, Henley Business School, University of Reading.
    90. Dan Li & Geng Li, 2014. "Are Household Investors Noise Traders: Evidence from Belief Dispersion and Stock Trading Volume," Finance and Economics Discussion Series 2014-35, Board of Governors of the Federal Reserve System (U.S.).
    91. Wagner Piazza Gaglianone, 2017. "Empirical Findings on Inflation Expectations in Brazil: a survey," Working Papers Series 464, Central Bank of Brazil, Research Department.
    92. Yuriy Gorodnichenko & Olivier Coibion, 2010. "What can survey forecasts tell us about informational rigidities?," 2010 Meeting Papers 277, Society for Economic Dynamics.
    93. Marcello Pericoli & Giovanni Veronese, 2015. "Forecaster heterogeneity, surprises and financial markets," Temi di discussione (Economic working papers) 1020, Bank of Italy, Economic Research and International Relations Area.
    94. Cristiane Gea & Luciano Vereda & Eduardo Ogasawara, 2024. "Detection of Uncertainty Events in the Brazilian Economic and Financial Time Series," Computational Economics, Springer;Society for Computational Economics, vol. 64(3), pages 1507-1538, September.
    95. Philippe Andrade & Richard K. Crump & Stefano Eusepi & Emanuel Moench, 2013. "Fundamental disagreement," Staff Reports 655, Federal Reserve Bank of New York.
    96. Dovern, Jonas, 2015. "A multivariate analysis of forecast disagreement: Confronting models of disagreement with survey data," European Economic Review, Elsevier, vol. 80(C), pages 16-35.
    97. Alessandro Barbera & Dora Xia & Sonya Zhu, 2023. "The term structure of inflation forecasts disagreement and monetary policy transmission," BIS Working Papers 1114, Bank for International Settlements.
    98. Gabriel Caldas Montes & Tatiana Acar, 2018. "Fiscal credibility and disagreement in expectations about inflation: evidence for Brazil," Economics Bulletin, AccessEcon, vol. 38(2), pages 826-843.
    99. Carola Binder & Wesley Janson & Randal Verbrugge, 2023. "Out of Bounds: Do SPF Respondents Have Anchored Inflation Expectations?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 55(2-3), pages 559-576, March.
    100. Nathan Goldstein & Ben‐Zion Zilberfarb, 2023. "The closer we get, the better we are?," Economic Inquiry, Western Economic Association International, vol. 61(2), pages 364-376, April.
    101. Falck, E. & Hoffmann, M. & Hürtgen, P., 2021. "Disagreement about inflation expectations and monetary policy transmission," Journal of Monetary Economics, Elsevier, vol. 118(C), pages 15-31.
    102. Gabriel Caldas Montes & Igor Mendes Marcelino, 2023. "Uncertainties and disagreements in expectations of professional forecasters: Evidence from an inflation targeting developing country," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 937-956, July.
    103. Olivier Coibion & Yuriy Gorodnichenko, 2010. "Information Rigidity and the Expectations Formation Process: A Simple Framework and New Facts," Working Papers 102, Department of Economics, College of William and Mary.
    104. Gaurav Kumar Singh & Tathagata Bandyopadhyay, 2024. "Determinants of disagreement: Learning from inflation expectations survey of households," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 326-343, March.
    105. Kieren, Pascal & König-Kersting, Christian & Schmidt, Robert J. & Trautmann, Stefan T. & Theurich, Franziska, 2024. "First-order and higher-order inflation expectations: Evidence about households and firms," Discussion Papers 18/2024, Deutsche Bundesbank.
    106. Michael P. Clements, 2020. "Individual Forecaster Perceptions of the Persistence of Shocks to GDP," ICMA Centre Discussion Papers in Finance icma-dp2020-02, Henley Business School, University of Reading.
    107. Fernandes, Cecilia Melo, 2021. "ECB communication as a stabilization and coordination device: evidence from ex-ante inflation uncertainty," Working Paper Series 2582, European Central Bank.
    108. Vellekoop, Nathanael & Wiederholt, Mirko, 2019. "Inflation expectations and choices of households," SAFE Working Paper Series 250, Leibniz Institute for Financial Research SAFE.
    109. Timmermann, Allan & Zhu, Yinchu, 2019. "Comparing Forecasting Performance with Panel Data," CEPR Discussion Papers 13746, C.E.P.R. Discussion Papers.
    110. Paloviita, Maritta & Virén, Matti, 2014. "Analysis of forecast errors in micro-level survey data," Bank of Finland Research Discussion Papers 8/2014, Bank of Finland.
    111. Baetje, Fabian & Friedrici, Karola, 2016. "Does cross-sectional forecast dispersion proxy for macroeconomic uncertainty? New empirical evidence," Economics Letters, Elsevier, vol. 143(C), pages 38-43.
    112. Krüger, Fabian & Nolte, Ingmar, 2016. "Disagreement versus uncertainty: Evidence from distribution forecasts," Journal of Banking & Finance, Elsevier, vol. 72(S), pages 172-186.
    113. Wojciech CHAREMZA & Carlos DÍAZ & Svetlana MAKAROVA, 2019. "Conditional Term Structure of Inflation Forecast Uncertainty: The Copula Approach," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(1), pages 5-18, March.
    114. Li, You & Tay, Anthony, 2021. "The role of macroeconomic and policy uncertainty in density forecast dispersion," Journal of Macroeconomics, Elsevier, vol. 67(C).
    115. An, Zidong & Zheng, Xinye, 2023. "Diligent forecasters can make accurate predictions despite disagreeing with the consensus," Economic Modelling, Elsevier, vol. 125(C).
    116. Simone Alfarano & Eva Camacho-Cuena & Annarita Colasante & Alba Ruiz-Buforn, 2024. "The effect of time-varying fundamentals in learning-to-forecast experiments," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 19(4), pages 619-647, October.
    117. Jonas Dovern & Ulrich Fritsche & Jiri Slacalek, 2012. "Disagreement Among Forecasters in G7 Countries," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1081-1096, November.
    118. Jia, Pengfei & Shen, Haopeng & Zheng, Shikun, 2023. "Monetary policy rules and opinionated markets," Economics Letters, Elsevier, vol. 223(C).
    119. Breitung, Jörg & Schmeling, Maik, 2011. "Quantifying survey expectations: What's wrong with the probability approach?," Hannover Economic Papers (HEP) dp-485, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    120. Manzan, Sebastiano, 2021. "Are professional forecasters Bayesian?," Journal of Economic Dynamics and Control, Elsevier, vol. 123(C).
    121. Hollmayr, Josef & Kühl, Michael, 2016. "Learning about banks' net worth and the slow recovery after the financial crisis," Discussion Papers 39/2016, Deutsche Bundesbank.
    122. Toshitaka Sekine & Frank Packer & Shunichi Yoneyama, 2022. "Individual Trend Inflation," Working Papers on Central Bank Communication 042, University of Tokyo, Graduate School of Economics.
    123. Pohl, Walter & Schmedders, Karl & Wilms, Ole, 2021. "Asset pricing with heterogeneous agents and long-run risk," Journal of Financial Economics, Elsevier, vol. 140(3), pages 941-964.
    124. Alonso, Ricardo & Câmara, Odilon, 2014. "Persuading skeptics and reaffirming believers," LSE Research Online Documents on Economics 58680, London School of Economics and Political Science, LSE Library.
    125. Roccazzella, Francesco & Candelon, Bertrand, 2022. "Should we care about ECB inflation expectations?," LIDAM Discussion Papers LFIN 2022004, Université catholique de Louvain, Louvain Finance (LFIN).
    126. Jin Yeub Kim & Yongjun Kim & Myungkyu Shim, 2023. "Do Financial Analysts Herd?," Global Economic Review, Taylor & Francis Journals, vol. 52(3), pages 202-219, July.
    127. Dan Li & Geng Li, 2021. "Whose Disagreement Matters? Household Belief Dispersion and Stock Trading Volume [Belief dispersion in the stock market]," Review of Finance, European Finance Association, vol. 25(6), pages 1859-1900.
    128. Michael Clements, 2016. "Are Macro-Forecasters Essentially The Same? An Analysis of Disagreement, Accuracy and Efficiency," ICMA Centre Discussion Papers in Finance icma-dp2016-08, Henley Business School, University of Reading.
    129. Doina Chichernea & Kershen Huang & Alex Petkevich, 2019. "Does maturity matter? The case of treasury futures volume," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(10), pages 1301-1321, October.
    130. Clements, Michael P., 2024. "Do professional forecasters believe in the Phillips curve?," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1238-1254.
    131. Montes, Gabriel Caldas & Luna, Paulo Henrique, 2018. "Discretionary fiscal policy and disagreement in expectations about fiscal variables empirical evidence from Brazil," Economic Modelling, Elsevier, vol. 73(C), pages 100-116.
    132. De Rezende, Rafael B., 2015. "Risks in macroeconomic fundamentals and excess bond returns predictability," Working Paper Series 295, Sveriges Riksbank (Central Bank of Sweden).
    133. Philippe Mueller & Andrea Vedolin & Yu-min Yen, 2012. "Bond Variance Risk Premia," FMG Discussion Papers dp699, Financial Markets Group.
    134. Benjamin Croitoru & Lei Lu, 2015. "Asset Pricing in a Monetary Economy with Heterogeneous Beliefs," Management Science, INFORMS, vol. 61(9), pages 2203-2219, September.
    135. Montes, Gabriel Caldas & Souza, Ivan, 2020. "Sovereign default risk, debt uncertainty and fiscal credibility: The case of Brazil," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    136. An, Zidong & Sheng, Xuguang Simon & Zheng, Xinye, 2023. "What is the role of perceived oil price shocks in inflation expectations?," Energy Economics, Elsevier, vol. 126(C).
    137. Andrade, P. & Ghysels, E. & Idier, J., 2012. "Tails of Inflation Forecasts and Tales of Monetary Policy," Working papers 407, Banque de France.
    138. Michael P Clements, 2014. "Assessing the Evidence of Macro- Forecaster Herding: Forecasts of Inflation and Output Growth," ICMA Centre Discussion Papers in Finance icma-dp2014-12, Henley Business School, University of Reading.
    139. Borup, Daniel & Schütte, Erik Christian Montes, 2022. "Asset pricing with data revisions," Journal of Financial Markets, Elsevier, vol. 59(PB).
    140. Daniel Andrei & Bruce Carlin & Michael Hasler, 2014. "Model Disagreement and Economic Outlook," NBER Working Papers 20190, National Bureau of Economic Research, Inc.
    141. Nolte, Ingmar & Nolte, Sandra & Pohlmeier, Winfried, 2019. "What determines forecasters’ forecasting errors?," International Journal of Forecasting, Elsevier, vol. 35(1), pages 11-24.
    142. G. C. Montes & L. V. Oliveira & A. Curi & R. T. F. Nicolay, 2016. "Effects of transparency, monetary policy signalling and clarity of central bank communication on disagreement about inflation expectations," Applied Economics, Taylor & Francis Journals, vol. 48(7), pages 590-607, February.
    143. Michael Clements & Robert W. Rich & Joseph Tracy, 2024. "An Investigation into the Uncertainty Revision Process of Professional Forecasters," Working Papers 24-19, Federal Reserve Bank of Cleveland.
    144. Ryuichi Yamamoto, 2022. "Predictor Choice, Investor Types, and the Price Impact of Trades on the Tokyo Stock Exchange," Computational Economics, Springer;Society for Computational Economics, vol. 59(1), pages 325-356, January.
    145. Wagner Piazza Gaglianone & Luiz Renato Lima, 2012. "Constructing Density Forecasts from Quantile Regressions," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(8), pages 1589-1607, December.
    146. Czudaj, Robert L., 2022. "Heterogeneity of beliefs and information rigidity in the crude oil market: Evidence from survey data," European Economic Review, Elsevier, vol. 143(C).
    147. Casey, Eddie, 2021. "Are professional forecasters overconfident?," International Journal of Forecasting, Elsevier, vol. 37(2), pages 716-732.
    148. Svetlana Makarova, 2016. "ECB footprints on inflation forecast uncertainty," Bank of Estonia Working Papers wp2016-5, Bank of Estonia, revised 19 Jul 2016.
    149. Joscha Beckmann & Ansgar Belke & Irina Dubova, 2022. "What drives updates of inflation expectations? A Bayesian VAR analysis for the G‐7 countries," The World Economy, Wiley Blackwell, vol. 45(9), pages 2748-2765, September.
    150. Huang, Wenli & Li, Shi & Qi, Zhen & Zhang, Qi, 2022. "Macro disagreement and international stock markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 81(C).
    151. Montes, Gabriel Caldas & Acar, Tatiana, 2020. "Fiscal credibility, target revisions and disagreement in expectations about fiscal results," The Quarterly Review of Economics and Finance, Elsevier, vol. 76(C), pages 38-58.
    152. Michael P. Clements, 2015. "Are Professional Macroeconomic Forecasters Able To Do Better Than Forecasting Trends?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 47(2-3), pages 349-382, March.
    153. Pascal Kieren & Christian König-Kersting & Robert Schmidt & Stefan Trautmann & Franziska Heinicke, 2023. "First-Order and Higher-Order Inflation Expectations: Evidence about Households and Firms," Working Papers 2023-10, Faculty of Economics and Statistics, Universität Innsbruck.
    154. Qiu, Yajie & Deschamps, Bruno & Liu, Xiaoquan, 2024. "Uncertainty and macroeconomic forecasts: Evidence from survey data," Journal of Economic Behavior & Organization, Elsevier, vol. 224(C), pages 463-480.
    155. Maurizio Bovi & Roy Cerqueti, 2016. "Forecasting macroeconomic fundamentals in economic crises," Annals of Operations Research, Springer, vol. 247(2), pages 451-469, December.
    156. Binder, Carola Conces, 2018. "Inflation expectations and the price at the pump," Journal of Macroeconomics, Elsevier, vol. 58(C), pages 1-18.
    157. Li, Huijing & Li, Hong & Lu, Lei & Theocharides, George & Xiong, Xiong, 2020. "Macro disagreement and international options markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 65(C).
    158. Svetlana Makarova, 2018. "European Central Bank Footprints On Inflation Forecast Uncertainty," Economic Inquiry, Western Economic Association International, vol. 56(1), pages 637-652, January.
    159. Ryan Banerjee & Aaron Mehrotra, 2021. "Disagreeing during Deflations," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 53(7), pages 1867-1885, October.
    160. Carola Binder & Tucker S. Mcelroy & Xuguang S. Sheng, 2022. "The Term Structure of Uncertainty: New Evidence from Survey Expectations," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 54(1), pages 39-71, February.
    161. Sheng, Xuguang (Simon), 2015. "Evaluating the economic forecasts of FOMC members," International Journal of Forecasting, Elsevier, vol. 31(1), pages 165-175.
    162. Carola Conces Binder, 2021. "Central Bank Communication and Disagreement about the Natural Rate Hypothesis," International Journal of Central Banking, International Journal of Central Banking, vol. 17(2), pages 81-123, June.
    163. Juan Camilo Galvis Ciro & Juan Camilo Anzoátegui Zapata, 2019. "Disagreement in inflation expectations: empirical evidence for Colombia," Applied Economics, Taylor & Francis Journals, vol. 51(40), pages 4411-4424, August.
    164. Conrad, Christian & Lahiri, Kajal, 2024. "Heterogeneous Expectations among Professional Forecasters," Working Papers 0754, University of Heidelberg, Department of Economics.
    165. Frenkel, Michael & Rülke, Jan-Christoph & Zimmermann, Lilli, 2013. "Do private sector forecasters chase after IMF or OECD forecasts?," Journal of Macroeconomics, Elsevier, vol. 37(C), pages 217-229.
    166. Hie Joo Ahn & Leland E. Farmer, 2024. "Disagreement About the Term Structure of Inflation Expectations," Finance and Economics Discussion Series 2024-084, Board of Governors of the Federal Reserve System (U.S.).
    167. Carola Binder & Wesley Janson & Randal J. Verbrugge, 2019. "Thinking Outside the Box: Do SPF Respondents Have Anchored Inflation Expectations?," Working Papers 19-15, Federal Reserve Bank of Cleveland.
    168. Kim Jin Yeub & Shim Myungkyu, 2019. "Forecast Dispersion in Finite-Player Forecasting Games," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 19(1), pages 1-6, January.
    169. Gabriel Caldas Montes & Caio Ferrari Ferreira, 2019. "Does monetary policy credibility mitigate the effects of uncertainty about exchange rate on uncertainties about both inflation and interest rate?," International Economics and Economic Policy, Springer, vol. 16(4), pages 649-678, October.
    170. Syed Jawad Hussain Shahzad & Rangan Gupta & Riza Demirer & Christian Pierdzioch, 2022. "Oil shocks and directional predictability of macroeconomic uncertainties of developed economies: Evidence from high‐frequency data†," Scottish Journal of Political Economy, Scottish Economic Society, vol. 69(2), pages 169-185, May.
    171. Marinovic, Iván & Ottaviani, Marco & Sorensen, Peter, 2013. "Forecasters’ Objectives and Strategies," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 690-720, Elsevier.
    172. Suh, Sangwon & Kim, Daehwan, 2021. "Inflation targeting and expectation anchoring: Evidence from developed and emerging market economies," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).

  7. Patton, Andrew J. & Timmermann, Allan, 2010. "Monotonicity in asset returns: New tests with applications to the term structure, the CAPM, and portfolio sorts," Journal of Financial Economics, Elsevier, vol. 98(3), pages 605-625, December.

    Cited by:

    1. Wan-Ni Lai & Claire Y. T. Chen & Edward W. Sun, 2022. "Risk factor extraction with quantile regression method," Annals of Operations Research, Springer, vol. 316(2), pages 1543-1572, September.
    2. Ruenzi, Stefan & Ungeheuer, Michael & Weigert, Florian, 2020. "Joint extreme events in equity returns and liquidity and their cross-sectional pricing implications," CFR Working Papers 20-01, University of Cologne, Centre for Financial Research (CFR).
    3. Suneel Maheshwari & Deepak Raghava Naik, 2024. "Predicting Mutual Fund Stress Levels Utilizing SEBI’s Stress Test Parameters in MidCap and SmallCap Funds Using Deep Learning Models," Risks, MDPI, vol. 12(11), pages 1-17, November.
    4. Klein, Tobias & Salm, Martin & Upadhyay, Suraj, 2020. "The Response to Dynamic Incentives in Insurance Contracts with a Deductible: Evidence from a Differences-in-Regression-Disconti," CEPR Discussion Papers 14552, C.E.P.R. Discussion Papers.
    5. Sullivan, Michael & Zhang, Andrew (Jianzhong), 2011. "Are investment and financing anomalies two sides of the same coin?," Journal of Empirical Finance, Elsevier, vol. 18(4), pages 616-633, September.
    6. Roh, Tai-Yong & Lee, Changjun & Min, Byoung-Kyu, 2019. "Consumption growth predictability and asset prices," Journal of Empirical Finance, Elsevier, vol. 51(C), pages 95-118.
    7. Zaremba, Adam & Karathanasopoulos, Andreas & Maydybura, Alina & Czapkiewicz, Anna & Bagheri, Noushin, 2020. "Dissecting anomalies in Islamic stocks: Integrated or segmented pricing?," Pacific-Basin Finance Journal, Elsevier, vol. 62(C).
    8. Ruenzi, Stefan & Ungeheuer, Michael & Weigert, Florian, 2013. "Extreme Downside Liquidity Risk," Working Papers on Finance 1326, University of St. Gallen, School of Finance, revised Jul 2015.
    9. Sarno, Lucio & Schmeling, Maik, 2013. "Which Fundamentals Drive Exchange Rates? A Cross-Sectional Perspective," CEPR Discussion Papers 9472, C.E.P.R. Discussion Papers.
    10. Brendan K. Beare & Lawrence D. W. Schmidt, 2016. "An Empirical Test of Pricing Kernel Monotonicity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(2), pages 338-356, March.
    11. Lin, Qi, 2018. "Technical analysis and stock return predictability: An aligned approach," Journal of Financial Markets, Elsevier, vol. 38(C), pages 103-123.
    12. Christian Fieberg & Lars Hornuf & Gerrit Liedtke & Thorsten Poddig, 2020. "Are Characteristics Covariances? A Comment on Instrumented Principal Component Analysis," CESifo Working Paper Series 8377, CESifo.
    13. Michael Ungeheuer & Martin Weber, 2021. "The Perception of Dependence, Investment Decisions, and Stock Prices," Journal of Finance, American Finance Association, vol. 76(2), pages 797-844, April.
    14. Hoang, Khoa & Cannavan, Damien & Huang, Ronghong & Peng, Xiaowen, 2021. "Predicting stock returns with implied cost of capital: A partial least squares approach," Journal of Financial Markets, Elsevier, vol. 53(C).
    15. Zaremba, Adam & Bilgin, Mehmet Huseyin & Long, Huaigang & Mercik, Aleksander & Szczygielski, Jan J., 2021. "Up or down? Short-term reversal, momentum, and liquidity effects in cryptocurrency markets," International Review of Financial Analysis, Elsevier, vol. 78(C).
    16. Fricke, Daniel, 2018. "Are specialist funds “special”?," LSE Research Online Documents on Economics 91335, London School of Economics and Political Science, LSE Library.
    17. Boons, Martijn & Duarte, Fernando & de Roon, Frans & Szymanowska, Marta, 2020. "Time-varying inflation risk and stock returns," Journal of Financial Economics, Elsevier, vol. 136(2), pages 444-470.
    18. Ahmed, Shamim & Valente, Giorgio, 2015. "Understanding the price of volatility risk in carry trades," Journal of Banking & Finance, Elsevier, vol. 57(C), pages 118-129.
    19. Zaremba, Adam & Umutlu, Mehmet & Karathanasopoulos, Andreas, 2019. "Alpha momentum and alpha reversal in country and industry equity indexes," Journal of Empirical Finance, Elsevier, vol. 53(C), pages 144-161.
    20. Jose Renato Haas Ornelas & Antonio Francisco de Almeida Silva Jr, 2014. "Testing the Liquidity Preference Hypothesis using Survey Forecasts," Working Papers Series 353, Central Bank of Brazil, Research Department.
    21. Dahlquist, Magnus & Martinez, Jose Vincente & Soderlind, Paul, 2014. "Individual Investor Activity and Performance," Working Papers on Finance 1408, University of St. Gallen, School of Finance, revised Sep 2016.
    22. Wan-Ni Lai & Yi-Ting Chen & Edward W. Sun, 2021. "Comonotonicity and low volatility effect," Annals of Operations Research, Springer, vol. 299(1), pages 1057-1099, April.
    23. Kaplan, David M. & Zhuo, Longhao, 2021. "Frequentist properties of Bayesian inequality tests," Journal of Econometrics, Elsevier, vol. 221(1), pages 312-336.
    24. Russell Davidson & Niels S. Grønborg, 2018. "Time-varying parameters: New test tailored to applications in finance and macroeconomics," CREATES Research Papers 2018-22, Department of Economics and Business Economics, Aarhus University.
    25. Stereńczak, Szymon & Zaremba, Adam & Umar, Zaghum, 2020. "Is there an illiquidity premium in frontier markets?," Emerging Markets Review, Elsevier, vol. 42(C).
    26. José Renato Haas Ornelas, 2014. "Assessing the Forecast Ability of Risk-Neutral Densities and Real-World Densities from Emerging Markets Currencies," Working Papers Series 370, Central Bank of Brazil, Research Department.
    27. Andrew J. Patton & Allan Timmermann, 2011. "Forecast Rationality Tests Based on Multi-Horizon Bounds," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 1-17, June.
    28. Banegas, Ayelen & Gillen, Ben & Timmermann, Allan & Wermers, Russ, 2012. "The cross-section of conditional mutual fund performance in European stock markets," CFR Working Papers 09-03 [rev.], University of Cologne, Centre for Financial Research (CFR).
    29. Bertrand Groslambert & Wan-Ni Lai, 2020. "Ranking tail risk across international stock markets," Economics Bulletin, AccessEcon, vol. 40(2), pages 1756-1768.
    30. David M. Kaplan & Longhao Zhuo, 2017. "Frequentist size of Bayesian inequality tests," Working Papers 1709, Department of Economics, University of Missouri, revised 14 Jul 2019.
    31. Sebastian Müller & Martin Weber, 2014. "Evaluating the Rating of Stiftung Warentest: How Good Are Mutual Fund Ratings and Can They Be Improved?," European Financial Management, European Financial Management Association, vol. 20(2), pages 207-235, March.
    32. Berghaus, Betina & Bücher, Axel, 2014. "Nonparametric tests for tail monotonicity," Journal of Econometrics, Elsevier, vol. 180(2), pages 117-126.
    33. Adam Zaremba, 2019. "The Cross Section of Country Equity Returns: A Review of Empirical Literature," JRFM, MDPI, vol. 12(4), pages 1-26, October.
    34. Dr. Thomas Nitschka, 2018. "Did China's anti-corruption campaign affect the risk premium on stocks of global luxury goods firms?," Working Papers 2018-09, Swiss National Bank.
    35. Denis Chetverikov & Daniel Wilhelm & Dongwoo Kim, 2019. "An adaptive test of stochastic monotonicity," CeMMAP working papers CWP49/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    36. Xyngis, Georgios, 2017. "Business-cycle variation in macroeconomic uncertainty and the cross-section of expected returns: Evidence for scale-dependent risks," Journal of Empirical Finance, Elsevier, vol. 44(C), pages 43-65.
    37. Liu, Yan, 2021. "Index option returns and generalized entropy bounds," Journal of Financial Economics, Elsevier, vol. 139(3), pages 1015-1036.
    38. Hendershott, Terrence & Livdan, Dmitry & Rösch, Dominik, 2020. "Asset pricing: A tale of night and day," Journal of Financial Economics, Elsevier, vol. 138(3), pages 635-662.
    39. Bakshi, Gurdip & Chabi-Yo, Fousseni, 2011. "Variance Bounds on the Permanent and Transitory Components of Stochastic Discount Factors," Working Paper Series 2011-11, Ohio State University, Charles A. Dice Center for Research in Financial Economics.
    40. Bartram, Söhnke & Djuranovik, Leslie & Garratt, Anthony, 2021. "Currency Anomalies," CEPR Discussion Papers 15653, C.E.P.R. Discussion Papers.
    41. Cao, Ying & von Reibnitz, Anna & Warren, Geoffrey J., 2020. "Return dispersion and fund performance: Australia – The land of opportunity?," Pacific-Basin Finance Journal, Elsevier, vol. 60(C).
    42. Kosowski, Robert & Joenväärä, Juha & Tolonen, Pekka, 2018. "The Effect of Investment Constraints on Hedge Fund Investor Returns," CEPR Discussion Papers 12599, C.E.P.R. Discussion Papers.
    43. Nguyen, Duc Binh Benno & Prokopczuk, Marcel & Wese Simen, Chardin, 2017. "International Tail Risk and World Fear," Hannover Economic Papers (HEP) dp-620, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    44. Zaremba, Adam & Long, Huaigang & Karathanasopoulos, Andreas, 2019. "Short-term momentum (almost) everywhere," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 63(C).
    45. Pätäri, Eero & Karell, Ville & Luukka, Pasi & Yeomans, Julian S, 2018. "Comparison of the multicriteria decision-making methods for equity portfolio selection: The U.S. evidence," European Journal of Operational Research, Elsevier, vol. 265(2), pages 655-672.
    46. De Rossi, Giuliano & Steliaros, Michael, 2022. "The Shift from Active to Passive and its Effect on Intraday Stock Dynamics," Journal of Banking & Finance, Elsevier, vol. 143(C).
    47. Pätäri, Eero & Ahmed, Sheraz & Luukka, Pasi & Yeomans, Julian Scott, 2023. "Can monthly-return rank order reveal a hidden dimension of momentum? The post-cost evidence from the U.S. stock markets," The North American Journal of Economics and Finance, Elsevier, vol. 65(C).
    48. Aytek Malkhozov & Philippe Mueller & Andrea Vedolin & Gyuri Venter, 2015. "Mortgage risk and the yield curve," BIS Working Papers 532, Bank for International Settlements.
    49. Ghysels, Eric & Liu, Hanwei & Raymond, Steve, 2021. "Institutional Investors and Granularity in Equity Markets," CEPR Discussion Papers 15654, C.E.P.R. Discussion Papers.
    50. Richard Mawulawoe Ahadzie & Nagaratnam Jeyasreedharan, 2024. "Higher‐order moments and asset pricing in the Australian stock market," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 64(1), pages 75-128, March.
    51. Sha Wang & Jean-Philippe Vergne, 2017. "Buzz Factor or Innovation Potential: What Explains Cryptocurrencies’ Returns?," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-17, January.
    52. Matias D. Cattaneo & Richard K. Crump & Max H. Farrell & Ernst Schaumburg, 2020. "Characteristic-Sorted Portfolios: Estimation and Inference," The Review of Economics and Statistics, MIT Press, vol. 102(3), pages 531-551, July.
    53. He, Chaohua & Jiang, Cheng & Molyboga, Marat, 2019. "Risk premia in Chinese commodity markets," Journal of Commodity Markets, Elsevier, vol. 15(C), pages 1-1.
    54. Don M. Autore & Jared R. DeLisle, 2016. "Skewness Preference and Seasoned Equity Offers," The Review of Corporate Finance Studies, Society for Financial Studies, vol. 5(2), pages 200-238.
    55. Sabine Artmann & Philipp Finter & Alexander Kempf & Stefan Koch & Erik Theissen, 2012. "The Cross-Section of German Stock Returns: New Data and New Evidence," Schmalenbach Business Review (sbr), LMU Munich School of Management, vol. 64(1), pages 20-43, January.
    56. Xiang, Ju & Zhu, Xiaoneng, 2014. "Intraday asymmetric liquidity and asymmetric volatility in FTSE-100 futures market," Journal of Empirical Finance, Elsevier, vol. 25(C), pages 134-148.
    57. Hoechle, Daniel & Schmid, Markus & Zimmermann, Heinz, 2017. "Does Unobservable Heterogeneity Matter for Portfolio-Based Asset Pricing Tests?," Working Papers on Finance 1717, University of St. Gallen, School of Finance, revised Mar 2020.
    58. Kazuhiro Hiraki & George Skiadopoulos, 2023. "The Contribution of Transaction Costs to Expected Stock Returns: A Novel Measure," Working Papers 946, Queen Mary University of London, School of Economics and Finance.
    59. Zaremba, Adam & Bianchi, Robert J. & Mikutowski, Mateusz, 2021. "Long-run reversal in commodity returns: Insights from seven centuries of evidence," Journal of Banking & Finance, Elsevier, vol. 133(C).
    60. Adam Zaremba, 2016. "Has the Long-Term Reversal Reversed? Evidence from Country Equity Indices," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(1), pages 88-103, March.
    61. Zaremba, Adam & Szyszka, Adam & Karathanasopoulos, Andreas & Mikutowski, Mateusz, 2021. "Herding for profits: Market breadth and the cross-section of global equity returns," Economic Modelling, Elsevier, vol. 97(C), pages 348-364.
    62. Malamud, Semyon & Vilkov, Grigory, 2018. "Non-myopic betas," Journal of Financial Economics, Elsevier, vol. 129(2), pages 357-381.
    63. Timmermann, Allan & Lunde, Asger & Groenborg, Niels & Wermers, Russ, 2017. "Picking Funds with Confidence," CEPR Discussion Papers 11896, C.E.P.R. Discussion Papers.
    64. Klinkowska, Olga & Zhao, Yuan, 2023. "Fund flows and performance: New evidence from retail and institutional SRI mutual funds," International Review of Financial Analysis, Elsevier, vol. 87(C).
    65. Nuno Clara, 2018. "Demand Elasticities, Nominal Rigidities and Asset Prices," 2018 Meeting Papers 790, Society for Economic Dynamics.
    66. Klein, Tobias J. & Salm, Martin & Upadhyay, Suraj, 2022. "The response to dynamic incentives in insurance contracts with a deductible: Evidence from a differences-in-regression-discontinuities design," Journal of Public Economics, Elsevier, vol. 210(C).
    67. Terence Tai-Leung Chong & Sunny Chun Tsui & Wing Hong Chan, 2017. "Factor pricing in commodity futures and the role of liquidity," Quantitative Finance, Taylor & Francis Journals, vol. 17(11), pages 1745-1757, November.
    68. Zaremba, Adam & Kizys, Renatas & Raza, Muhammad Wajid, 2020. "The long-run reversal in the long run: Insights from two centuries of international equity returns," Journal of Empirical Finance, Elsevier, vol. 55(C), pages 177-199.
    69. Patton, Andrew J. & Weller, Brian M., 2020. "What you see is not what you get: The costs of trading market anomalies," Journal of Financial Economics, Elsevier, vol. 137(2), pages 515-549.
    70. Richard D. F. Harris & Xuguang Li & Fang Qiao, 2019. "Option‐implied betas and the cross section of stock returns," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(1), pages 94-108, January.
    71. Huang, Huichou & MacDonald, Ronald & Zhao, Yang, 2012. "Global Currency Misalignments, Crash Sensitivity, and Downside Insurance Costs," MPRA Paper 53745, University Library of Munich, Germany, revised 18 Nov 2013.
    72. Vintilă Georgeta & Păunescu Radu Alin, 2015. "Econometric Tests of the CAPM Model for a Portfolio Composed of Companies Listed on Nasdaq and Dow Jones Components," Scientific Annals of Economics and Business, Sciendo, vol. 62(3), pages 453-480, November.
    73. Zaremba, Adam & Czapkiewicz, Anna, 2017. "The cross section of international government bond returns," Economic Modelling, Elsevier, vol. 66(C), pages 171-183.
    74. Smith, Simon C. & Timmermann, Allan, 2022. "Have risk premia vanished?," Journal of Financial Economics, Elsevier, vol. 145(2), pages 553-576.
    75. Horatio Cuesdeanu & Jens Carsten Jackwerth, 2018. "The pricing kernel puzzle: survey and outlook," Annals of Finance, Springer, vol. 14(3), pages 289-329, August.
    76. Adam Zaremba, 2017. "Combining Equity Country Selection Strategies," Contemporary Economics, University of Economics and Human Sciences in Warsaw., vol. 11(1), March.
    77. Waszczuk, Antonina, 2013. "A risk-based explanation of return patterns—Evidence from the Polish stock market," Emerging Markets Review, Elsevier, vol. 15(C), pages 186-210.
    78. Eriksen, Jonas N., 2019. "Cross-sectional return dispersion and currency momentum," Journal of Empirical Finance, Elsevier, vol. 53(C), pages 91-108.
    79. Zaremba, Adam & Mikutowski, Mateusz & Szczygielski, Jan Jakub & Karathanasopoulos, Andreas, 2021. "The alpha momentum effect in commodity markets," Energy Economics, Elsevier, vol. 93(C).
    80. Lukas Mankhoff & Lucio Sarno & Maik Schmeling & Andreas Schrimpf, 2013. "Information flows in foreign exchange markets: dissecting customer currency trades," BIS Working Papers 405, Bank for International Settlements.
    81. Anarkulova, Aizhan & Cederburg, Scott & O’Doherty, Michael S., 2022. "Stocks for the long run? Evidence from a broad sample of developed markets," Journal of Financial Economics, Elsevier, vol. 143(1), pages 409-433.
    82. Ahmad, Fawad & Oriani, Raffaele, 2022. "Investor attention, information acquisition, and value premium: A mispricing perspective," International Review of Financial Analysis, Elsevier, vol. 79(C).
    83. Victor Sellemi, 2022. "Risk in Network Economies," Papers 2208.01467, arXiv.org.
    84. Ornelas, José Renato Haas, 2016. "The Forecast Ability of Option-implied Densities from Emerging Markets Currencies," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 36(1), March.
    85. Koerniadi, Hardjo & Krishnamurti, Chandrasekhar & Lau, Sie Ting & Tourani-Rad, Alireza & Yang, Ting, 2015. "The role of internal and external certification mechanisms in seasoned equity offerings," Journal of Multinational Financial Management, Elsevier, vol. 30(C), pages 110-127.
    86. Zaremba, Adam, 2019. "Price range and the cross-section of expected country and industry returns," International Review of Financial Analysis, Elsevier, vol. 64(C), pages 174-189.
    87. Kharrat, Sabrine & Hammami, Yacine & Fatnassi, Ibrahim, 2020. "On the cross-sectional relation between exchange rates and future fundamentals," Economic Modelling, Elsevier, vol. 89(C), pages 484-501.
    88. Kim, Junyong, 2024. "Zoom in on momentum," International Review of Financial Analysis, Elsevier, vol. 94(C).
    89. Romano, Joseph P. & Wolf, Michael, 2013. "Testing for monotonicity in expected asset returns," Journal of Empirical Finance, Elsevier, vol. 23(C), pages 93-116.
    90. Zaremba, Adam & Cakici, Nusret & Bianchi, Robert J. & Long, Huaigang, 2023. "Interest rate changes and the cross-section of global equity returns," Journal of Economic Dynamics and Control, Elsevier, vol. 147(C).
    91. Zaremba, Adam & Maydybura, Alina, 2019. "The cross-section of returns in frontier equity markets: Integrated or segmented pricing?," Emerging Markets Review, Elsevier, vol. 38(C), pages 219-238.

  8. Marco Aiolfi & Marius Rodriguez & Allan Timmermann, 2010. "Understanding Analysts' Earnings Expectations: Biases, Nonlinearities, and Predictability," Journal of Financial Econometrics, Oxford University Press, vol. 8(3), pages 305-334, Summer.
    See citations under working paper version above.
  9. Carlos Capistr¡N & Allan Timmermann, 2009. "Disagreement and Biases in Inflation Expectations," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(2-3), pages 365-396, March.
    See citations under working paper version above.
  10. Capistrán, Carlos & Timmermann, Allan, 2009. "Forecast Combination With Entry and Exit of Experts," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 428-440.
    See citations under working paper version above.
  11. Pesaran, M. Hashem & Timmermann, Allan, 2009. "Testing Dependence Among Serially Correlated Multicategory Variables," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 325-337.
    See citations under working paper version above.
  12. Guidolin, Massimo & Timmermann, Allan, 2009. "Forecasts of US short-term interest rates: A flexible forecast combination approach," Journal of Econometrics, Elsevier, vol. 150(2), pages 297-311, June.
    See citations under working paper version above.
  13. Timmermann, Allan, 2008. "Reply to the discussion of Elusive Return Predictability," International Journal of Forecasting, Elsevier, vol. 24(1), pages 29-30.

    Cited by:

    1. Barbara Rossi, 2011. "Advances in Forecasting Under Instability," Working Papers 11-20, Duke University, Department of Economics.
    2. Fabian Baetje & Lukas Menkhoff, 2016. "Equity Premium Prediction: Are Economic and Technical Indicators Unstable?," Discussion Papers of DIW Berlin 1552, DIW Berlin, German Institute for Economic Research.
    3. Rossi, Barbara & Odendahl, Florens & Sekhposyan, Tatevik, 2020. "Comparing Forecast Performance with State Dependence," CEPR Discussion Papers 15217, C.E.P.R. Discussion Papers.
    4. Alexandru Todea & Andrei Rusu, 2014. "Liquidity, information and market efficiency: an intraday approach on a frontier stock market," Economics Bulletin, AccessEcon, vol. 34(4), pages 2303-2307.
    5. Nicolás Magner & Nicolás Hardy, 2022. "Cryptocurrency Forecasting: More Evidence of the Meese-Rogoff Puzzle," Mathematics, MDPI, vol. 10(13), pages 1-27, July.
    6. Giovannelli, Alessandro & Massacci, Daniele & Soccorsi, Stefano, 2021. "Forecasting stock returns with large dimensional factor models," Journal of Empirical Finance, Elsevier, vol. 63(C), pages 252-269.
    7. Yi-Chieh Wen & Bin Li, 2020. "Lagged country returns and international stock return predictability during business cycle recession periods," Applied Economics, Taylor & Francis Journals, vol. 52(46), pages 5005-5019, October.
    8. Florens Odendahl & Barbara Rossi & Tatevik Sekhposyan, 2021. "Evaluating Forecast Performance with State Dependence," Working Papers 1295, Barcelona School of Economics.
    9. Kim, Jae H. & Shamsuddin, Abul & Lim, Kian-Ping, 2011. "Stock return predictability and the adaptive markets hypothesis: Evidence from century-long U.S. data," Journal of Empirical Finance, Elsevier, vol. 18(5), pages 868-879.
    10. Nicolas S. Magner & Nicolás Hardy & Tiago Ferreira & Jaime F. Lavin, 2023. "“Agree to Disagree”: Forecasting Stock Market Implied Volatility Using Financial Report Tone Disagreement Analysis," Mathematics, MDPI, vol. 11(7), pages 1-16, March.
    11. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
    12. Andrew Detzel & Jack Strauss, 2018. "Combination Return Forecasts and Portfolio Allocation with the Cross-Section of Book-to-Market Ratios [Illiquidity and stock returns: cross-section and time-series effects]," Review of Finance, European Finance Association, vol. 22(5), pages 1949-1973.
    13. Georgiev, I & Harvey, DI & Leybourne, SJ & Taylor, AM, 2018. "Testing for Parameter Instability in Predictive Regression Models," Essex Finance Centre Working Papers 21162, University of Essex, Essex Business School.
    14. Paulo M.M. Rodrigues & Matei Demetrescu, 2019. "Testing for Episodic Predictability in Stock Returns," Working Papers w201906, Banco de Portugal, Economics and Research Department.
    15. Larry W. Taylor, 2009. "Penalized‐R2 Criteria For Model Selection," Manchester School, University of Manchester, vol. 77(6), pages 699-717, December.
    16. Pönkä, Harri, 2014. "Predicting the direction of US stock markets using industry returns," MPRA Paper 62942, University Library of Munich, Germany.
    17. Bätje, Fabian & Menkhoff, Lukas, 2016. "Predicting the equity premium via its components," VfS Annual Conference 2016 (Augsburg): Demographic Change 145789, Verein für Socialpolitik / German Economic Association.
    18. Roberto Gómez‐Cram, 2022. "Late to Recessions: Stocks and the Business Cycle," Journal of Finance, American Finance Association, vol. 77(2), pages 923-966, April.
    19. Taylor, Mark & Hsu, Po-Hsuan & Wang, Zigan, 2020. "The Out-of-Sample Performance of Carry Trades," CEPR Discussion Papers 15052, C.E.P.R. Discussion Papers.
    20. Leland E. Farmer & Lawrence Schmidt & Allan Timmermann, 2023. "Pockets of Predictability," Journal of Finance, American Finance Association, vol. 78(3), pages 1279-1341, June.
    21. Leopoldo Catania & Anna Gloria Billé, 2016. "Dynamic Spatial Autoregressive Models with Autoregressive and Heteroskedastic Disturbances," CEIS Research Paper 375, Tor Vergata University, CEIS, revised 31 Mar 2016.
    22. Baltas, Nick & Karyampas, Dimitrios, 2018. "Forecasting the equity risk premium: The importance of regime-dependent evaluation," Journal of Financial Markets, Elsevier, vol. 38(C), pages 83-102.
    23. Cem Cakmakli & Dick van Dijk, 2010. "Getting the Most out of Macroeconomic Information for Predicting Stock Returns and Volatility," Tinbergen Institute Discussion Papers 10-115/4, Tinbergen Institute.
    24. Daniel Mantilla-García & Vijay Vaidyanathan, 2017. "Predicting stock returns in the presence of uncertain structural changes and sample noise," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 31(3), pages 357-391, August.
    25. David G. McMillan, 2017. "Stock return predictability: the role of inflation and threshold dynamics," International Review of Applied Economics, Taylor & Francis Journals, vol. 31(3), pages 357-375, May.
    26. Massimo Guidolin & Manuela Pedio & Milena Petrova, 2019. "The Predictability of Real Estate Excess Returns: An Out-of-Sample Economic Value Analysis," BAFFI CAREFIN Working Papers 19122, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    27. Massacci, Daniele, 2017. "Least squares estimation of large dimensional threshold factor models," Journal of Econometrics, Elsevier, vol. 197(1), pages 101-129.
    28. Thomadakis, Apostolos, 2016. "Do Combination Forecasts Outperform the Historical Average? Economic and Statistical Evidence," MPRA Paper 71589, University Library of Munich, Germany.
    29. Pincheira, Pablo & Hardy, Nicolas, 2021. "The Mean Squared Prediction Error Paradox," MPRA Paper 107403, University Library of Munich, Germany.
    30. Jean-Yves Pitarakis, 2017. "A Simple Approach for Diagnosing Instabilities in Predictive Regressions," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 79(5), pages 851-874, October.
    31. Hammerschmid, Regina & Lohre, Harald, 2018. "Regime shifts and stock return predictability," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 138-160.
    32. Yin, Anwen, 2020. "Equity premium prediction and optimal portfolio decision with Bagging," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    33. Hsu, Po-Hsuan & Taylor, Mark P. & Wang, Zigan, 2016. "Technical trading: Is it still beating the foreign exchange market?," Journal of International Economics, Elsevier, vol. 102(C), pages 188-208.
    34. Tang, Chor Foon & Lai, Yew Wah & Ozturk, Ilhan, 2015. "How stable is the export-led growth hypothesis? Evidence from Asia's Four Little Dragons," Economic Modelling, Elsevier, vol. 44(C), pages 229-235.
    35. Maderitsch, R., 2015. "Information transmission between stock markets in Hong Kong, Europe and the US: New evidence on time- and state-dependence," Pacific-Basin Finance Journal, Elsevier, vol. 35(PA), pages 13-36.
    36. Giulia Dal Pra & Massimo Guidolin & Manuela Pedio & Fabiola Vasile, 2016. "Do Regimes in Excess Stock Return Predictability Create Economic Value? An Out-of-Sample Portfolio Analysis," BAFFI CAREFIN Working Papers 1637, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    37. Sander, Magnus, 2018. "Market timing over the business cycle," Journal of Empirical Finance, Elsevier, vol. 46(C), pages 130-145.
    38. Guillaume Belly & Lukas Boeckelmann & Carlos Mateo Caicedo Graciano & Alberto Di Iorio & Klodiana Istrefi & Vasileios Siakoulis & Arthur Stalla-Bourdillon, 2023. "Forecasting sovereign risk in the Euro area via machine learning," Post-Print hal-04459577, HAL.
    39. Alexandridis, Antonios K. & Apergis, Iraklis & Panopoulou, Ekaterini & Voukelatos, Nikolaos, 2023. "Equity premium prediction: The role of information from the options market," Journal of Financial Markets, Elsevier, vol. 64(C).
    40. Jonathan Iworiso & Spyridon Vrontos, 2020. "On the directional predictability of equity premium using machine learning techniques," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(3), pages 449-469, April.
    41. Nicolás Magner & Jaime F. Lavín & Mauricio A. Valle, 2022. "Modeling Synchronization Risk among Sustainable Exchange Trade Funds: A Statistical and Network Analysis Approach," Mathematics, MDPI, vol. 10(19), pages 1-30, October.
    42. Shailesh Rana & William H. Bommer & G. Michael Phillips, 2020. "Predicting Returns for Growth and Value Stocks: A Forecast Assessment Approach Using Global Asset Pricing Models," International Journal of Economics and Financial Issues, Econjournals, vol. 10(4), pages 88-106.
    43. Marta Matyjaszek & Gregorio Fidalgo Valverde & Alicja Krzemień & Krzysztof Wodarski & Pedro Riesgo Fernández, 2020. "Optimizing Predictor Variables in Artificial Neural Networks When Forecasting Raw Material Prices for Energy Production," Energies, MDPI, vol. 13(8), pages 1-15, April.
    44. Salah Abosedra & Chor Foon Tang, 2019. "Are exports a reliable source of economic growth in MENA countries? New evidence from the rolling Granger causality method," Empirical Economics, Springer, vol. 56(3), pages 831-841, March.
    45. Çakmaklı, Cem & van Dijk, Dick, 2016. "Getting the most out of macroeconomic information for predicting excess stock returns," International Journal of Forecasting, Elsevier, vol. 32(3), pages 650-668.
    46. Devpura, Neluka & Narayan, Paresh Kumar & Sharma, Susan Sunila, 2018. "Is stock return predictability time-varying?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 52(C), pages 152-172.
    47. Taylor, Mark & Hsu, Po-Hsuan, 2014. "Forty Years, Thirty Currencies and 21,000 Trading Rules: A Large-scale, Data-Snooping Robust Analysis of Technical Trading in t," CEPR Discussion Papers 10018, C.E.P.R. Discussion Papers.
    48. I. Marta Miranda García & María‐Jesús Segovia‐Vargas & Usue Mori & José A. Lozano, 2023. "Early prediction of Ibex 35 movements," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(5), pages 1150-1166, August.
    49. Pincheira, Pablo & Hardy, Nicolas, 2018. "Forecasting Base Metal Prices with Commodity Currencies," MPRA Paper 83564, University Library of Munich, Germany.
    50. Pincheira Brown, Pablo & Hardy, Nicolás, 2019. "Forecasting base metal prices with the Chilean exchange rate," Resources Policy, Elsevier, vol. 62(C), pages 256-281.
    51. Pincheira, Pablo & Hardy, Nicolas, 2020. "The Mean Squared Prediction Error Paradox: A summary," MPRA Paper 105020, University Library of Munich, Germany.
    52. Stanislav Anatolyev & Natalia Kryzhanovskaya, 2009. "Directional Prediction of Returns under Asymmetric Loss: Direct and Indirect Approaches," Working Papers w0136, Center for Economic and Financial Research (CEFIR).
    53. Chor Foon Tang & Eu Chye Tan, 2017. "Re-visiting the Savings-Led Growth Hypothesis and Its Stability in East Asian Economies," International Economic Journal, Taylor & Francis Journals, vol. 31(3), pages 436-447, July.
    54. Jurdi, Doureige J., 2022. "Predicting the Australian equity risk premium," Pacific-Basin Finance Journal, Elsevier, vol. 71(C).
    55. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    56. McMillan, David G., 2019. "Stock return predictability: Using the cyclical component of the price ratio," Research in International Business and Finance, Elsevier, vol. 48(C), pages 228-242.
    57. David I. Harvey & Stephen J. Leybourne & Robert Sollis & A.M. Robert Taylor, 2021. "Real‐time detection of regimes of predictability in the US equity premium," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(1), pages 45-70, January.
    58. Chor Foon Tang & Salah Abosedra, 2016. "Tourism and growth in Lebanon: new evidence from bootstrap simulation and rolling causality approaches," Empirical Economics, Springer, vol. 50(2), pages 679-696, March.
    59. Afsaneh Bahrami & Abul Shamsuddin & Katherine Uylangco, 2018. "Out‐of‐sample stock return predictability in emerging markets," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 58(3), pages 727-750, September.
    60. McMillan, David G., 2019. "Predicting firm level stock returns: Implications for asset pricing and economic links," The British Accounting Review, Elsevier, vol. 51(4), pages 333-351.
    61. Anwen Yin, 2021. "Forecasting the Market Equity Premium: Does Nonlinearity Matter?," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 13(5), pages 1-9, May.
    62. Ellie Birbeck & Dave Cliff, 2018. "Using Stock Prices as Ground Truth in Sentiment Analysis to Generate Profitable Trading Signals," Papers 1811.02886, arXiv.org.
    63. Dai, Zhifeng & Kang, Jie & Wen, Fenghua, 2021. "Predicting stock returns: A risk measurement perspective," International Review of Financial Analysis, Elsevier, vol. 74(C).
    64. Jian Zhou & Jin Man Lee, 2013. "Adaptive market hypothesis: evidence from the REIT market," Applied Financial Economics, Taylor & Francis Journals, vol. 23(21), pages 1649-1662, November.

  14. Graham Elliott & Ivana Komunjer & Allan Timmermann, 2008. "Biases in Macroeconomic Forecasts: Irrationality or Asymmetric Loss?," Journal of the European Economic Association, MIT Press, vol. 6(1), pages 122-157, March.
    See citations under working paper version above.
  15. Massimo Guidolin & Allan Timmermann, 2008. "Size and Value Anomalies under Regime Shifts," Journal of Financial Econometrics, Oxford University Press, vol. 6(1), pages 1-48, Winter.

    Cited by:

    1. Alexandros Kontonikas & Alexandros Kostakis, 2013. "On Monetary Policy and Stock Market Anomalies," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 40(7-8), pages 1009-1042, September.
    2. Argyropoulos, Christos & Candelon, Bertrand & Hasse, Jean-Baptiste & Panopoulou, Ekaterini, 2020. "Toward a macroprudential regulatory framework for mutual funds," LIDAM Discussion Papers LFIN 2020008, Université catholique de Louvain, Louvain Finance (LFIN).
    3. Massimo Guidolin & Allan Timmerman, 2006. "Asset allocation under multivariate regime switching," Working Papers 2005-002, Federal Reserve Bank of St. Louis.
    4. Andrew Ang & Allan Timmermann, 2011. "Regime Changes and Financial Markets," NBER Working Papers 17182, National Bureau of Economic Research, Inc.
    5. Turtle, H.J. & Zhang, Chengping, 2012. "Time-varying performance of international mutual funds," Journal of Empirical Finance, Elsevier, vol. 19(3), pages 334-348.
    6. Jinjarak, Yothin, 2014. "Equity prices and financial globalization," International Review of Financial Analysis, Elsevier, vol. 33(C), pages 49-57.
    7. Massimo Guidolin & Giovanna Nicodano, 2007. "Managing international portfolios with small capitalization stocks," Working Papers 2007-030, Federal Reserve Bank of St. Louis.
    8. Mendes, Fernando Henrique de Paula e Silva & Caldeira, João Frois & Moura, Guilherme Valle, 2018. "Evidence of Bull and Bear Markets in the Bovespa index: An application of Markovian regime-switching Models with Duration Dependence," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 38(1), May.
    9. Arısoy, Yakup Eser & Altay-Salih, Aslıhan & Akdeniz, Levent, 2015. "Aggregate volatility expectations and threshold CAPM," The North American Journal of Economics and Finance, Elsevier, vol. 34(C), pages 231-253.
    10. Massimo Guidolin & Federica Ria, 2010. "Regime shifts in mean-variance efficient frontiers: some international evidence," Working Papers 2010-040, Federal Reserve Bank of St. Louis.
    11. Carol Alexander & Anca Dimitriu, 2005. "Detecting Switching Strategies in Equity Hedge Funds," ICMA Centre Discussion Papers in Finance icma-dp2005-07, Henley Business School, University of Reading.
    12. Massimo Guidolin & Giovanna Nicodano, 2009. "Small caps in international equity portfolios: the effects of variance risk," Annals of Finance, Springer, vol. 5(1), pages 15-48, January.
    13. Chih-Nan Chen & Chien-Hsiu Lin, 2022. "Optimal carry trade portfolio choice under regime shifts," Review of Quantitative Finance and Accounting, Springer, vol. 59(2), pages 483-506, August.
    14. Carolina Fugazza & Massimo Guidolin & Giovanna Nicodano, 2010. "1/N and long run optimal portfolios: results for mixed asset menus," Working Papers 2010-003, Federal Reserve Bank of St. Louis.
    15. Guidolin, Massimo & Hyde, Stuart, 2012. "Can VAR models capture regime shifts in asset returns? A long-horizon strategic asset allocation perspective," Journal of Banking & Finance, Elsevier, vol. 36(3), pages 695-716.
    16. Yizhan Shu & John M. Mulvey, 2024. "Dynamic Factor Allocation Leveraging Regime-Switching Signals," Papers 2410.14841, arXiv.org.
    17. Francesco Chincoli & Massimo Guidolin, 2017. "Linear and nonlinear predictability in investment style factors: multivariate evidence," Journal of Asset Management, Palgrave Macmillan, vol. 18(6), pages 476-509, October.
    18. Lioui, Abraham & Tarelli, Andrea, 2020. "Factor Investing for the Long Run," Journal of Economic Dynamics and Control, Elsevier, vol. 117(C).
    19. Raeid Saqur, 2024. "What Teaches Robots to Walk, Teaches Them to Trade too -- Regime Adaptive Execution using Informed Data and LLMs," Papers 2406.15508, arXiv.org.
    20. Pettenuzzo, Davide & Timmermann, Allan, 2011. "Predictability of stock returns and asset allocation under structural breaks," Journal of Econometrics, Elsevier, vol. 164(1), pages 60-78, September.
    21. Azamat Abdymomunov, 2013. "Regime-switching measure of systemic financial stress," Annals of Finance, Springer, vol. 9(3), pages 455-470, August.
    22. Yoldas Emre, 2012. "Threshold Asymmetries in Equity Return Distributions: Statistical Tests and Investment Implications," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(5), pages 1-37, December.
    23. Campani, Carlos Heitor & Garcia, René & Lewin, Marcelo, 2021. "Optimal portfolio strategies in the presence of regimes in asset returns," Journal of Banking & Finance, Elsevier, vol. 123(C).
    24. Erdemlioglu, Deniz & Joliet, Robert, 2019. "Long-term asset allocation, risk tolerance and market sentiment," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 62(C), pages 1-19.
    25. Carmine Trecroci, 2010. "Multifactors risk loadings and abnormal returns under uncertainty and learning," Working Papers 1011, University of Brescia, Department of Economics.
    26. Elizabeth Fons & Paula Dawson & Jeffrey Yau & Xiao-jun Zeng & John Keane, 2019. "A novel dynamic asset allocation system using Feature Saliency Hidden Markov models for smart beta investing," Papers 1902.10849, arXiv.org.
    27. Urga, Giovanni & Wang, Fa, 2022. "Estimation and Inference for High Dimensional Factor Model with Regime Switching," MPRA Paper 117012, University Library of Munich, Germany, revised 10 Apr 2023.
    28. Huseyin Gulen & Yuhang Xing & Lu Zhang, 2011. "Value versus Growth: Time‐Varying Expected Stock Returns," Financial Management, Financial Management Association International, vol. 40(2), pages 381-407, June.
    29. Massimo Guidolin, 2013. "Markov switching models in asset pricing research," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 1, pages 3-44, Edward Elgar Publishing.
    30. Hwang, Soosung & Rubesam, Alexandre, 2013. "A behavioral explanation of the value anomaly based on time-varying return reversals," Journal of Banking & Finance, Elsevier, vol. 37(7), pages 2367-2377.
    31. Carolina Fugazza & Massimo Guidolin & Giovanna Nicodano, 2015. "Equally Weighted vs. Long†Run Optimal Portfolios," European Financial Management, European Financial Management Association, vol. 21(4), pages 742-789, September.
    32. Urga, Giovanni & Wang, Fa, 2022. "Estimation and inference for high dimensional factor model with regime switching," MPRA Paper 113172, University Library of Munich, Germany.
    33. González-Rivera, Gloria & Yoldas, Emre, 2012. "Autocontour-based evaluation of multivariate predictive densities," International Journal of Forecasting, Elsevier, vol. 28(2), pages 328-342.
    34. Dewandaru, Ginanjar & Masih, Rumi & Bacha, Obiyathulla I. & Masih, A. Mansur M., 2014. "The Role of Islamic Asset Classes in the Diversified Portfolios: Mean Variance Spanning Test," MPRA Paper 56857, University Library of Munich, Germany.
    35. Nyberg, Henri, 2013. "Predicting bear and bull stock markets with dynamic binary time series models," Journal of Banking & Finance, Elsevier, vol. 37(9), pages 3351-3363.
    36. Massimo Guidolin & Giovanna Nicodano, 2010. "Ex Post Portfolio Performance with Predictable Skewness and Kurtosis," Carlo Alberto Notebooks 191, Collegio Carlo Alberto.
    37. Urga, Giovanni & Wang, Fa, 2024. "Estimation and inference for high dimensional factor model with regime switching," Journal of Econometrics, Elsevier, vol. 241(2).
    38. Shaw, Charles, 2018. "Regime-Switching And Levy Jump Dynamics In Option-Adjusted Spreads," MPRA Paper 94154, University Library of Munich, Germany, revised 27 May 2019.
    39. Taamouti, Abderrahim, 2012. "Moments of multivariate regime switching with application to risk-return trade-off," Journal of Empirical Finance, Elsevier, vol. 19(2), pages 292-308.
    40. Chung, San-Lin & Hung, Mao-Wei & Wei, Tzu-Wen & Yeh, Chung-Ying, 2024. "Strategic asset allocation with distorted beliefs," International Review of Economics & Finance, Elsevier, vol. 89(PB), pages 804-831.
    41. Jieting Chen & Yuichiro Kawaguchi, 2018. "Multi-Factor Asset-Pricing Models under Markov Regime Switches: Evidence from the Chinese Stock Market," IJFS, MDPI, vol. 6(2), pages 1-19, May.
    42. Klaus Grobys, 2012. "Active PortofolioManagement in the Presence of Regime Switching: What Are the Benefits of Defensive Asset Allocation Strategies If the Investor Faces Bear Markets?," The Review of Finance and Banking, Academia de Studii Economice din Bucuresti, Romania / Facultatea de Finante, Asigurari, Banci si Burse de Valori / Catedra de Finante, vol. 4(1), pages 015-031, June.
    43. Azamat Abdymomunov & James Morley, 2011. "Time variation of CAPM betas across market volatility regimes," Applied Financial Economics, Taylor & Francis Journals, vol. 21(19), pages 1463-1478.
    44. Chung, San-Lin & Hung, Chi-Hsiou & Yeh, Chung-Ying, 2012. "When does investor sentiment predict stock returns?," Journal of Empirical Finance, Elsevier, vol. 19(2), pages 217-240.

  16. Graham Elliott & Allan Timmermann, 2008. "Economic Forecasting," Journal of Economic Literature, American Economic Association, vol. 46(1), pages 3-56, March.
    See citations under working paper version above.
  17. Timmermann, Allan, 2008. "Elusive return predictability," International Journal of Forecasting, Elsevier, vol. 24(1), pages 1-18.

    Cited by:

    1. Barbara Rossi, 2011. "Advances in Forecasting Under Instability," Working Papers 11-20, Duke University, Department of Economics.
    2. Massacci, Daniele & Kapetanios, George, 2024. "Forecasting in factor augmented regressions under structural change," International Journal of Forecasting, Elsevier, vol. 40(1), pages 62-76.
    3. Fabian Baetje & Lukas Menkhoff, 2016. "Equity Premium Prediction: Are Economic and Technical Indicators Unstable?," Discussion Papers of DIW Berlin 1552, DIW Berlin, German Institute for Economic Research.
    4. Rossi, Barbara & Odendahl, Florens & Sekhposyan, Tatevik, 2020. "Comparing Forecast Performance with State Dependence," CEPR Discussion Papers 15217, C.E.P.R. Discussion Papers.
    5. Schrimpf, Andreas, 2008. "International Stock Return Predictability Under Model Uncertainty," ZEW Discussion Papers 08-048, ZEW - Leibniz Centre for European Economic Research.
    6. Alexandru Todea & Andrei Rusu, 2014. "Liquidity, information and market efficiency: an intraday approach on a frontier stock market," Economics Bulletin, AccessEcon, vol. 34(4), pages 2303-2307.
    7. Nicolás Magner & Nicolás Hardy, 2022. "Cryptocurrency Forecasting: More Evidence of the Meese-Rogoff Puzzle," Mathematics, MDPI, vol. 10(13), pages 1-27, July.
    8. Poncela, Pilar, 2012. "More is not always better : back to the Kalman filter in dynamic factor models," DES - Working Papers. Statistics and Econometrics. WS ws122317, Universidad Carlos III de Madrid. Departamento de Estadística.
    9. Giovannelli, Alessandro & Massacci, Daniele & Soccorsi, Stefano, 2021. "Forecasting stock returns with large dimensional factor models," Journal of Empirical Finance, Elsevier, vol. 63(C), pages 252-269.
    10. Yi-Chieh Wen & Bin Li, 2020. "Lagged country returns and international stock return predictability during business cycle recession periods," Applied Economics, Taylor & Francis Journals, vol. 52(46), pages 5005-5019, October.
    11. Florens Odendahl & Barbara Rossi & Tatevik Sekhposyan, 2021. "Evaluating Forecast Performance with State Dependence," Working Papers 1295, Barcelona School of Economics.
    12. Kim, Jae H. & Shamsuddin, Abul & Lim, Kian-Ping, 2011. "Stock return predictability and the adaptive markets hypothesis: Evidence from century-long U.S. data," Journal of Empirical Finance, Elsevier, vol. 18(5), pages 868-879.
    13. Nicolas S. Magner & Nicolás Hardy & Tiago Ferreira & Jaime F. Lavin, 2023. "“Agree to Disagree”: Forecasting Stock Market Implied Volatility Using Financial Report Tone Disagreement Analysis," Mathematics, MDPI, vol. 11(7), pages 1-16, March.
    14. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
    15. Andrew Detzel & Jack Strauss, 2018. "Combination Return Forecasts and Portfolio Allocation with the Cross-Section of Book-to-Market Ratios [Illiquidity and stock returns: cross-section and time-series effects]," Review of Finance, European Finance Association, vol. 22(5), pages 1949-1973.
    16. Georgiev, I & Harvey, DI & Leybourne, SJ & Taylor, AM, 2018. "Testing for Parameter Instability in Predictive Regression Models," Essex Finance Centre Working Papers 21162, University of Essex, Essex Business School.
    17. Paulo M.M. Rodrigues & Matei Demetrescu, 2019. "Testing for Episodic Predictability in Stock Returns," Working Papers w201906, Banco de Portugal, Economics and Research Department.
    18. Charlotte Christiansen & Maik Schmeling & Andreas Schrimpf, 2012. "A Comprehensive Look at Financial Volatility Prediction by Economic Variables," BIS Working Papers 374, Bank for International Settlements.
    19. Larry W. Taylor, 2009. "Penalized‐R2 Criteria For Model Selection," Manchester School, University of Manchester, vol. 77(6), pages 699-717, December.
    20. Pönkä, Harri, 2014. "Predicting the direction of US stock markets using industry returns," MPRA Paper 62942, University Library of Munich, Germany.
    21. Nima Zarrabi & Stuart Snaith & Jerry Coakley, 2022. "Exchange rate forecasting using economic models and technical trading rules," The European Journal of Finance, Taylor & Francis Journals, vol. 28(10), pages 997-1018, July.
    22. Bätje, Fabian & Menkhoff, Lukas, 2016. "Predicting the equity premium via its components," VfS Annual Conference 2016 (Augsburg): Demographic Change 145789, Verein für Socialpolitik / German Economic Association.
    23. Yannick Hoga, 2024. "Persistence-Robust Break Detection in Predictive Quantile and CoVaR Regressions," Papers 2410.05861, arXiv.org.
    24. Yu, Deshui & Chen, Li, 2024. "Local predictability of stock returns and cash flows," Journal of Empirical Finance, Elsevier, vol. 77(C).
    25. Schrimpf, Andreas & Wang, Qingwei, 2010. "A reappraisal of the leading indicator properties of the yield curve under structural instability," International Journal of Forecasting, Elsevier, vol. 26(4), pages 836-857, October.
    26. Roberto Gómez‐Cram, 2022. "Late to Recessions: Stocks and the Business Cycle," Journal of Finance, American Finance Association, vol. 77(2), pages 923-966, April.
    27. Taylor, Mark & Hsu, Po-Hsuan & Wang, Zigan, 2020. "The Out-of-Sample Performance of Carry Trades," CEPR Discussion Papers 15052, C.E.P.R. Discussion Papers.
    28. Leland E. Farmer & Lawrence Schmidt & Allan Timmermann, 2023. "Pockets of Predictability," Journal of Finance, American Finance Association, vol. 78(3), pages 1279-1341, June.
    29. Leopoldo Catania & Anna Gloria Billé, 2016. "Dynamic Spatial Autoregressive Models with Autoregressive and Heteroskedastic Disturbances," CEIS Research Paper 375, Tor Vergata University, CEIS, revised 31 Mar 2016.
    30. Muhammad Shahbaz & Mohammad Ali Aboutorabi & Farzaneh Ahmadian Yazdi, 2024. "Foreign Capital, Natural Resource Rents and Financial Development: A New Approach," Global Business Review, International Management Institute, vol. 25(2), pages 401-420, April.
    31. Baltas, Nick & Karyampas, Dimitrios, 2018. "Forecasting the equity risk premium: The importance of regime-dependent evaluation," Journal of Financial Markets, Elsevier, vol. 38(C), pages 83-102.
    32. Cem Cakmakli & Dick van Dijk, 2010. "Getting the Most out of Macroeconomic Information for Predicting Stock Returns and Volatility," Tinbergen Institute Discussion Papers 10-115/4, Tinbergen Institute.
    33. Daniel Mantilla-García & Vijay Vaidyanathan, 2017. "Predicting stock returns in the presence of uncertain structural changes and sample noise," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 31(3), pages 357-391, August.
    34. Massimo Guidolin & Stuart Hyde & David McMillan & Sadayuki Ono, 2010. "Does the macroeconomy predict U.K. asset returns in a nonlinear fashion? comprehensive out-of-sample evidence," Working Papers 2010-039, Federal Reserve Bank of St. Louis.
    35. David G. McMillan, 2017. "Stock return predictability: the role of inflation and threshold dynamics," International Review of Applied Economics, Taylor & Francis Journals, vol. 31(3), pages 357-375, May.
    36. Massimo Guidolin & Manuela Pedio & Milena Petrova, 2019. "The Predictability of Real Estate Excess Returns: An Out-of-Sample Economic Value Analysis," BAFFI CAREFIN Working Papers 19122, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    37. Massacci, Daniele, 2017. "Least squares estimation of large dimensional threshold factor models," Journal of Econometrics, Elsevier, vol. 197(1), pages 101-129.
    38. Thomadakis, Apostolos, 2016. "Do Combination Forecasts Outperform the Historical Average? Economic and Statistical Evidence," MPRA Paper 71589, University Library of Munich, Germany.
    39. Pincheira, Pablo & Hardy, Nicolas, 2021. "The Mean Squared Prediction Error Paradox," MPRA Paper 107403, University Library of Munich, Germany.
    40. Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2010. "Out-of-sample equity premium prediction: economic fundamentals vs. moving-average rules," Working Papers 2010-008, Federal Reserve Bank of St. Louis.
    41. Jean-Yves Pitarakis, 2017. "A Simple Approach for Diagnosing Instabilities in Predictive Regressions," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 79(5), pages 851-874, October.
    42. Hammerschmid, Regina & Lohre, Harald, 2018. "Regime shifts and stock return predictability," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 138-160.
    43. Yin, Anwen, 2020. "Equity premium prediction and optimal portfolio decision with Bagging," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    44. Gonzalo, Jesus & Pitarakis, Jean-Yves, 2010. "Regime Specific Predictability in Predictive Regressions," MPRA Paper 29190, University Library of Munich, Germany.
    45. Hsu, Po-Hsuan & Taylor, Mark P. & Wang, Zigan, 2016. "Technical trading: Is it still beating the foreign exchange market?," Journal of International Economics, Elsevier, vol. 102(C), pages 188-208.
    46. Erik Hillebrand & Tae-Hwy Lee & Marcelo Cunha Medeiros, 2012. "Let´s do it again: bagging equity premium predictors," Textos para discussão 604, Department of Economics PUC-Rio (Brazil).
    47. Tang, Chor Foon & Lai, Yew Wah & Ozturk, Ilhan, 2015. "How stable is the export-led growth hypothesis? Evidence from Asia's Four Little Dragons," Economic Modelling, Elsevier, vol. 44(C), pages 229-235.
    48. Maderitsch, R., 2015. "Information transmission between stock markets in Hong Kong, Europe and the US: New evidence on time- and state-dependence," Pacific-Basin Finance Journal, Elsevier, vol. 35(PA), pages 13-36.
    49. Souropanis, Ioannis & Vivian, Andrew, 2023. "Forecasting realized volatility with wavelet decomposition," Journal of Empirical Finance, Elsevier, vol. 74(C).
    50. Giulia Dal Pra & Massimo Guidolin & Manuela Pedio & Fabiola Vasile, 2016. "Do Regimes in Excess Stock Return Predictability Create Economic Value? An Out-of-Sample Portfolio Analysis," BAFFI CAREFIN Working Papers 1637, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    51. Sander, Magnus, 2018. "Market timing over the business cycle," Journal of Empirical Finance, Elsevier, vol. 46(C), pages 130-145.
    52. Guillaume Belly & Lukas Boeckelmann & Carlos Mateo Caicedo Graciano & Alberto Di Iorio & Klodiana Istrefi & Vasileios Siakoulis & Arthur Stalla-Bourdillon, 2023. "Forecasting sovereign risk in the Euro area via machine learning," Post-Print hal-04459577, HAL.
    53. Gao, Yan & Li, Honggang, 2011. "A consolidated model of self-fulfilling expectations and self-destroying expectations in financial markets," Journal of Economic Behavior & Organization, Elsevier, vol. 77(3), pages 368-381, March.
    54. Alexandridis, Antonios K. & Apergis, Iraklis & Panopoulou, Ekaterini & Voukelatos, Nikolaos, 2023. "Equity premium prediction: The role of information from the options market," Journal of Financial Markets, Elsevier, vol. 64(C).
    55. Jonathan Iworiso & Spyridon Vrontos, 2020. "On the directional predictability of equity premium using machine learning techniques," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(3), pages 449-469, April.
    56. Giacomini, Raffaella & Rossi, Barbara, 2008. "Forecast Comparisons in Unstable Environments," Working Papers 08-04, Duke University, Department of Economics.
    57. Kevin Rink, 2023. "The predictive ability of technical trading rules: an empirical analysis of developed and emerging equity markets," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 37(4), pages 403-456, December.
    58. Nicolás Magner & Jaime F. Lavín & Mauricio A. Valle, 2022. "Modeling Synchronization Risk among Sustainable Exchange Trade Funds: A Statistical and Network Analysis Approach," Mathematics, MDPI, vol. 10(19), pages 1-30, October.
    59. Shailesh Rana & William H. Bommer & G. Michael Phillips, 2020. "Predicting Returns for Growth and Value Stocks: A Forecast Assessment Approach Using Global Asset Pricing Models," International Journal of Economics and Financial Issues, Econjournals, vol. 10(4), pages 88-106.
    60. Marta Matyjaszek & Gregorio Fidalgo Valverde & Alicja Krzemień & Krzysztof Wodarski & Pedro Riesgo Fernández, 2020. "Optimizing Predictor Variables in Artificial Neural Networks When Forecasting Raw Material Prices for Energy Production," Energies, MDPI, vol. 13(8), pages 1-15, April.
    61. Salah Abosedra & Chor Foon Tang, 2019. "Are exports a reliable source of economic growth in MENA countries? New evidence from the rolling Granger causality method," Empirical Economics, Springer, vol. 56(3), pages 831-841, March.
    62. Guidolin, Massimo & Hyde, Stuart, 2012. "Simple VARs cannot approximate Markov switching asset allocation decisions: An out-of-sample assessment," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3546-3566.
    63. Çakmaklı, Cem & van Dijk, Dick, 2016. "Getting the most out of macroeconomic information for predicting excess stock returns," International Journal of Forecasting, Elsevier, vol. 32(3), pages 650-668.
    64. Lof, Matthijs & Nyberg, Henri, 2024. "Discount rates and cash flows: A local projection approach," Journal of Banking & Finance, Elsevier, vol. 162(C).
    65. Tang, Chor Foon & Lai, Yew Wah, 2011. "The Stability of Export-led Growth Hypothesis: Evidence from Asia's Four Little Dragons," MPRA Paper 27962, University Library of Munich, Germany.
    66. Devpura, Neluka & Narayan, Paresh Kumar & Sharma, Susan Sunila, 2018. "Is stock return predictability time-varying?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 52(C), pages 152-172.
    67. Hardy, Nicolás & Ferreira, Tiago & Quinteros, Maria J. & Magner, Nicolás S., 2023. "“Watch your tone!”: Forecasting mining industry commodity prices with financial report tone," Resources Policy, Elsevier, vol. 86(PA).
    68. Taylor, Mark & Hsu, Po-Hsuan, 2014. "Forty Years, Thirty Currencies and 21,000 Trading Rules: A Large-scale, Data-Snooping Robust Analysis of Technical Trading in t," CEPR Discussion Papers 10018, C.E.P.R. Discussion Papers.
    69. I. Marta Miranda García & María‐Jesús Segovia‐Vargas & Usue Mori & José A. Lozano, 2023. "Early prediction of Ibex 35 movements," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(5), pages 1150-1166, August.
    70. Anwen Yin, 2024. "Predictive model averaging with parameter instability and heteroskedasticity," Bulletin of Economic Research, Wiley Blackwell, vol. 76(2), pages 418-442, April.
    71. Pincheira, Pablo & Hardy, Nicolas, 2018. "Forecasting Base Metal Prices with Commodity Currencies," MPRA Paper 83564, University Library of Munich, Germany.
    72. Ravi Kashyap, 2024. "The Blockchain Risk Parity Line: Moving From The Efficient Frontier To The Final Frontier Of Investments," Papers 2407.09536, arXiv.org.
    73. Pincheira Brown, Pablo & Hardy, Nicolás, 2019. "Forecasting base metal prices with the Chilean exchange rate," Resources Policy, Elsevier, vol. 62(C), pages 256-281.
    74. Pincheira, Pablo & Hardy, Nicolas, 2020. "The Mean Squared Prediction Error Paradox: A summary," MPRA Paper 105020, University Library of Munich, Germany.
    75. Stanislav Anatolyev & Natalia Kryzhanovskaya, 2009. "Directional Prediction of Returns under Asymmetric Loss: Direct and Indirect Approaches," Working Papers w0136, Center for Economic and Financial Research (CEFIR).
    76. Chor Foon Tang & Eu Chye Tan, 2017. "Re-visiting the Savings-Led Growth Hypothesis and Its Stability in East Asian Economies," International Economic Journal, Taylor & Francis Journals, vol. 31(3), pages 436-447, July.
    77. Jurdi, Doureige J., 2022. "Predicting the Australian equity risk premium," Pacific-Basin Finance Journal, Elsevier, vol. 71(C).
    78. Rechenthin, Michael & Street, W. Nick, 2013. "Using conditional probability to identify trends in intra-day high-frequency equity pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6169-6188.
    79. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    80. Chor Foon Tang & Soo Y. Chua, 2012. "The savings-growth nexus for the Malaysian economy: a view through rolling sub-samples," Applied Economics, Taylor & Francis Journals, vol. 44(32), pages 4173-4185, November.
    81. McMillan, David G., 2019. "Stock return predictability: Using the cyclical component of the price ratio," Research in International Business and Finance, Elsevier, vol. 48(C), pages 228-242.
    82. Juan Reboredo & José Matías & Raquel Garcia-Rubio, 2012. "Nonlinearity in Forecasting of High-Frequency Stock Returns," Computational Economics, Springer;Society for Computational Economics, vol. 40(3), pages 245-264, October.
    83. David I. Harvey & Stephen J. Leybourne & Robert Sollis & A.M. Robert Taylor, 2021. "Real‐time detection of regimes of predictability in the US equity premium," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(1), pages 45-70, January.
    84. Chor Foon Tang & Salah Abosedra, 2016. "Tourism and growth in Lebanon: new evidence from bootstrap simulation and rolling causality approaches," Empirical Economics, Springer, vol. 50(2), pages 679-696, March.
    85. Kian-Ping Lim & Weiwei Luo & Jae H. Kim, 2013. "Are US stock index returns predictable? Evidence from automatic autocorrelation-based tests," Applied Economics, Taylor & Francis Journals, vol. 45(8), pages 953-962, March.
    86. McMillan, David G., 2019. "Predicting firm level stock returns: Implications for asset pricing and economic links," The British Accounting Review, Elsevier, vol. 51(4), pages 333-351.
    87. Afsaneh Bahrami & Abul Shamsuddin & Katherine Uylangco, 2018. "Out‐of‐sample stock return predictability in emerging markets," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 58(3), pages 727-750, September.
    88. Anwen Yin, 2021. "Forecasting the Market Equity Premium: Does Nonlinearity Matter?," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 13(5), pages 1-9, May.
    89. Bennett, Donyetta & Mekelburg, Erik & Strauss, Jack & Williams, T.H., 2024. "Unlocking the black box of sentiment and cryptocurrency: What, which, why, when and how?," Global Finance Journal, Elsevier, vol. 60(C).
    90. Ellie Birbeck & Dave Cliff, 2018. "Using Stock Prices as Ground Truth in Sentiment Analysis to Generate Profitable Trading Signals," Papers 1811.02886, arXiv.org.
    91. Fabrizio Iacone & Luca Rossini & Andrea Viselli, 2024. "Comparing predictive ability in presence of instability over a very short time," Papers 2405.11954, arXiv.org.
    92. Rambaccussing, Dooruj, 2009. "Exploiting price misalignements," MPRA Paper 27147, University Library of Munich, Germany.
    93. Dai, Zhifeng & Kang, Jie & Wen, Fenghua, 2021. "Predicting stock returns: A risk measurement perspective," International Review of Financial Analysis, Elsevier, vol. 74(C).
    94. Marco Tronzano, 2024. "What Drives Asset Returns Comovements? Some Empirical Evidence from US Dollar and Global Stock Returns (2000–2023)," JRFM, MDPI, vol. 17(4), pages 1-26, April.
    95. Jian Zhou & Jin Man Lee, 2013. "Adaptive market hypothesis: evidence from the REIT market," Applied Financial Economics, Taylor & Francis Journals, vol. 23(21), pages 1649-1662, November.

  18. Massimo Guidolin & Allan Timmermann, 2008. "International asset allocation under regime switching, skew, and kurtosis preferences," The Review of Financial Studies, Society for Financial Studies, vol. 21(2), pages 889-935, April.

    Cited by:

    1. Noori, Mohammad, 2024. "Stock-oil comovements through fear, uncertainty, and expectations: Evidence from conditional comoments," International Review of Economics & Finance, Elsevier, vol. 93(PA), pages 529-551.
    2. Fischer, Andreas M. & Greminger, Rafael P. & Grisse, Christian & Kaufmann, Sylvia, 2021. "Portfolio rebalancing in times of stress," Journal of International Money and Finance, Elsevier, vol. 113(C).
    3. Thomas Conlon & John Cotter & Chenglu Jin, 2019. "Co-skewness across Return Horizons," Working Papers 201910, Geary Institute, University College Dublin.
    4. Escobar-Anel, Marcos & Spies, Ben & Zagst, Rudi, 2024. "Mean–variance optimization under affine GARCH: A utility-based solution," Finance Research Letters, Elsevier, vol. 59(C).
    5. Wu, Bo & Li, Lingfei, 2024. "Reinforcement learning for continuous-time mean-variance portfolio selection in a regime-switching market," Journal of Economic Dynamics and Control, Elsevier, vol. 158(C).
    6. Fabio C. Bagliano & Carolina Fugazza & Giovanna Nicodano, 2017. "A Life-Cycle Model with Unemployment Traps," Carlo Alberto Notebooks 514, Collegio Carlo Alberto, revised 2019.
      • Fabio C. Bagliano & Carolina Fugazza & Giovanna Nicodano, 2017. "A Life-Cycle Model with Unemployment Traps," Working papers 041, Department of Economics, Social Studies, Applied Mathematics and Statistics (Dipartimento di Scienze Economico-Sociali e Matematico-Statistiche), University of Torino.
    7. Matteo Barigozzi & Daniele Massacci, 2022. "Modelling Large Dimensional Datasets with Markov Switching Factor Models," Papers 2210.09828, arXiv.org, revised Dec 2024.
    8. Guidolin, Massimo & Liu, Hening, 2016. "Ambiguity Aversion and Underdiversification," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 51(4), pages 1297-1323, August.
    9. Donatien Hainaut & Griselda Deelstra, 2019. "A Bivariate Mutually-Excited Switching Jump Diffusion (BMESJD) for Asset Prices," Methodology and Computing in Applied Probability, Springer, vol. 21(4), pages 1337-1375, December.
    10. Konermann, Patrick & Meinerding, Christoph & Sedova, Olga, 2013. "Asset allocation in markets with contagion: The interplay between volatilities, jump intensities, and correlations," Review of Financial Economics, Elsevier, vol. 22(1), pages 36-46.
    11. Bernardi, Mauro & Catania, Leopoldo, 2018. "Portfolio optimisation under flexible dynamic dependence modelling," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 1-18.
    12. Ai, Hengjie & Han, Leyla Jianyu & Pan, Xuhui Nick & Xu, Lai, 2022. "The cross section of the monetary policy announcement premium," Journal of Financial Economics, Elsevier, vol. 143(1), pages 247-276.
    13. Andrew Ang & Allan Timmermann, 2011. "Regime Changes and Financial Markets," NBER Working Papers 17182, National Bureau of Economic Research, Inc.
    14. John M Maheu & Thomas H McCurdy & Yong Song, 2009. "Extracting bull and bear markets from stock returns," Working Papers tecipa-369, University of Toronto, Department of Economics.
    15. Massimo Guidolin & Stuart Hyde, 2009. "What tames the Celtic Tiger? Portfolio implications from a Multivariate Markov Switching model," Applied Financial Economics, Taylor & Francis Journals, vol. 19(6), pages 463-488.
    16. Turtle, H.J. & Zhang, Chengping, 2012. "Time-varying performance of international mutual funds," Journal of Empirical Finance, Elsevier, vol. 19(3), pages 334-348.
    17. Erik Kole & Dick Dijk, 2017. "How to Identify and Forecast Bull and Bear Markets?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(1), pages 120-139, January.
    18. Nicole Branger & Holger Kraft & Christoph Meinerding, 2009. "What is the Impact of Stock Market Contagion on an Investor's Portfolio Choice?," Working Paper Series: Finance and Accounting 198, Department of Finance, Goethe University Frankfurt am Main.
    19. Chen, Ke & Vitiello, Luiz & Hyde, Stuart & Poon, Ser-Huang, 2018. "The reality of stock market jumps diversification," Journal of International Money and Finance, Elsevier, vol. 86(C), pages 171-188.
    20. Lambert, Philippe & Laurent, Sébastien & Veredas, David, 2012. "Testing conditional asymmetry: A residual-based approach," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1229-1247.
    21. Zhou, Yinggang, 2014. "Modeling the joint dynamics of risk-neutral stock index and bond yield volatilities," Journal of Banking & Finance, Elsevier, vol. 38(C), pages 216-228.
    22. Hematizadeh, Roksana & Tajaddini, Reza & Hallahan, Terrence, 2022. "Dynamic asset allocation strategy using a state-dependent Markov model: Applications to international equity markets," Journal of International Money and Finance, Elsevier, vol. 128(C).
    23. Stanislav Anatolyev & Vladimir Pyrlik, 2021. "Shrinkage for Gaussian and t Copulas in Ultra-High Dimensions," CERGE-EI Working Papers wp699, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    24. Loriana Pelizzon & Monica Billio & Mila Getmansky, 2008. "Crisis and Hedge Fund Risk," Working Papers 2008_10, Department of Economics, University of Venice "Ca' Foscari".
    25. Matthijs Lof, 2015. "Rational Speculators, Contrarians, and Excess Volatility," Management Science, INFORMS, vol. 61(8), pages 1889-1901, August.
    26. Rabitsch, Katrin & Stepanchuk, Serhiy, 2014. "A Two Period Model with Portfolio Choice: Understanding Results from Different Solution Methods," Department of Economics Working Paper Series 162, WU Vienna University of Economics and Business.
    27. Haas, Markus & Mittnik, Stefan, 2008. "Multivariate regimeswitching GARCH with an application to international stock markets," CFS Working Paper Series 2008/08, Center for Financial Studies (CFS).
    28. Haehean Park & Baeho Kim & Hyeongsop Shim, 2019. "A smiling bear in the equity options market and the cross‐section of stock returns," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(11), pages 1360-1382, November.
    29. Smith, Simon C., 2021. "International stock return predictability," International Review of Financial Analysis, Elsevier, vol. 78(C).
    30. Chan, Kalok & Yang, Jian & Zhou, Yinggang, 2018. "Conditional co-skewness and safe-haven currencies: A regime switching approach," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 58-80.
    31. Winkelried, Diego & Castillo, Paul, 2010. "Dollarization persistence and individual heterogeneity," Journal of International Money and Finance, Elsevier, vol. 29(8), pages 1596-1618, December.
    32. Balcilar, Mehmet & Gungor, Hasan & Hammoudeh, Shawkat, 2015. "The time-varying causality between spot and futures crude oil prices: A regime switching approach," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 51-71.
    33. Abubakar Jamaladeen & David E. Omoregie & Samuel F. Onipede & Nafiu A. Bashir, 2022. "A regime-switching skew-normal model of contagion in some selected stock markets," SN Business & Economics, Springer, vol. 2(12), pages 1-20, December.
    34. Kaschützke, B. & Maurer, R., 2016. "Investing and Portfolio Allocation for Retirement," Handbook of the Economics of Population Aging, in: Piggott, John & Woodland, Alan (ed.), Handbook of the Economics of Population Aging, edition 1, volume 1, chapter 0, pages 567-608, Elsevier.
    35. Carlos Castro & Nini Johana Marin, 2014. "Stock return comovements and integration within the Latin American integrated market," Borradores de Investigación 11041, Universidad del Rosario.
    36. Katrin Rabitsch & Serhiy Stepanchuk, 2014. "A Two Period Model with Portfolio Choice: Understanding Results from Different Solution Methods," Department of Economics Working Papers wuwp162, Vienna University of Economics and Business, Department of Economics.
    37. Jianmin Shi, 2020. "Optimal control of multiple Markov switching stochastic system with application to portfolio decision," Papers 2010.16102, arXiv.org.
    38. Apostolos Thomadakis, 2012. "Contagion or Flight-to-Quality Phenomena in Stock and Bond Returns," School of Economics Discussion Papers 0612, School of Economics, University of Surrey.
    39. Balcılar, Mehmet & Demirer, Rıza & Hammoudeh, Shawkat, 2015. "Regional and global spillovers and diversification opportunities in the GCC equity sectors," Emerging Markets Review, Elsevier, vol. 24(C), pages 160-187.
    40. Donatien Hainaut & Yang Shen & Yan Zeng, 2018. "How do capital structure and economic regime affect fair prices of bank’s equity and liabilities?," Annals of Operations Research, Springer, vol. 262(2), pages 519-545, March.
    41. Sullivan Hu'e & Christophe Hurlin & Yang Lu, 2024. "Backtesting Expected Shortfall: Accounting for both duration and severity with bivariate orthogonal polynomials," Papers 2405.02012, arXiv.org, revised May 2024.
    42. Ming, Lei & Yang, Ping & Liu, Qianqiu, 2023. "Is gold a hedge or a safe haven against stock markets? Evidence from conditional comoments," Journal of Empirical Finance, Elsevier, vol. 74(C).
    43. Jingjing Chai & Raimond Maurer & Olivia S. Mitchell & Ralph Rogalla, 2011. "Lifecycle Impacts of the Financial and Economic Crisis on Household Optimal Consumption, Portfolio Choice, and Labor Supply," Working Papers wp246, University of Michigan, Michigan Retirement Research Center.
    44. Chen, Zhiping & Li, Gang & Zhao, Yonggan, 2014. "Time-consistent investment policies in Markovian markets: A case of mean–variance analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 40(C), pages 293-316.
    45. Thomas Conlon & John Cotter & Iason Kynigakis, 2021. "Machine Learning and Factor-Based Portfolio Optimization," Papers 2107.13866, arXiv.org.
    46. Li, Xiaoyue & Uysal, A. Sinem & Mulvey, John M., 2022. "Multi-period portfolio optimization using model predictive control with mean-variance and risk parity frameworks," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1158-1176.
    47. Weihong HUANG & Wanying Wang, 2012. "Price-Volume Relations in Financial Market," Economic Growth Centre Working Paper Series 1209, Nanyang Technological University, School of Social Sciences, Economic Growth Centre.
    48. Baltas, Nick & Karyampas, Dimitrios, 2018. "Forecasting the equity risk premium: The importance of regime-dependent evaluation," Journal of Financial Markets, Elsevier, vol. 38(C), pages 83-102.
    49. Massimo Guidolin & Federica Ria, 2010. "Regime shifts in mean-variance efficient frontiers: some international evidence," Working Papers 2010-040, Federal Reserve Bank of St. Louis.
    50. Yudong Wang & Chongfeng Wu & Li Yang, 2015. "Hedging with Futures: Does Anything Beat the Naïve Hedging Strategy?," Management Science, INFORMS, vol. 61(12), pages 2870-2889, December.
    51. Guidolin, Massimo & Hyde, Stuart, 2008. "Equity portfolio diversification under time-varying predictability: Evidence from Ireland, the US, and the UK," Journal of Multinational Financial Management, Elsevier, vol. 18(4), pages 293-312, October.
    52. John M. Maheu & Thomas H. McCurdy & Xiaofei Zhao, 2012. "Do Jumps Contribute to the Dynamics of the Equity Premium?," Working Paper series 47_12, Rimini Centre for Economic Analysis.
    53. Guidolin, Massimo & Hyde, Stuart & McMillan, David & Ono, Sadayuki, 2009. "Non-linear predictability in stock and bond returns: When and where is it exploitable?," International Journal of Forecasting, Elsevier, vol. 25(2), pages 373-399.
    54. Lorán Chollete & Andréas Heinen & Alfonso Valdesogo, 2009. "Modeling International Financial Returns with a Multivariate Regime-switching Copula," Journal of Financial Econometrics, Oxford University Press, vol. 7(4), pages 437-480, Fall.
    55. Ayadi, Mohamed A. & Cao, Xu & Lazrak, Skander & Wang, Yan, 2019. "Do idiosyncratic skewness and kurtosis really matter?," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    56. Hainaut, Donatien, 2014. "Impulse control of pension fund contributions, in a regime switching economy," European Journal of Operational Research, Elsevier, vol. 239(3), pages 810-819.
    57. Peter Christoffersen & Mathieu Fournier & Kris Jacobs & Mehdi Karoui, 2015. "Option-Based Estimation of the Price of Co-Skewness and Co-Kurtosis Risk," CREATES Research Papers 2015-54, Department of Economics and Business Economics, Aarhus University.
    58. Vozlyublennaia, Nadia & Meshcheryakov, Artem, 2014. "Dynamic correlation structure and security risk," Journal of Economics and Business, Elsevier, vol. 73(C), pages 48-64.
    59. Triki, Mohamed Bilel & Ben Maatoug, Abderrazek, 2021. "The GOLD market as a safe haven against the stock market uncertainty: Evidence from geopolitical risk," Resources Policy, Elsevier, vol. 70(C).
    60. Liu, Wei-han, 2018. "Hidden Markov model analysis of extreme behaviors of foreign exchange rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 1007-1019.
    61. Trung H. Le & Apostolos Kourtis & Raphael Markellos, 2023. "Modeling skewness in portfolio choice," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(6), pages 734-770, June.
    62. Enrique Sentana, 2008. "The Econometrics of Mean-Variance Efficiency Tests: A Survey," Working Papers wp2008_0807, CEMFI.
    63. Massimo Guidolin & Giovanna Nicodano, 2009. "Small caps in international equity portfolios: the effects of variance risk," Annals of Finance, Springer, vol. 5(1), pages 15-48, January.
    64. René Garcia & Georges Tsafack, 2009. "Dependence Structure and Extreme Comovements in International Equity and Bond Markets," CIRANO Working Papers 2009s-21, CIRANO.
    65. Diego Ferreira & Andreza A. Palma, 2022. "On the subprime crisis and the Latin American financial markets: A regime switching skew‐normal approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(3), pages 3300-3314, July.
    66. Xu, Yuewu & Yao, Xiangkun, 2019. "Extending the Hansen–Jagannathan distance measure of model misspecification," Finance Research Letters, Elsevier, vol. 29(C), pages 384-392.
    67. Branger, Nicole & Kraft, Holger & Meinerding, Christoph, 2013. "Partial information about contagion risk, self-exciting processes and portfolio optimization," SAFE Working Paper Series 28, Leibniz Institute for Financial Research SAFE.
    68. Hadhri, Sinda & Ftiti, Zied, 2019. "Asset allocation and investment opportunities in emerging stock markets: Evidence from return asymmetry-based analysis," Journal of International Money and Finance, Elsevier, vol. 93(C), pages 187-200.
    69. Cerrato, Mario & Crosby, John & Kim, Minjoo & Zhao, Yang, 2017. "Relation between higher order comoments and dependence structure of equity portfolio," Journal of Empirical Finance, Elsevier, vol. 40(C), pages 101-120.
    70. Hainaut, Donatien & Deelstra, Griselda, 2018. "A Bivariate Mutually-Excited Switching Jump Diffusion (BMESJD) for asset prices," LIDAM Discussion Papers ISBA 2018011, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    71. So, Mike K.P. & Chan, Raymond K.S., 2014. "Bayesian analysis of tail asymmetry based on a threshold extreme value model," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 568-587.
    72. Anna Battauz & Alessandro Sbuelz, 2018. "Non†myopic portfolio choice with unpredictable returns: The jump†to†default case," European Financial Management, European Financial Management Association, vol. 24(2), pages 192-208, March.
    73. Lassance, Nathan, 2022. "Reconciling mean-variance portfolio theory with non-Gaussian returns," European Journal of Operational Research, Elsevier, vol. 297(2), pages 729-740.
    74. Zhu, Min, 2013. "Return distribution predictability and its implications for portfolio selection," International Review of Economics & Finance, Elsevier, vol. 27(C), pages 209-223.
    75. Kraft, Holger & Weiss, Farina, 2023. "Pandemic portfolio choice," European Journal of Operational Research, Elsevier, vol. 305(1), pages 451-462.
    76. Arouri, Mohamed & M’saddek, Oussama & Nguyen, Duc Khuong & Pukthuanthong, Kuntara, 2019. "Cojumps and asset allocation in international equity markets," Journal of Economic Dynamics and Control, Elsevier, vol. 98(C), pages 1-22.
    77. Su, Xiaoshan & Bai, Manying & Han, Yingwei, 2021. "Robust portfolio selection with regime switching and asymmetric dependence," Economic Modelling, Elsevier, vol. 99(C).
    78. Bernd Scherer, 2020. "Alternative risk premia: contagion and portfolio choice," Journal of Asset Management, Palgrave Macmillan, vol. 21(3), pages 178-191, May.
    79. Fousseni Chabi-Yo & Eric Ghysels & Eric Renault, 2008. "On Portfolio Separation Theorems with Heterogeneous Beliefs and Attitudes towards Risk," Staff Working Papers 08-16, Bank of Canada.
    80. Carl Chiarella & Xue-Zhong He & Weihong Huang & Huanhuan Zheng, 2011. "Estimating Behavioural Heterogeneity Under Regime Switching," Research Paper Series 290, Quantitative Finance Research Centre, University of Technology, Sydney.
    81. Philipp M. Möller, 2018. "Drawdown Measures And Return Moments," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(07), pages 1-42, November.
    82. Lassance, Nathan & Vrins, Frédéric, 2021. "Portfolio Selection: A Target-Distribution Approach," LIDAM Discussion Papers LFIN 2021005, Université catholique de Louvain, Louvain Finance (LFIN).
    83. Monica Billio & Mila Getmansky & Andrew W. Lo & Loriana Pelizzon, 2010. "Econometric Measures of Systemic Risk in the Finance and Insurance Sectors," NBER Working Papers 16223, National Bureau of Economic Research, Inc.
    84. Donatien Hainaut & Yan Shen & Yan Zeng, 2016. "How do capital structure and economic regime affect fair prices of bank's equity and liabilities?," Post-Print hal-01394133, HAL.
    85. Balcilar, Mehmet & Hammoudeh, Shawkat & Asaba, Nwin-Anefo Fru, 2015. "A regime-dependent assessment of the information transmission dynamics between oil prices, precious metal prices and exchange rates," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 72-89.
    86. Cerrato, Mario & Crosby, John & Kim, Minjoo & Zhao, Yang, 2015. "US Monetary and Fiscal Policies - Conflict or Cooperation?," SIRE Discussion Papers 2015-78, Scottish Institute for Research in Economics (SIRE).
    87. Ñíguez, Trino-Manuel & Paya, Ivan & Peel, David, 2016. "Pure higher-order effects in the portfolio choice model," Finance Research Letters, Elsevier, vol. 19(C), pages 255-260.
    88. Massimo Guidolin & Martin Lozano & Juan Arismendi Zambrano, "undated". "Multifactor Empirical Asset Pricing Under Higher-Order Moment Variations," Economics Department Working Paper Series n304-20.pdf, Department of Economics, National University of Ireland - Maynooth.
    89. Donatien Hainaut & Renaud MacGilchrist, 2012. "Strategic asset allocation with switching dependence," Annals of Finance, Springer, vol. 8(1), pages 75-96, February.
    90. Guidolin, Massimo & Hyde, Stuart, 2012. "Can VAR models capture regime shifts in asset returns? A long-horizon strategic asset allocation perspective," Journal of Banking & Finance, Elsevier, vol. 36(3), pages 695-716.
    91. Monica Billio & Mila Getmansky & Loriana Pelizzon, 2007. "Dynamic Risk Exposure in Hedge Funds," Working Papers 2007_17, Department of Economics, University of Venice "Ca' Foscari".
    92. Francesco Chincoli & Massimo Guidolin, 2017. "Linear and nonlinear predictability in investment style factors: multivariate evidence," Journal of Asset Management, Palgrave Macmillan, vol. 18(6), pages 476-509, October.
    93. Yuewu Xu, 2021. "A new measure of model misspecification with the no-arbitrage constraint: extending the second Hansen–Jagannathan distance," Review of Quantitative Finance and Accounting, Springer, vol. 56(3), pages 917-938, April.
    94. Lin Deng & Michael Stanley Smith & Worapree Maneesoonthorn, 2023. "Large Skew-t Copula Models and Asymmetric Dependence in Intraday Equity Returns," Papers 2308.05564, arXiv.org, revised Jul 2024.
    95. Kanwal Iqbal Khan & Syed M. Waqar Azeem Naqvi & Muhammad Mudassar Ghafoor & Rana Shahid Imdad Akash, 2020. "Sustainable Portfolio Optimization with Higher-Order Moments of Risk," Sustainability, MDPI, vol. 12(5), pages 1-14, March.
    96. Aloui, Chaker & Hammoudeh, Shawkat & Hamida, Hela Ben, 2015. "Price discovery and regime shift behavior in the relationship between sharia stocks and sukuk: A two-state Markov switching analysis," Pacific-Basin Finance Journal, Elsevier, vol. 34(C), pages 121-135.
    97. Bruno Feunou & Mohammad R. Jahan-Parvar & Roméo Tedongap, 2013. "Which Parametric Model for Conditional Skewness?," Staff Working Papers 13-32, Bank of Canada.
    98. Ben Abdelaziz, Fouad & Chibane, Messaoud, 2023. "Portfolio optimization in the presence of tail correlation," Economic Modelling, Elsevier, vol. 122(C).
    99. Philippe Lambert & Sébastien Laurent, 2008. "Testing Conditional Dynamics in Asymmetry. A Residual-Based Approach," Working Papers ECARES 2008_009, ULB -- Universite Libre de Bruxelles.
    100. Harris, Richard D.F. & Nguyen, Linh H. & Stoja, Evarist, 2019. "Systematic extreme downside risk," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 61(C), pages 128-142.
    101. Carroll, Rachael & Conlon, Thomas & Cotter, John & Salvador, Enrique, 2017. "Asset allocation with correlation: A composite trade-off," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1164-1180.
    102. Penaranda, Francisco, 2007. "Portfolio choice beyond the traditional approach," LSE Research Online Documents on Economics 24481, London School of Economics and Political Science, LSE Library.
    103. José Afonso Faias & Juan Arismendi Zambrano, 2022. "Equity Risk Premium Predictability from Cross-Sectoral Downturns [International asset allocation with regime shifts]," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 12(3), pages 808-842.
    104. Renée Fry & Cody Yu-Ling Hsiao & Chrismin Tang, 2011. "Actually This Time Is Different," CAMA Working Papers 2011-12, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    105. Zhengjun Jiang & Martijn Pistorius, 2012. "Optimal dividend distribution under Markov regime switching," Finance and Stochastics, Springer, vol. 16(3), pages 449-476, July.
    106. Campani, Carlos Heitor & Garcia, René & Lewin, Marcelo, 2021. "Optimal portfolio strategies in the presence of regimes in asset returns," Journal of Banking & Finance, Elsevier, vol. 123(C).
    107. Xiaoxian Ma & Qingzhen Zhao & Jilin Qu, 2008. "Robust portfolio optimization with a generalized expected utility model under ambiguity," Annals of Finance, Springer, vol. 4(4), pages 431-444, October.
    108. Donatien Hainaut & Franck Moraux, 2019. "A switching self-exciting jump diffusion process for stock prices," Annals of Finance, Springer, vol. 15(2), pages 267-306, June.
    109. Olivier Courtois & Xiaoshan Su, 2020. "Structural Pricing of CoCos and Deposit Insurance with Regime Switching and Jumps," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 27(4), pages 477-520, December.
    110. Clements, A.E. & Hurn, A.S. & Volkov, V.V., 2016. "Common trends in global volatility," Journal of International Money and Finance, Elsevier, vol. 67(C), pages 194-214.
    111. Levy, Moshe & Kaplanski, Guy, 2015. "Portfolio selection in a two-regime world," European Journal of Operational Research, Elsevier, vol. 242(2), pages 514-524.
    112. Constandina Koki & Stefanos Leonardos & Georgios Piliouras, 2020. "Exploring the Predictability of Cryptocurrencies via Bayesian Hidden Markov Models," Papers 2011.03741, arXiv.org, revised Dec 2020.
    113. Anthonisz, Sean A., 2012. "Asset pricing with partial-moments," Journal of Banking & Finance, Elsevier, vol. 36(7), pages 2122-2135.
    114. Luca Benzoni & Pierre Collin‐Dufresne & Robert S. Goldstein, 2007. "Portfolio Choice over the Life‐Cycle when the Stock and Labor Markets Are Cointegrated," Journal of Finance, American Finance Association, vol. 62(5), pages 2123-2167, October.
    115. Thomas Conlon & John Cotter & Chenglu Jin, 2016. "The Intervaling Effect on Higher-Order Co-Moments," Working Papers 201602, Geary Institute, University College Dublin.
    116. Lof, Matthijs, 2013. "Essays on Expectations and the Econometrics of Asset Pricing," MPRA Paper 59064, University Library of Munich, Germany.
    117. James D. Hamilton, 2016. "Macroeconomic Regimes and Regime Shifts," NBER Working Papers 21863, National Bureau of Economic Research, Inc.
    118. Carmine Trecroci, 2010. "Multifactors risk loadings and abnormal returns under uncertainty and learning," Working Papers 1011, University of Brescia, Department of Economics.
    119. Renee Fry & Vance L. Martin & Chrismin Tang, 2008. "A New Class Of Tests Of Contagion With Applications To Real Estate Markets," CAMA Working Papers 2008-01, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    120. Daniele Bianchi & Monica Billio & Roberto Casarin & Massimo Guidolin, 2018. "Modeling Systemic Risk with Markov Switching Graphical SUR Models," Working Papers 626, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    121. Zheng, Yao, 2015. "The linkage between aggregate investor sentiment and metal futures returns: A nonlinear approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 58(C), pages 128-142.
    122. Palwishah, Rana & Kashif, Muhammad & Rehman, Mobeen Ur & Al-Faryan, Mamdouh Abdulaziz Saleh, 2024. "Asymmetric liquidity risk and currency returns before and during COVID-19 pandemic," International Review of Financial Analysis, Elsevier, vol. 91(C).
    123. Huseyin Gulen & Yuhang Xing & Lu Zhang, 2011. "Value versus Growth: Time‐Varying Expected Stock Returns," Financial Management, Financial Management Association International, vol. 40(2), pages 381-407, June.
    124. Dias, Alexandra, 2016. "The economic value of controlling for large losses in portfolio selection," Journal of Banking & Finance, Elsevier, vol. 72(S), pages 81-91.
    125. Le, Trung H., 2021. "International portfolio allocation: The role of conditional higher moments," International Review of Economics & Finance, Elsevier, vol. 74(C), pages 33-57.
    126. Yue Wang & Zhijian Qiu & Xiaomei Qu, 2017. "Optimal portfolio selection with maximal risk adjusted return," Applied Economics Letters, Taylor & Francis Journals, vol. 24(14), pages 1035-1040, August.
    127. Martín Solá & Zacharias Psaradakis & Fabio Spagnolo & Nicola Spagnolo, 2010. "Some Cautionary Results Concerning Markov-Switching Models with Time-Varying Transition Probabilities," Department of Economics Working Papers 2010-12, Universidad Torcuato Di Tella.
    128. Zhou, Chunyang & Wu, Chongfeng & Wang, Yudong, 2019. "Dynamic portfolio allocation with time-varying jump risk," Journal of Empirical Finance, Elsevier, vol. 50(C), pages 113-124.
    129. Ryo Kinoshita, 2015. "Asset allocation under higher moments with the GARCH filter," Empirical Economics, Springer, vol. 49(1), pages 235-254, August.
    130. Jakša Cvitanić & Vassilis Polimenis & Fernando Zapatero, 2008. "Optimal portfolio allocation with higher moments," Annals of Finance, Springer, vol. 4(1), pages 1-28, January.
    131. Elvira Caloiero & Massimo Guidolin, 2017. "Volatility as an Alternative asset Class: Does It Improve Portfolio Performance?," BAFFI CAREFIN Working Papers 1763, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    132. Kenwin Maung, 2021. "Estimating high-dimensional Markov-switching VARs," Papers 2107.12552, arXiv.org.
    133. Markwat, T.D. & Kole, H.J.W.G. & van Dijk, D.J.C., 2009. "Time Variation in Asset Return Dependence: Strength or Structure?," ERIM Report Series Research in Management ERS-2009-052-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    134. Wai-Mun Chia & Mengling Li & Huanhuan Zheng, 2017. "Behavioral heterogeneity in the Australian housing market," Applied Economics, Taylor & Francis Journals, vol. 49(9), pages 872-885, February.
    135. Alexandros Kostakis & Nikolaos Panigirtzoglou & George Skiadopoulos, 2011. "Market Timing with Option-Implied Distributions: A Forward-Looking Approach," Management Science, INFORMS, vol. 57(7), pages 1231-1249, July.
    136. Adam Farago & Erik Hjalmarsson, 2023. "Long-Horizon Stock Returns Are Positively Skewed," Review of Finance, European Finance Association, vol. 27(2), pages 495-538.
    137. Renée Fry-McKibbin & Cody Hsiao & Chrismin Tang, 2014. "Contagion and Global Financial Crises: Lessons from Nine Crisis Episodes," Open Economies Review, Springer, vol. 25(3), pages 521-570, July.
    138. Ghysels, Eric & Plazzi, Alberto & Valkanov, Rossen & Torous, Walter, 2013. "Forecasting Real Estate Prices," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 509-580, Elsevier.
    139. Mario Cerrato & John Crosby & Minjoo Kim & Yang Zhao, 2015. "Modeling Dependence Structure and Forecasting Market Risk with Dynamic Asymmetric Copula," Working Papers 2015_15, Business School - Economics, University of Glasgow.
    140. Chan Joshua C.C. & Fry-McKibbin Renée A. & Hsiao Cody Yu-Ling, 2019. "A regime switching skew-normal model of contagion," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 23(1), pages 1-24, February.
    141. George Chalamandaris & Leonidas S. Rompolis, 2021. "Recovering the market risk premium from higher‐order moment risks," European Financial Management, European Financial Management Association, vol. 27(1), pages 147-186, January.
    142. Hainaut, Donatien & Goutte, Stephane, 2019. "A switching microstructure model for stock prices," LIDAM Reprints ISBA 2019024, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    143. Zhou, Chunyang & Qin, Xiao, 2021. "Time-varying asymmetric tail dependence of international equities markets," Pacific-Basin Finance Journal, Elsevier, vol. 68(C).
    144. Andrew W. Lo & Mila Getmansky & Peter A. Lee, 2015. "Hedge Funds: A Dynamic Industry in Transition," Annual Review of Financial Economics, Annual Reviews, vol. 7(1), pages 483-577, December.
    145. Koki, Constandina & Leonardos, Stefanos & Piliouras, Georgios, 2022. "Exploring the predictability of cryptocurrencies via Bayesian hidden Markov models," Research in International Business and Finance, Elsevier, vol. 59(C).
    146. Monica Billio & Mila Getmansky & Loriana Pelizzon, 2006. "Phase-Locking and Switching Volatility in Hedge Funds," Working Papers 2006_54, Department of Economics, University of Venice "Ca' Foscari".
    147. Azra Zaimovic & Adna Omanovic & Almira Arnaut-Berilo, 2021. "How Many Stocks Are Sufficient for Equity Portfolio Diversification? A Review of the Literature," JRFM, MDPI, vol. 14(11), pages 1-30, November.
    148. Dewandaru, Ginanjar & Masih, Rumi & Bacha, Obiyathulla I. & Masih, A. Mansur M., 2014. "The Role of Islamic Asset Classes in the Diversified Portfolios: Mean Variance Spanning Test," MPRA Paper 56857, University Library of Munich, Germany.
    149. Cheng, Xin & Chen, Hongyi & Zhou, Yinggang, 2021. "Is the renminbi a safe-haven currency? Evidence from conditional coskewness and cokurtosis," Journal of International Money and Finance, Elsevier, vol. 113(C).
    150. Jia Liu & John M. Maheu, 2018. "Improving Markov switching models using realized variance," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(3), pages 297-318, April.
    151. Daniele Bianchi & Massimo Guidolin, 2014. "Can Linear Predictability Models Time Bull and Bear Real Estate Markets? Out-of-Sample Evidence from REIT Portfolios," The Journal of Real Estate Finance and Economics, Springer, vol. 49(1), pages 116-164, July.
    152. Massimo Guidolin & Stuart Hyde, 2008. "Equity portfolio diversification under time-varying predictability and comovements: evidence from Ireland, the US, and the UK," Working Papers 2008-005, Federal Reserve Bank of St. Louis.
    153. Smimou, K., 2014. "International portfolio choice and political instability risk: A multi-objective approach," European Journal of Operational Research, Elsevier, vol. 234(2), pages 546-560.
    154. Massimo Guidolin & Giovanna Nicodano, 2010. "Ex Post Portfolio Performance with Predictable Skewness and Kurtosis," Carlo Alberto Notebooks 191, Collegio Carlo Alberto.
    155. Chen, Cathy Yi-Hsuan & Chiang, Thomas C. & Härdle, Wolfgang Karl, 2016. "Downside risk and stock returns: An empirical analysis of the long-run and short-run dynamics from the G-7 Countries," SFB 649 Discussion Papers 2016-001, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    156. Jian Yang & Yinggang Zhou & Zijun Wang, 2010. "Conditional Coskewness in Stock and Bond Markets: Time-Series Evidence," Management Science, INFORMS, vol. 56(11), pages 2031-2049, November.
    157. Anatolyev, Stanislav & Pyrlik, Vladimir, 2022. "Copula shrinkage and portfolio allocation in ultra-high dimensions," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    158. Li, Chenxing, 2022. "A multivariate GARCH model with an infinite hidden Markov mixture," MPRA Paper 112792, University Library of Munich, Germany.
    159. Ayadi, Mohamed A. & Lazrak, Skander & Liao, Yusui & Welch, Robert, 2018. "Performance of fixed-income mutual funds with regime-switching models," The Quarterly Review of Economics and Finance, Elsevier, vol. 69(C), pages 217-231.
    160. Bae, Geum Il & Kim, Woo Chang & Mulvey, John M., 2014. "Dynamic asset allocation for varied financial markets under regime switching framework," European Journal of Operational Research, Elsevier, vol. 234(2), pages 450-458.
    161. Lassance, Nathan & Vrins, Frédéric, 2021. "Portfolio selection with parsimonious higher comoments estimation," LIDAM Reprints LFIN 2021005, Université catholique de Louvain, Louvain Finance (LFIN).
    162. Cathy Yi†Hsuan Chen & Thomas C. Chiang, 2016. "Empirical Analysis of the Intertemporal Relationship between Downside Risk and Expected Returns: Evidence from Time†varying Transition Probability Models," European Financial Management, European Financial Management Association, vol. 22(5), pages 749-796, November.
    163. Trichilli, Yousra & Abbes, Mouna Boujelbène & Masmoudi, Afif, 2020. "Islamic and conventional portfolios optimization under investor sentiment states: Bayesian vs Markowitz portfolio analysis," Research in International Business and Finance, Elsevier, vol. 51(C).
    164. Gębka, Bartosz & Serwa, Dobromił, 2015. "The elusive nature of motives to trade: Evidence from international stock markets," International Review of Financial Analysis, Elsevier, vol. 39(C), pages 147-157.
    165. Laura Arenas & Ana Maria Gil-Lafuente, 2021. "Regime Switching in High-Tech ETFs: Idiosyncratic Volatility and Return," Mathematics, MDPI, vol. 9(7), pages 1-25, March.
    166. Högholm, Kenneth & Knif, Johan & Koutmos, Gregory & Pynnönen, Seppo, 2011. "Distributional asymmetry of loadings on market co-moments," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 21(5), pages 851-866.
    167. Cenedese, Gino, 2015. "Safe haven currencies: a portfolio perspective," Bank of England working papers 533, Bank of England.
    168. Elyasiani, Elyas & Mansur, Iqbal, 2017. "Hedge fund return, volatility asymmetry, and systemic effects: A higher-moment factor-EGARCH model," Journal of Financial Stability, Elsevier, vol. 28(C), pages 49-65.
    169. Frank Fabozzi & Dashan Huang & Guofu Zhou, 2010. "Robust portfolios: contributions from operations research and finance," Annals of Operations Research, Springer, vol. 176(1), pages 191-220, April.
    170. Paul Karehnke & Frans de Roon, 2020. "Spanning Tests for Assets with Option-Like Payoffs: The Case of Hedge Funds," Management Science, INFORMS, vol. 66(12), pages 5969-5989, December.
    171. Bi, Hongwei & Huang, Rachel J. & Tzeng, Larry Y. & Zhu, Wei, 2019. "Higher-order Omega: A performance index with a decision-theoretic foundation," Journal of Banking & Finance, Elsevier, vol. 100(C), pages 43-57.
    172. Brad Case & Massimo Guidolin & Yildiray Yildirim, 2014. "Markov Switching Dynamics in REIT Returns: Univariate and Multivariate Evidence on Forecasting Performance," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 42(2), pages 279-342, June.
    173. Thomas Conlon & John Cotter & Ramazan Gençay, 2015. "Long-run international diversification," Working Papers 201502, Geary Institute, University College Dublin.
    174. Huang, Weihong & Zheng, Huanhuan, 2012. "Financial crises and regime-dependent dynamics," Journal of Economic Behavior & Organization, Elsevier, vol. 82(2), pages 445-461.
    175. Taamouti, Abderrahim, 2012. "Moments of multivariate regime switching with application to risk-return trade-off," Journal of Empirical Finance, Elsevier, vol. 19(2), pages 292-308.
    176. Vladimir Zdorovenin & Jacques Pézier, 2011. "Does Information Content of Option Prices Add Value for Asset Allocation?," ICMA Centre Discussion Papers in Finance icma-dp2011-03, Henley Business School, University of Reading.
    177. Mauro Bernardi & Leopoldo Catania, 2016. "Portfolio Optimisation Under Flexible Dynamic Dependence Modelling," Papers 1601.05199, arXiv.org.
    178. Chung, San-Lin & Hung, Mao-Wei & Wei, Tzu-Wen & Yeh, Chung-Ying, 2024. "Strategic asset allocation with distorted beliefs," International Review of Economics & Finance, Elsevier, vol. 89(PB), pages 804-831.
    179. Massimo Guidolin & Stuart Hyde, 2012. "Optimal Portfolios for Occupational Funds under Time-Varying Correlations in Bull and Bear Markets? Assessing the Ex-Post Economic Value," Working Papers 455, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    180. Fry, Renée & Martin, Vance L. & Tang, Chrismin, 2010. "A New Class of Tests of Contagion With Applications," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(3), pages 423-437.
    181. Marcelo Lewin & Carlos Heitor Campani, 2023. "Constrained portfolio strategies in a regime-switching economy," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 37(1), pages 27-59, March.
    182. Klaus Grobys, 2012. "Active PortofolioManagement in the Presence of Regime Switching: What Are the Benefits of Defensive Asset Allocation Strategies If the Investor Faces Bear Markets?," The Review of Finance and Banking, Academia de Studii Economice din Bucuresti, Romania / Facultatea de Finante, Asigurari, Banci si Burse de Valori / Catedra de Finante, vol. 4(1), pages 015-031, June.
    183. Dahlquist, Magnus & Tédongap, Roméo & Farago, Adam, 2015. "Asymmetries and Portfolio Choice," CEPR Discussion Papers 10706, C.E.P.R. Discussion Papers.
    184. Lai, Jing-yi, 2012. "Shock-dependent conditional skewness in international aggregate stock markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(1), pages 72-83.
    185. Tihana Škrinjarić & Boško Šego, 2018. "Using Grey Incidence Analysis Approach in Portfolio Selection," IJFS, MDPI, vol. 7(1), pages 1-16, December.
    186. Jianmin Shi, 2023. "Dynamic asset allocation with multiple regime‐switching markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(2), pages 1741-1755, April.
    187. Byron J. Idrovo-Aguirre & Francisco J. Lozano & Javier E. Contreras-Reyes, 2021. "Prosperity or Real Estate Bubble? Exuberance Probability Index of Real Housing Prices in Chile," IJFS, MDPI, vol. 9(3), pages 1-24, September.

  19. Allan Timmermann, 2007. "An Evaluation of the World Economic Outlook Forecasts," IMF Staff Papers, Palgrave Macmillan, vol. 54(1), pages 1-33, May.

    Cited by:

    1. Michael K Andersson & Ted Aranki & André Reslow, 2017. "Adjusting for information content when comparing forecast performance," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(7), pages 784-794, November.
    2. Winkelried, Diego, 2014. "Inferring inflation expectations from fixed-event forecasts," Working Papers 2014-016, Banco Central de Reserva del Perú.
    3. Capistrán Carlos & López Moctezuma Gabriel, 2008. "Experts' Macroeconomics Expectations: An Evaluation of Mexican Short-Run Forecasts," Working Papers 2008-11, Banco de México.
    4. Mikael C. Bergbrant & Patrick J. Kelly, 2015. "Macroeconomic Expectations and the Size, Value and Momentum Factors," Working Papers w0214, New Economic School (NES).
    5. Foltas, Alexander & Pierdzioch, Christian, 2020. "Business-cycle reports and the efficiency of macroeconomic forecasts for Germany," Working Papers 22, German Research Foundation's Priority Programme 1859 "Experience and Expectation. Historical Foundations of Economic Behaviour", Humboldt University Berlin.
    6. Carabotta, Laura & Paluzie, Elisenda & Ramos, Raul, 2017. "Does fiscal responsibility matter? Evidence from public and private forecasters in Italy," International Journal of Forecasting, Elsevier, vol. 33(3), pages 694-706.
    7. Masahito Ambashi & Fusanori Iwasaki & Keita Oikawa, 2021. "Prediction Errors of Macroeconomic Indicators and Economic Shocks for ASEAN Member States," Working Papers DP-2022-02, Economic Research Institute for ASEAN and East Asia (ERIA).
    8. Qu, Ritong & Timmermann, Allan & Zhu, Yinchu, 2024. "Comparing forecasting performance with panel data," International Journal of Forecasting, Elsevier, vol. 40(3), pages 918-941.
    9. Winkelried, Diego, 2023. "Simple interpolations of inflation expectations," Economics Letters, Elsevier, vol. 229(C).
    10. Merola, Rossana & Pérez, Javier J., 2014. "Fiscal Forecast Errors: Governments Versus Independent Agencies?," Papers RB2014/1/1, Economic and Social Research Institute (ESRI).
    11. Aromí, J. Daniel, 2019. "Medium term growth forecasts: Experts vs. simple models," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1085-1099.
    12. MORIKAWA Masayuki, 2019. "Uncertainty in Long-Term Macroeconomic Forecasts: Ex post Evaluation of Forecasts by Economics Researchers," Discussion papers 19084, Research Institute of Economy, Trade and Industry (RIETI).
    13. Julien Champagne & Guillaume Poulin-Bellisle & Rodrigo Sekkel, 2018. "Evaluating the Bank of Canada Staff Economic Projections Using a New Database of Real-Time Data and Forecasts," Staff Working Papers 18-52, Bank of Canada.
    14. Jaramillo, Laura & Mulas-Granados, Carlos & Kimani, Elijah, 2017. "Debt spikes and stock flow adjustments: Emerging economies in perspective," Journal of Economics and Business, Elsevier, vol. 94(C), pages 1-14.
    15. Mr. Yan Carriere-Swallow & José Marzluf, 2021. "Macrofinancial Causes of Optimism in Growth Forecasts," IMF Working Papers 2021/275, International Monetary Fund.
    16. Thomas Jobert & Lionel Persyn, 2012. "Quelques constats sur les prévisions conjoncturelles de la croissance française," Revue d'économie politique, Dalloz, vol. 122(6), pages 833-849.
    17. Mihaela SIMIONESCU, 2015. "The Evaluation of Global Accuracy of Romanian Inflation Rate Predictions Using Mahalanobis Distance," Management Dynamics in the Knowledge Economy, College of Management, National University of Political Studies and Public Administration, vol. 3(1), pages 133-149, March.
    18. Behrens, Christoph & Pierdzioch, Christian & Risse, Marian, 2018. "Testing the optimality of inflation forecasts under flexible loss with random forests," Economic Modelling, Elsevier, vol. 72(C), pages 270-277.
    19. Jin-Kyu Jung & Manasa Patnam & Anna Ter-Martirosyan, 2018. "An Algorithmic Crystal Ball: Forecasts-based on Machine Learning," IMF Working Papers 2018/230, International Monetary Fund.
    20. Robert Lehmann, 2015. "Survey-based indicators vs. hard data: What improves export forecasts in Europe?," ifo Working Paper Series 196, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    21. Burgess, Matthew G. & Langendorf, Ryan E. & Ippolito, Tara & Pielke, Roger Jr, 2020. "Optimistically biased economic growth forecasts and negatively skewed annual variation," SocArXiv vndqr, Center for Open Science.
    22. Paulo Júlio & Pedro M. Esperança, 2012. "Evaluating the forecast quality of GDP components: An application to G7," GEE Papers 0047, Gabinete de Estratégia e Estudos, Ministério da Economia, revised Apr 2012.
    23. Katja Heinisch & Axel Lindner, 2019. "For how long do IMF forecasts of world economic growth stay up-to-date?," Applied Economics Letters, Taylor & Francis Journals, vol. 26(3), pages 255-260, February.
    24. Yoichi Tsuchiya, 2021. "Thirty‐year assessment of Asian Development Bank's forecasts," Asian-Pacific Economic Literature, The Crawford School, The Australian National University, vol. 35(2), pages 18-40, November.
    25. Tsuchiya, Yoichi, 2023. "Assessing the World Bank’s growth forecasts," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 64-84.
    26. Paulo Júlio & Pedro M. Esperança & João C. Fonseca, 2011. "Evaluating the forecast quality of GDP components," GEE Papers 0041 Classification-C52, , Gabinete de Estratégia e Estudos, Ministério da Economia, revised Oct 2011.
    27. Carlos Fonseca Marinheiro, 2010. "Fiscal sustainability and the accuracy of macroeconomic forecasts: do supranational forecasts rather than government forecasts make a difference?," GEMF Working Papers 2010-07, GEMF, Faculty of Economics, University of Coimbra.
    28. Mr. Francesco Grigoli & Alexander Herman & Mr. Andrew J Swiston & Gabriel Di Bella, 2015. "Output Gap Uncertainty and Real-Time Monetary Policy," IMF Working Papers 2015/014, International Monetary Fund.
    29. Paloviita, Maritta & Ikonen, Pasi, 2016. "How to explain errors in budget balance forecasts in euro area countries? Empirical evidence based on real-time data," Bank of Finland Research Discussion Papers 17/2016, Bank of Finland.
    30. Frank, Luis, 2021. "¿Son sesgadas las proyecciones de WEO? El caso de la proyección de crecimiento de Argentina [Are the WEO forecasts biased? The case of Argentina's growth forecast]," MPRA Paper 114333, University Library of Munich, Germany.
    31. Christoph Behrens, 2019. "A Nonparametric Evaluation of the Optimality of German Export and Import Growth Forecasts under Flexible Loss," Economies, MDPI, vol. 7(3), pages 1-23, September.
    32. María Paula Bonel & Daniel J. Aromí, 2021. "Assessing GDP forecasts from autoregressive models: the impact of model complexity and training dataset," Asociación Argentina de Economía Política: Working Papers 4440, Asociación Argentina de Economía Política.
    33. Hassan Naqvi, 2014. "IMF Conditionality and the Intertemporal Allocation of Resources," International Review of Finance, International Review of Finance Ltd., vol. 14(2), pages 203-235, June.
    34. Ley, Eduardo & Misch, Florian, 2013. "Real-time macro monitoring and fiscal policy," Policy Research Working Paper Series 6303, The World Bank.
    35. A. Melander & G. Sismanidis & D. Grenouilleau, 2007. "The track record of the Commission's forecasts - an update," European Economy - Economic Papers 2008 - 2015 291, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
    36. Masahito Ambashi & Fusanori Iwasaki & Keita Oikawa, 2022. "Prediction Errors of Macroeconomic Indicators and Economic Shocks for ASEAN Member States, 1990-2021," KIER Working Papers 1088, Kyoto University, Institute of Economic Research.
    37. Capistrán, Carlos & López-Moctezuma, Gabriel, 2010. "Las expectativas macroeconómicas de los especialistas. Una evaluación de pronósticos de corto plazo en México," El Trimestre Económico, Fondo de Cultura Económica, vol. 0(306), pages 275-312, abril-jun.
    38. Timmermann, Allan & Zhu, Yinchu, 2019. "Comparing Forecasting Performance with Panel Data," CEPR Discussion Papers 13746, C.E.P.R. Discussion Papers.
    39. Eicher, Theo S. & Rollinson, Yuan Gao, 2023. "The accuracy of IMF crises nowcasts," International Journal of Forecasting, Elsevier, vol. 39(1), pages 431-449.
    40. Kanngiesser, Derrick & Willems, Tim, 2024. "Forecast accuracy and efficiency at the Bank of England – and how errors can be leveraged to do better," Bank of England working papers 1078, Bank of England.
    41. Zeyyad Mandalinci, 2015. "Forecasting Inflation in Emerging Markets: An Evaluation of Alternative Models," CReMFi Discussion Papers 3, CReMFi, School of Economics and Finance, QMUL.
    42. Fernando M. Martin & Juan M. Sanchez & Olivia Wilkinson, 2022. "The Economic Impact of COVID-19 around the World," Working Papers 2022-030, Federal Reserve Bank of St. Louis.
    43. Emilian Dobrescu, 2014. "Attempting to Quantify the Accuracy of Complex Macroeconomic Forecasts," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 5-21, December.
    44. Bourmpoula, Evangelia. & Wieser, Christina., 2014. "An accuracy assessment of the global employment trends' unemployment rate forecasts," ILO Working Papers 994888903402676, International Labour Organization.
    45. Behrens, Christoph, 2020. "German trade forecasts since 1970: An evaluation using the panel dimension," Working Papers 26, German Research Foundation's Priority Programme 1859 "Experience and Expectation. Historical Foundations of Economic Behaviour", Humboldt University Berlin.
    46. Paulina Ziembińska, 2021. "Quality of Tests of Expectation Formation for Revised Data," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 13(4), pages 405-453, December.
    47. Drechsel, Katja & Giesen, Sebastian & Lindner, Axel, 2014. "Outperforming IMF Forecasts by the Use of Leading Indicators," IWH Discussion Papers 4/2014, Halle Institute for Economic Research (IWH).
    48. Javier J. Perez & Rossana Merola, 2012. "Fiscal forecast errors: governments vs independent agencies?," EcoMod2012 4694, EcoMod.
    49. Michel, David, 2009. "Foxes, hedgehogs, and greenhouse governance: Knowledge, uncertainty, and international policy-making in a warming World," Applied Energy, Elsevier, vol. 86(2), pages 258-264, February.
    50. Bourmpoula, Evangelia. & Wieser, Christina., 2014. "An accuracy assessment of the global employment trends' unemployment rate forecasts," Global Employment Trends Reports 994888903402676, International Labour Office, Economic and Labour Market Analysis Department.
    51. Giovannelli, Alessandro & Pericoli, Filippo Maria, 2020. "Are GDP forecasts optimal? Evidence on European countries," International Journal of Forecasting, Elsevier, vol. 36(3), pages 963-973.
    52. Ildeberta Abreu, 2011. "International organisations’ vs. private analysts’ forecasts: an evaluation," Working Papers w201120, Banco de Portugal, Economics and Research Department.
    53. Klaus-Peter Hellwig, 2018. "Overfitting in Judgment-based Economic Forecasts: The Case of IMF Growth Projections," IMF Working Papers 2018/260, International Monetary Fund.
    54. Laura Jaramillo & Mr. Carlos Mulas-Granados & Elijah Kimani, 2016. "The Blind Side of Public Debt Spikes," IMF Working Papers 2016/202, International Monetary Fund.
    55. Jonas Dovern & Johannes Weisser, 2009. "Accuracy, Unbiasedness and Efficiency of Professional Macroeconomic Forecasts: An empirical Comparison for the G7," Jena Economics Research Papers 2009-091, Friedrich-Schiller-University Jena.
    56. Nordvik, Frode Martin, 2022. "Inflation news and the poor: The role of ethnic heterogeneity," World Development, Elsevier, vol. 151(C).
    57. Axel Dreher & Silvia Marchesi & James Raymond Vreeland, 2007. "The Politics of IMF Forecasts," CESifo Working Paper Series 2129, CESifo.
    58. Hadzi-Vaskov, Metodij & Ricci, Luca Antonio & Werner, Alejandro & Zamarripa, Rene, 2021. "Patterns in IMF Growth Forecast Revisions: A Panel Study at Multiple Horizons," CEPR Discussion Papers 16153, C.E.P.R. Discussion Papers.
    59. H.O. Stekler & Huixia Zhang, 2013. "An evaluation of Chinese economic forecasts," Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 11(4), pages 251-259, November.
    60. Maritta Paloviita & Pasi Ikonen, 2018. "Real-time uncertainty in budget planning: evidence from euro area countries," Journal of Economic Policy Reform, Taylor and Francis Journals, vol. 21(4), pages 281-300, October.
    61. Giang Ho & Paolo Mauro, 2016. "Growth—Now and Forever?," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 64(3), pages 526-547, August.
    62. Eicher, Theo S. & Kawai, Reina, 2023. "IMF trade forecasts for crisis countries: Bias, inefficiency, and their origins," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1615-1639.
    63. Timmermann, Allan & Qu, Ritong & Zhu, Yinchu, 2019. "Do Any Economists Have Superior Forecasting Skills?," CEPR Discussion Papers 14112, C.E.P.R. Discussion Papers.
    64. Jungjin Lee & Mr. Abdul d Abiad & Mr. Prakash Kannan, 2009. "Evaluating Historical CGER Assessments: How Well Have They Predicted Subsequent Exchange Rate Movements?," IMF Working Papers 2009/032, International Monetary Fund.

  20. Guidolin, Massimo & Timmermann, Allan, 2007. "Asset allocation under multivariate regime switching," Journal of Economic Dynamics and Control, Elsevier, vol. 31(11), pages 3503-3544, November.

    Cited by:

    1. Zeng, Songlin & Bec, Frédérique, 2015. "Do stock returns rebound after bear markets? An empirical analysis from five OECD countries," Journal of Empirical Finance, Elsevier, vol. 30(C), pages 50-61.
    2. Barbara Rossi, 2011. "Advances in Forecasting Under Instability," Working Papers 11-20, Duke University, Department of Economics.
    3. Zhu, Dong-Mei & Lu, Jiejun & Ching, Wai-Ki & Siu, Tak-Kuen, 2017. "Discrete-time optimal asset allocation under Higher-Order Hidden Markov Model," Economic Modelling, Elsevier, vol. 66(C), pages 223-232.
    4. Bazgour, Tarik & Heuchenne, Cédric & Hübner, Georges & Sougné, Danielle, 2021. "How do volatility regimes affect the pricing of quality and liquidity in the stock market?," LIDAM Reprints ISBA 2021038, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Stijn Claessens & M Ayhan Kose, 2018. "Frontiers of macrofinancial linkages," BIS Papers, Bank for International Settlements, number 95.
    6. Jang, Bong-Gyu & Kim, Kyeong Tae, 2015. "Optimal reinsurance and asset allocation under regime switching," Journal of Banking & Finance, Elsevier, vol. 56(C), pages 37-47.
    7. Dai, Zhifeng & Zhang, Xiaotong & Li, Tingyu, 2023. "Forecasting stock return volatility in data-rich environment: A new powerful predictor," The North American Journal of Economics and Finance, Elsevier, vol. 64(C).
    8. GIOT, Pierre & PETITJEAN, Mikael, 2005. "Dynamic asset allocation between stocks and bonds using the Bond-Equity Yield Ratio," LIDAM Discussion Papers CORE 2005010, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. Anna Battauz & Marzia Donno & Alessandro Sbuelz, 2017. "Reaching nirvana with a defaultable asset?," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 31-52, November.
    10. Faria, Gonçalo & Verona, Fabio, 2023. "Forecast combination in the frequency domain," Bank of Finland Research Discussion Papers 1/2023, Bank of Finland.
    11. Jia Liu & John M. Maheu & Yong Song, 2024. "Identification and forecasting of bull and bear markets using multivariate returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 723-745, August.
    12. Wu, Bo & Li, Lingfei, 2024. "Reinforcement learning for continuous-time mean-variance portfolio selection in a regime-switching market," Journal of Economic Dynamics and Control, Elsevier, vol. 158(C).
    13. Nonejad, Nima, 2021. "Predicting equity premium using news-based economic policy uncertainty: Not all uncertainty changes are equally important," International Review of Financial Analysis, Elsevier, vol. 77(C).
    14. Guidolin, Massimo & Liu, Hening, 2016. "Ambiguity Aversion and Underdiversification," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 51(4), pages 1297-1323, August.
    15. Zolotoy, Leon & Frederickson, James R. & Lyon, John D., 2017. "Aggregate earnings and stock market returns: The good, the bad, and the state-dependent," Journal of Banking & Finance, Elsevier, vol. 77(C), pages 157-175.
    16. Kim Hiang Liow & Qing Ye, 2018. "Regime dependent volatilities and correlation in international securitized real estate markets," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 45(3), pages 457-487, August.
    17. Konermann, Patrick & Meinerding, Christoph & Sedova, Olga, 2013. "Asset allocation in markets with contagion: The interplay between volatilities, jump intensities, and correlations," Review of Financial Economics, Elsevier, vol. 22(1), pages 36-46.
    18. Bernardi, Mauro & Catania, Leopoldo, 2018. "Portfolio optimisation under flexible dynamic dependence modelling," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 1-18.
    19. Andrew Ang & Allan Timmermann, 2011. "Regime Changes and Financial Markets," NBER Working Papers 17182, National Bureau of Economic Research, Inc.
    20. Massimo Guidolin & Manuela Pedio, 2021. "Forecasting commodity futures returns with stepwise regressions: Do commodity-specific factors help?," Annals of Operations Research, Springer, vol. 299(1), pages 1317-1356, April.
    21. Bouaddi, Mohammed & Taamouti, Abderrahim, 2013. "Portfolio selection in a data-rich environment," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2943-2962.
    22. Marco J. Lombardi & Francesco Ravazzolo, 2012. "Oil price density forecasts: exploring the linkages with stock markets," Working Paper 2012/24, Norges Bank.
    23. Fernando Alexandre & Vasco J. Gabriel & Pedro Bação, 2007. "The Consumption-Wealth Ratio Under Asymmetric Adjustment," NIPE Working Papers 15/2007, NIPE - Universidade do Minho.
    24. Erik Kole & Dick Dijk, 2017. "How to Identify and Forecast Bull and Bear Markets?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(1), pages 120-139, January.
    25. Nicole Branger & Holger Kraft & Christoph Meinerding, 2009. "What is the Impact of Stock Market Contagion on an Investor's Portfolio Choice?," Working Paper Series: Finance and Accounting 198, Department of Finance, Goethe University Frankfurt am Main.
    26. Yoontae Hwang & Stefan Zohren & Yongjae Lee, 2024. "Temporal Representation Learning for Stock Similarities and Its Applications in Investment Management," Papers 2407.13751, arXiv.org.
    27. Pim van Vliet & David Blitz, 2011. "Dynamic strategic asset allocation: Risk and return across the business cycle," Journal of Asset Management, Palgrave Macmillan, vol. 12(5), pages 360-375, November.
    28. Zhou, Yinggang, 2014. "Modeling the joint dynamics of risk-neutral stock index and bond yield volatilities," Journal of Banking & Finance, Elsevier, vol. 38(C), pages 216-228.
    29. Gupta, Rangan & Hammoudeh, Shawkat & Modise, Mampho P. & Nguyen, Duc Khuong, 2014. "Can economic uncertainty, financial stress and consumer sentiments predict U.S. equity premium?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 33(C), pages 367-378.
    30. Dewandaru, Ginanjar & Masih, Rumi & Bacha, Obiyathulla & Masih, A. Mansur M., 2014. "Combining Momentum, Value, and Quality for the Islamic Equity Portfolio: Multi-style Rotation Strategies using Augmented Black Litterman Factor Model," MPRA Paper 56965, University Library of Munich, Germany.
    31. Reza Bradrania & Davood Pirayesh Neghab, 2022. "State-dependent Asset Allocation Using Neural Networks," Papers 2211.00871, arXiv.org.
    32. Lombardi, Marco J. & Ravazzolo, Francesco, 2016. "On the correlation between commodity and equity returns: Implications for portfolio allocation," Journal of Commodity Markets, Elsevier, vol. 2(1), pages 45-57.
    33. Javier Mencía & Enrique Sentana, 2008. "Multivariate Location-Scale Mixtures of Normals and Mean-Variance-skewness Portfolio Allocation," Working Papers wp2008_0805, CEMFI.
    34. Peter Nystrup & Henrik Madsen & Erik Lindström, 2018. "Dynamic portfolio optimization across hidden market regimes," Quantitative Finance, Taylor & Francis Journals, vol. 18(1), pages 83-95, January.
    35. Hematizadeh, Roksana & Tajaddini, Reza & Hallahan, Terrence, 2022. "Dynamic asset allocation strategy using a state-dependent Markov model: Applications to international equity markets," Journal of International Money and Finance, Elsevier, vol. 128(C).
    36. Pami Dua & Divya Tuteja, 2021. "Regime Shifts in the Behaviour of International Currency and Equity Markets: A Markov-Switching Analysis," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 309-336, December.
    37. Marco Tronzano, 2020. "Safe-Haven Assets, Financial Crises, and Macroeconomic Variables: Evidence from the Last Two Decades (2000–2018)," JRFM, MDPI, vol. 13(3), pages 1-21, February.
    38. Dungey, Mardi & Erdemlioglu, Deniz & Matei, Marius & Yang, Xiye, 2018. "Testing for mutually exciting jumps and financial flights in high frequency data," Journal of Econometrics, Elsevier, vol. 202(1), pages 18-44.
    39. Nguyen, Hoang & Javed, Farrukh, 2021. "Dynamic relationship between Stock and Bond returns: A GAS MIDAS copula approach," Working Papers 2021:15, Örebro University, School of Business.
    40. Kang-Soek Lee, 2017. "Safe-haven currency: An empirical identification," Review of International Economics, Wiley Blackwell, vol. 25(4), pages 924-947, September.
    41. Anandadeep Mandal & Sunil S. Poshakwale & Gabriel J. Power, 2021. "Do investors gain from forecasting the asymmetric return co‐movements of financial and real assets?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 3246-3268, July.
    42. Bera, Anil Kumar & Uyar, Umut & Kangalli Uyar, Sinem Guler, 2020. "Analysis of the five-factor asset pricing model with wavelet multiscaling approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 76(C), pages 414-423.
    43. Mendes, Fernando Henrique de Paula e Silva & Caldeira, João Frois & Moura, Guilherme Valle, 2018. "Evidence of Bull and Bear Markets in the Bovespa index: An application of Markovian regime-switching Models with Duration Dependence," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 38(1), May.
    44. Felix Haase & Matthias Neuenkirch, 2020. "Predictability of Bull and Bear Markets: A New Look at Forecasting Stock Market Regimes (and Returns) in the US," Research Papers in Economics 2020-01, University of Trier, Department of Economics.
    45. Tomek Katzur & Laura Spierdijk, 2013. "Stock returns and inflation risk: economic versus statistical evidence," Applied Financial Economics, Taylor & Francis Journals, vol. 23(13), pages 1123-1136, July.
    46. Meenagh, David & Minford, Patrick & Peel, David, 2007. "Simulating stock returns under switching regimes - A new test of market efficiency," Economics Letters, Elsevier, vol. 94(2), pages 235-239, February.
    47. Klaus Grobys, 2011. "Are Different National Stock Markets Driven by the Same Stochastic Hidden Variable?," The Review of Finance and Banking, Academia de Studii Economice din Bucuresti, Romania / Facultatea de Finante, Asigurari, Banci si Burse de Valori / Catedra de Finante, vol. 3(1), pages 021-030, June.
    48. Davide Pettenuzzo & Zhiyuan Pan & Yudong Wang, 2017. "Forecasting Stock Returns: A Predictor-Constrained Approach," Working Papers 116, Brandeis University, Department of Economics and International Business School.
    49. Raza, Naveed & Ali, Sajid & Shahzad, Syed Jawad Hussain & Raza, Syed Ali, 2018. "Do commodities effectively hedge real estate risk? A multi-scale asymmetric DCC approach," Resources Policy, Elsevier, vol. 57(C), pages 10-29.
    50. Donatien Hainaut & Yang Shen & Yan Zeng, 2018. "How do capital structure and economic regime affect fair prices of bank’s equity and liabilities?," Annals of Operations Research, Springer, vol. 262(2), pages 519-545, March.
    51. Perras, Patrizia & Wagner, Niklas, 2020. "Pricing equity-bond covariance risk: Between flight-to-quality and fear-of-missing-out," Journal of Economic Dynamics and Control, Elsevier, vol. 121(C).
    52. Reus, Lorenzo & Mulvey, John M., 2016. "Dynamic allocations for currency futures under switching regimes signals," European Journal of Operational Research, Elsevier, vol. 253(1), pages 85-93.
    53. Wang Pu & Yixiang Chen & Feng Ma, 2016. "Forecasting the realized volatility in the Chinese stock market: further evidence," Applied Economics, Taylor & Francis Journals, vol. 48(33), pages 3116-3130, July.
    54. Weihong HUANG & Wanying Wang, 2012. "Price-Volume Relations in Financial Market," Economic Growth Centre Working Paper Series 1209, Nanyang Technological University, School of Social Sciences, Economic Growth Centre.
    55. Alexander Berglund & Massimo Guidolin & Manuela Pedio, 2018. "Monetary Policy after the Crisis: Threat or Opportunity to Hedge Funds' Alphas?," BAFFI CAREFIN Working Papers 1884, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    56. Massimo Guidolin & Federica Ria, 2010. "Regime shifts in mean-variance efficient frontiers: some international evidence," Working Papers 2010-040, Federal Reserve Bank of St. Louis.
    57. Guidolin, Massimo & Hyde, Stuart, 2008. "Equity portfolio diversification under time-varying predictability: Evidence from Ireland, the US, and the UK," Journal of Multinational Financial Management, Elsevier, vol. 18(4), pages 293-312, October.
    58. Bhimjee, Diptes C. & Ramos, Sofia B. & Dias, José G., 2016. "Banking industry performance in the wake of the global financial crisis," International Review of Financial Analysis, Elsevier, vol. 48(C), pages 376-387.
    59. Emmanouil Platanakis & Athanasios Sakkas & Charles Sutcliffe, 2017. "Harmful Diversification: Evidence from Alternative Investments," ICMA Centre Discussion Papers in Finance icma-dp2017-09, Henley Business School, University of Reading.
    60. Veronesi, Pietro & Pástor, Luboš, 2009. "Learning in Financial Markets," CEPR Discussion Papers 7127, C.E.P.R. Discussion Papers.
    61. Cees Diks & Valentyn Panchenko & Dick van Dijk, 2008. "Partial Likelihood-Based Scoring Rules for Evaluating Density Forecasts in Tails," Discussion Papers 2008-10, School of Economics, The University of New South Wales.
    62. Hainaut, Donatien, 2014. "Impulse control of pension fund contributions, in a regime switching economy," European Journal of Operational Research, Elsevier, vol. 239(3), pages 810-819.
    63. Hening Liu, 2011. "Dynamic portfolio choice under ambiguity and regime switching mean returns," Post-Print hal-00781344, HAL.
    64. Eo, Yunjong & Kang, Kyu Ho, 2020. "The effects of conventional and unconventional monetary policy on forecasting the yield curve," Journal of Economic Dynamics and Control, Elsevier, vol. 111(C).
    65. Xing, Dun-Zhong & Li, Hai-Feng & Li, Jiang-Cheng & Long, Chao, 2021. "Forecasting price of financial market crash via a new nonlinear potential GARCH model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    66. Arjan Berkelaar & Roy Kouwenberg, 2011. "A Liability-Relative Drawdown Approach to Pension Asset Liability Management," Palgrave Macmillan Books, in: Gautam Mitra & Katharina Schwaiger (ed.), Asset and Liability Management Handbook, chapter 14, pages 352-382, Palgrave Macmillan.
    67. Lee, Hsiang-Tai, 2022. "Regime-switching angular correlation diversification," Finance Research Letters, Elsevier, vol. 50(C).
    68. Liu, Wei-han, 2018. "Hidden Markov model analysis of extreme behaviors of foreign exchange rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 1007-1019.
    69. Nalpas, Nicolas & Simar, Léopold & Vanhems, Anne, 2016. "Portfolio Selection in a Multi-Input Multi-Output Setting: a Simple Monte-Carlo-FDH Algorithm," TSE Working Papers 16-648, Toulouse School of Economics (TSE).
    70. Yousefi, Hamed & Najand, Mohammad, 2022. "Geographical diversification using ETFs: Multinational evidence from COVID-19 pandemic," International Review of Financial Analysis, Elsevier, vol. 83(C).
    71. Branger, Nicole & Kraft, Holger & Meinerding, Christoph, 2013. "Partial information about contagion risk, self-exciting processes and portfolio optimization," SAFE Working Paper Series 28, Leibniz Institute for Financial Research SAFE.
    72. Massimo Guidolin, 2011. "Markov Switching Models in Empirical Finance," Working Papers 415, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    73. Anna Battauz & Alessandro Sbuelz, 2018. "Non†myopic portfolio choice with unpredictable returns: The jump†to†default case," European Financial Management, European Financial Management Association, vol. 24(2), pages 192-208, March.
    74. Emmanouil Platanakis & Athanasios Sakkas & Charles Sutcliffe, 2017. "Should Portfolio Model Inputs Be Estimated Using One or Two Economic Regimes?," ICMA Centre Discussion Papers in Finance icma-dp2017-07, Henley Business School, University of Reading.
    75. Amengual, Dante & Fiorentini, Gabriele & Sentana, Enrique, 2013. "Sequential estimation of shape parameters in multivariate dynamic models," Journal of Econometrics, Elsevier, vol. 177(2), pages 233-249.
    76. Spierdijk, Laura & Umar, Zaghum, 2015. "Stocks, bonds, T-bills and inflation hedging: From great moderation to great recession," Journal of Economics and Business, Elsevier, vol. 79(C), pages 1-37.
    77. Su, Xiaoshan & Bai, Manying & Han, Yingwei, 2021. "Robust portfolio selection with regime switching and asymmetric dependence," Economic Modelling, Elsevier, vol. 99(C).
    78. Hammami, Yacine & Zhu, Jie, 2020. "Understanding time-varying short-horizon predictability✰," Finance Research Letters, Elsevier, vol. 32(C).
    79. Kose, M. Ayhan & Claessens, Stijn, 2017. "Asset Prices and Macroeconomic Outcomes: A Survey," CEPR Discussion Papers 12460, C.E.P.R. Discussion Papers.
    80. Fu, Jun & Wei, Jiaqin & Yang, Hailiang, 2014. "Portfolio optimization in a regime-switching market with derivatives," European Journal of Operational Research, Elsevier, vol. 233(1), pages 184-192.
    81. Carl Chiarella & Xue-Zhong He & Weihong Huang & Huanhuan Zheng, 2011. "Estimating Behavioural Heterogeneity Under Regime Switching," Research Paper Series 290, Quantitative Finance Research Centre, University of Technology, Sydney.
    82. Henkel, Sam James & Martin, J. Spencer & Nardari, Federico, 2011. "Time-varying short-horizon predictability," Journal of Financial Economics, Elsevier, vol. 99(3), pages 560-580, March.
    83. Bernd Scherer, 2009. "A note on portfolio choice for sovereign wealth funds," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 23(3), pages 315-327, September.
    84. Donatien Hainaut & Yan Shen & Yan Zeng, 2016. "How do capital structure and economic regime affect fair prices of bank's equity and liabilities?," Post-Print hal-01394133, HAL.
    85. Prukumpai, Suthawan, 2015. "Time-varying Industrial Portfolio Betas under the Regime-switching Model:Evidence from the Stock Exchange of Thailand," Asian Journal of Applied Economics, Kasetsart University, Center for Applied Economics Research, vol. 22(2), December.
    86. Kaihua Deng, 2018. "Another Look at Large-Cap Stock Return Comovement: A Semi-Markov-Switching Approach," Computational Economics, Springer;Society for Computational Economics, vol. 51(2), pages 227-262, February.
    87. Haibin Xie & Shouyang Wang, 2015. "Risk-return trade-off, information diffusion, and U.S. stock market predictability," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 2(04), pages 1-20, December.
    88. John M Maheu & Thomas H McCurdy & Yong Song, 2010. "Components of bull and bear markets: bull corrections and bear rallies," Working Papers tecipa-402, University of Toronto, Department of Economics.
    89. Bruno Solnik & Thaisiri Watewai, 2016. "International Correlation Asymmetries: Frequent-but-Small and Infrequent-but-Large Equity Returns," PIER Discussion Papers 31, Puey Ungphakorn Institute for Economic Research.
    90. Guidolin, Massimo & Hyde, Stuart, 2012. "Can VAR models capture regime shifts in asset returns? A long-horizon strategic asset allocation perspective," Journal of Banking & Finance, Elsevier, vol. 36(3), pages 695-716.
    91. Poshakwale, Sunil S. & Mandal, Anandadeep, 2016. "Determinants of asymmetric return comovements of gold and other financial assets," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 229-242.
    92. GIOT, Pierre & PETITJEAN, Mikael, 2006. "The information content of the Bond-Equity Yield Ratio: better than a random walk?," LIDAM Discussion Papers CORE 2006089, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    93. Zikai Wei & Anyi Rao & Bo Dai & Dahua Lin, 2023. "HireVAE: An Online and Adaptive Factor Model Based on Hierarchical and Regime-Switch VAE," Papers 2306.02848, arXiv.org.
    94. Lioui, Abraham & Tarelli, Andrea, 2020. "Factor Investing for the Long Run," Journal of Economic Dynamics and Control, Elsevier, vol. 117(C).
    95. Goodarzi, Milad & Meinerding, Christoph, 2023. "Asset allocation with recursive parameter updating and macroeconomic regime identifiers," Discussion Papers 06/2023, Deutsche Bundesbank.
    96. Dias, José G. & Ramos, Sofia B., 2013. "A core–periphery framework in stock markets of the euro zone," Economic Modelling, Elsevier, vol. 35(C), pages 320-329.
    97. Chae, Joon & Lee, Eun Jung, 2018. "Distribution uncertainty and expected stock returns," Finance Research Letters, Elsevier, vol. 25(C), pages 55-61.
    98. Giulia Dal Pra & Massimo Guidolin & Manuela Pedio & Fabiola Vasile, 2016. "Do Regimes in Excess Stock Return Predictability Create Economic Value? An Out-of-Sample Portfolio Analysis," BAFFI CAREFIN Working Papers 1637, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    99. Roy P. P. M. Hoevenaars & Roderick D. J. Molenaar & Peter C. Schotman & Tom B. M. Steenkamp, 2014. "Strategic Asset Allocation For Long‐Term Investors: Parameter Uncertainty And Prior Information," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(3), pages 353-376, April.
    100. Sander, Magnus, 2018. "Market timing over the business cycle," Journal of Empirical Finance, Elsevier, vol. 46(C), pages 130-145.
    101. Aloui, Chaker & Hammoudeh, Shawkat & Hamida, Hela Ben, 2015. "Price discovery and regime shift behavior in the relationship between sharia stocks and sukuk: A two-state Markov switching analysis," Pacific-Basin Finance Journal, Elsevier, vol. 34(C), pages 121-135.
    102. Jin-Ray Lu & Chih-Ming Chan & Wen-Shen Li, 2011. "Portfolio Selections with Innate Learning Ability," International Journal of Business and Economics, School of Management Development, Feng Chia University, Taichung, Taiwan, vol. 10(3), pages 201-217, December.
    103. Eva (E.F.) Janssens & Robin (R.) Lumsdaine & Sebastiaan (S.H.L.C.G.) Vermeulen, 2018. "An Epidemiological Model of Crisis Spread Across Sectors in The United States," Tinbergen Institute Discussion Papers 18-008/III, Tinbergen Institute.
    104. Thomas Q. Pedersen, 2015. "Predictable Return Distributions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(2), pages 114-132, March.
    105. Chang, Kuang-Liang, 2009. "Do macroeconomic variables have regime-dependent effects on stock return dynamics? Evidence from the Markov regime switching model," Economic Modelling, Elsevier, vol. 26(6), pages 1283-1299, November.
    106. Narayan, S. & Le, T.-H. & Sriananthakumar, S., 2018. "The influence of terrorism risk on stock market integration: Evidence from eight OECD countries," International Review of Financial Analysis, Elsevier, vol. 58(C), pages 247-259.
    107. José Afonso Faias & Tiago Castel-Branco, 2018. "Out-Of-Sample Stock Return Prediction Using Higher-Order Moments," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(06), pages 1-27, September.
    108. Penaranda, Francisco, 2007. "Portfolio choice beyond the traditional approach," LSE Research Online Documents on Economics 24481, London School of Economics and Political Science, LSE Library.
    109. Cees Diks & Valentyn Panchenko & Dick van Dijk, 2011. "Likelihood-based scoring rules for comparing density forecasts in tails," Post-Print hal-00834423, HAL.
    110. Liu, Xinyi & Margaritis, Dimitris & Wang, Peiming, 2012. "Stock market volatility and equity returns: Evidence from a two-state Markov-switching model with regressors," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 483-496.
    111. Campani, Carlos Heitor & Garcia, René & Lewin, Marcelo, 2021. "Optimal portfolio strategies in the presence of regimes in asset returns," Journal of Banking & Finance, Elsevier, vol. 123(C).
    112. John Y. Campbell & Carolin Pflueger & Luis M. Viceira, 2013. "Macroeconomic Drivers of Bond and Equity Risks," Harvard Business School Working Papers 14-031, Harvard Business School, revised Aug 2018.
    113. Dias, José G. & Vermunt, Jeroen K. & Ramos, Sofia, 2015. "Clustering financial time series: New insights from an extended hidden Markov model," European Journal of Operational Research, Elsevier, vol. 243(3), pages 852-864.
    114. Christina Erlwein & Peter Ruckdeschel, 2013. "Robustification of Elliott's on-line EM algorithm for HMMs," Papers 1304.2069, arXiv.org.
    115. Donatien Hainaut & Franck Moraux, 2019. "A switching self-exciting jump diffusion process for stock prices," Annals of Finance, Springer, vol. 15(2), pages 267-306, June.
    116. Olivier Courtois & Xiaoshan Su, 2020. "Structural Pricing of CoCos and Deposit Insurance with Regime Switching and Jumps," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 27(4), pages 477-520, December.
    117. Felix Haase, 2024. "Sum-of-the-Parts Revised: Economic Regimes and Flexible Probabilities," Research Papers in Economics 2024-10, University of Trier, Department of Economics.
    118. Guidolin, Massimo & Hyde, Stuart, 2012. "Simple VARs cannot approximate Markov switching asset allocation decisions: An out-of-sample assessment," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3546-3566.
    119. Engsted, Tom & Pedersen, Thomas Q., 2012. "Return predictability and intertemporal asset allocation: Evidence from a bias-adjusted VAR model," Journal of Empirical Finance, Elsevier, vol. 19(2), pages 241-253.
    120. Nguyet Nguyen & Dung Nguyen, 2015. "Hidden Markov Model for Stock Selection," Risks, MDPI, vol. 3(4), pages 1-19, October.
    121. Erica X.N. Li & Tao Zha & Ji Zhang & Hao Zhou, 2020. "Stock-Bond Return Correlation, Bond Risk Premium Fundamentals, and Fiscal-Monetary Policy Regime," FRB Atlanta Working Paper 2020-19, Federal Reserve Bank of Atlanta.
    122. Likun Lei & Yaojie Zhang & Yu Wei & Yi Zhang, 2021. "Forecasting the volatility of Chinese stock market: An international volatility index," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 1336-1350, January.
    123. Ilias Tsiakas & Jiahan Li & Haibin Zhang, 2020. "Equity Premium Prediction and the State of the Economy," Working Paper series 20-16, Rimini Centre for Economic Analysis.
    124. Peter Nystrup & Stephen Boyd & Erik Lindström & Henrik Madsen, 2019. "Multi-period portfolio selection with drawdown control," Annals of Operations Research, Springer, vol. 282(1), pages 245-271, November.
    125. Nick James & Max Menzies, 2021. "Collective correlations, dynamics, and behavioural inconsistencies of the cryptocurrency market over time," Papers 2107.13926, arXiv.org, revised Dec 2021.
    126. Luis Viceira & Carolin Pflueger & John Campbell, 2014. "Monetary Policy Drivers of Bond and Equity Risks," 2014 Meeting Papers 137, Society for Economic Dynamics.
    127. Bradrania, Reza & Pirayesh Neghab, Davood, 2021. "State-dependent asset allocation using neural networks," MPRA Paper 115254, University Library of Munich, Germany.
    128. Poshakwale, Sunil S. & Mandal, Anandadeep, 2016. "What drives asymmetric dependence structure of asset return comovements?," International Review of Financial Analysis, Elsevier, vol. 48(C), pages 312-330.
    129. Ioannis Anagnostou & Drona Kandhai, 2019. "Risk Factor Evolution for Counterparty Credit Risk under a Hidden Markov Model," Risks, MDPI, vol. 7(2), pages 1-22, June.
    130. Kenwin Maung, 2021. "Estimating high-dimensional Markov-switching VARs," Papers 2107.12552, arXiv.org.
    131. Markwat, T.D. & Kole, H.J.W.G. & van Dijk, D.J.C., 2009. "Time Variation in Asset Return Dependence: Strength or Structure?," ERIM Report Series Research in Management ERS-2009-052-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    132. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Clara Vega, 2006. "Real-time price discovery in global stock, bond and foreign exchange markets," International Finance Discussion Papers 871, Board of Governors of the Federal Reserve System (U.S.).
    133. Marcello Pericoli, 2020. "On risk factors of the stock–bond correlation," International Finance, Wiley Blackwell, vol. 23(3), pages 392-416, December.
    134. Li, Erica X.N. & Zha, Tao & Zhang, Ji & Zhou, Hao, 2022. "Does fiscal policy matter for stock-bond return correlation?," Journal of Monetary Economics, Elsevier, vol. 128(C), pages 20-34.
    135. Wang, Yudong & Pan, Zhiyuan & Wu, Chongfeng & Wu, Wenfeng, 2020. "Industry equi-correlation: A powerful predictor of stock returns," Journal of Empirical Finance, Elsevier, vol. 59(C), pages 1-24.
    136. Peter Nystrup & Bo William Hansen & Henrik Madsen & Erik Lindström, 2016. "Detecting change points in VIX and S&P 500: A new approach to dynamic asset allocation," Journal of Asset Management, Palgrave Macmillan, vol. 17(5), pages 361-374, September.
    137. Chan, Kam Fong & Treepongkaruna, Sirimon & Brooks, Robert & Gray, Stephen, 2011. "Asset market linkages: Evidence from financial, commodity and real estate assets," Journal of Banking & Finance, Elsevier, vol. 35(6), pages 1415-1426, June.
    138. Yarovaya, Larisa & Matkovskyy, Roman & Jalan, Akanksha, 2021. "The effects of a “black swan” event (COVID-19) on herding behavior in cryptocurrency markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 75(C).
    139. Xavier Warin, 2016. "The Asset Liability Management problem of a nuclear operator : a numerical stochastic optimization approach," Papers 1611.04877, arXiv.org.
    140. Nguyet Nguyen, 2017. "An Analysis and Implementation of the Hidden Markov Model to Technology Stock Prediction," Risks, MDPI, vol. 5(4), pages 1-16, November.
    141. Zhao, Guihai, 2017. "Confidence, bond risks, and equity returns," Journal of Financial Economics, Elsevier, vol. 126(3), pages 668-688.
    142. Marcello Pericoli, 2018. "Macroeconomics determinants of the correlation between stocks and bonds," Temi di discussione (Economic working papers) 1198, Bank of Italy, Economic Research and International Relations Area.
    143. Kole, Erik & van Dijk, Dick, 2023. "Moments, shocks and spillovers in Markov-switching VAR models," Journal of Econometrics, Elsevier, vol. 236(2).
    144. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    145. Hakan Kaya, 2017. "Managing ambiguity in asset allocation," Journal of Asset Management, Palgrave Macmillan, vol. 18(3), pages 163-187, May.
    146. Ma, Feng & Li, Yu & Liu, Li & Zhang, Yaojie, 2018. "Are low-frequency data really uninformative? A forecasting combination perspective," The North American Journal of Economics and Finance, Elsevier, vol. 44(C), pages 92-108.
    147. Yaojie Zhang & Mengxi He & Yuqi Zhao & Xianfeng Hao, 2023. "Predicting stock realized variance based on an asymmetric robust regression approach," Bulletin of Economic Research, Wiley Blackwell, vol. 75(4), pages 1022-1047, October.
    148. Dewandaru, Ginanjar & Masih, Rumi & Bacha, Obiyathulla I. & Masih, A. Mansur M., 2014. "The Role of Islamic Asset Classes in the Diversified Portfolios: Mean Variance Spanning Test," MPRA Paper 56857, University Library of Munich, Germany.
    149. Nyberg, Henri, 2013. "Predicting bear and bull stock markets with dynamic binary time series models," Journal of Banking & Finance, Elsevier, vol. 37(9), pages 3351-3363.
    150. Daniele Bianchi & Massimo Guidolin, 2014. "Can Linear Predictability Models Time Bull and Bear Real Estate Markets? Out-of-Sample Evidence from REIT Portfolios," The Journal of Real Estate Finance and Economics, Springer, vol. 49(1), pages 116-164, July.
    151. Jun Tu, 2010. "Is Regime Switching in Stock Returns Important in Portfolio Decisions?," Management Science, INFORMS, vol. 56(7), pages 1198-1215, July.
    152. Massimo Guidolin & Stuart Hyde, 2008. "Equity portfolio diversification under time-varying predictability and comovements: evidence from Ireland, the US, and the UK," Working Papers 2008-005, Federal Reserve Bank of St. Louis.
    153. Risse, Marian & Ohl, Ludwig, 2017. "Using dynamic model averaging in state space representation with dynamic Occam’s window and applications to the stock and gold market," Journal of Empirical Finance, Elsevier, vol. 44(C), pages 158-176.
    154. Suthawan Prukumpai, 2015. "Time-varying Industrial Portfolio Betas under the Regime-switching Model: Evidence from the Stock Exchange of Thailand," Applied Economics Journal, Kasetsart University, Faculty of Economics, Center for Applied Economic Research, vol. 22(2), pages 54-76, December.
    155. Li, Chenxing, 2022. "A multivariate GARCH model with an infinite hidden Markov mixture," MPRA Paper 112792, University Library of Munich, Germany.
    156. Ayadi, Mohamed A. & Lazrak, Skander & Liao, Yusui & Welch, Robert, 2018. "Performance of fixed-income mutual funds with regime-switching models," The Quarterly Review of Economics and Finance, Elsevier, vol. 69(C), pages 217-231.
    157. Bae, Geum Il & Kim, Woo Chang & Mulvey, John M., 2014. "Dynamic asset allocation for varied financial markets under regime switching framework," European Journal of Operational Research, Elsevier, vol. 234(2), pages 450-458.
    158. Álvarez-Díaz, Marcos & Hammoudeh, Shawkat & Gupta, Rangan, 2014. "Detecting predictable non-linear dynamics in Dow Jones Islamic Market and Dow Jones Industrial Average indices using nonparametric regressions," The North American Journal of Economics and Finance, Elsevier, vol. 29(C), pages 22-35.
    159. Lee, Chien-Chiang & Lee, Hsiang-Tai, 2023. "Optimal portfolio diversification with a multi-chain regime-switching spillover GARCH model," Global Finance Journal, Elsevier, vol. 55(C).
    160. Yizhan Shu & Chenyu Yu & John M. Mulvey, 2024. "Downside Risk Reduction Using Regime-Switching Signals: A Statistical Jump Model Approach," Papers 2402.05272, arXiv.org, revised Sep 2024.
    161. Dichtl, Hubert & Drobetz, Wolfgang & Neuhierl, Andreas & Wendt, Viktoria-Sophie, 2021. "Data snooping in equity premium prediction," International Journal of Forecasting, Elsevier, vol. 37(1), pages 72-94.
    162. Nguyet Nguyen, 2018. "Hidden Markov Model for Stock Trading," IJFS, MDPI, vol. 6(2), pages 1-17, March.
    163. Marcos Álvarez-Díaz & Shawkat Hammoudeh & Rangan Gupta, 2013. "Detecting Predictable Non-linear Dynamics in Dow Jones Industrial Average and Dow Jones Islamic Market Indices using Nonparametric Regressions," Working Papers 201385, University of Pretoria, Department of Economics.
    164. Huang, Weihong & Zheng, Huanhuan, 2012. "Financial crises and regime-dependent dynamics," Journal of Economic Behavior & Organization, Elsevier, vol. 82(2), pages 445-461.
    165. Li, Dakai, 2024. "Forecasting stock market realized volatility: The role of investor attention to the price of petroleum products," International Review of Economics & Finance, Elsevier, vol. 90(C), pages 115-122.
    166. Brianzoni, Serena & Campisi, Giovanni, 2020. "Dynamical analysis of a financial market with fundamentalists, chartists, and imitators," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    167. Taamouti, Abderrahim, 2012. "Moments of multivariate regime switching with application to risk-return trade-off," Journal of Empirical Finance, Elsevier, vol. 19(2), pages 292-308.
    168. Chen, Ping & Yam, S.C.P., 2013. "Optimal proportional reinsurance and investment with regime-switching for mean–variance insurers," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 871-883.
    169. Chung, San-Lin & Hung, Mao-Wei & Wei, Tzu-Wen & Yeh, Chung-Ying, 2024. "Strategic asset allocation with distorted beliefs," International Review of Economics & Finance, Elsevier, vol. 89(PB), pages 804-831.
    170. Daniele Bianchi & Massimo Guidolin & Manuela Pedio, 2020. "Dissecting Time-Varying Risk Exposures in Cryptocurrency Markets," BAFFI CAREFIN Working Papers 20143, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    171. Massimo Guidolin & Stuart Hyde, 2012. "Optimal Portfolios for Occupational Funds under Time-Varying Correlations in Bull and Bear Markets? Assessing the Ex-Post Economic Value," Working Papers 455, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    172. Marcelo Lewin & Carlos Heitor Campani, 2023. "Constrained portfolio strategies in a regime-switching economy," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 37(1), pages 27-59, March.
    173. Jieting Chen & Yuichiro Kawaguchi, 2018. "Multi-Factor Asset-Pricing Models under Markov Regime Switches: Evidence from the Chinese Stock Market," IJFS, MDPI, vol. 6(2), pages 1-19, May.
    174. Liu, Hening, 2011. "Dynamic portfolio choice under ambiguity and regime switching mean returns," Journal of Economic Dynamics and Control, Elsevier, vol. 35(4), pages 623-640, April.
    175. Klaus Grobys, 2012. "Active PortofolioManagement in the Presence of Regime Switching: What Are the Benefits of Defensive Asset Allocation Strategies If the Investor Faces Bear Markets?," The Review of Finance and Banking, Academia de Studii Economice din Bucuresti, Romania / Facultatea de Finante, Asigurari, Banci si Burse de Valori / Catedra de Finante, vol. 4(1), pages 015-031, June.
    176. Wang, Yudong & Wei, Yu & Wu, Chongfeng & Yin, Libo, 2018. "Oil and the short-term predictability of stock return volatility," Journal of Empirical Finance, Elsevier, vol. 47(C), pages 90-104.
    177. Tihana Škrinjarić & Boško Šego, 2018. "Using Grey Incidence Analysis Approach in Portfolio Selection," IJFS, MDPI, vol. 7(1), pages 1-16, December.
    178. Wang, Yudong & Ma, Feng & Wei, Yu & Wu, Chongfeng, 2016. "Forecasting realized volatility in a changing world: A dynamic model averaging approach," Journal of Banking & Finance, Elsevier, vol. 64(C), pages 136-149.
    179. Díaz, Antonio & Escribano, Ana & Esparcia, Carlos, 2024. "Sustainable risk preferences on asset allocation: a higher order optimal portfolio study," Journal of Behavioral and Experimental Finance, Elsevier, vol. 41(C).

  21. Patton, Andrew J. & Timmermann, Allan, 2007. "Properties of optimal forecasts under asymmetric loss and nonlinearity," Journal of Econometrics, Elsevier, vol. 140(2), pages 884-918, October.

    Cited by:

    1. Barbara Rossi, 2011. "Advances in Forecasting Under Instability," Working Papers 11-20, Duke University, Department of Economics.
    2. Stan Hurn & Jing Tian & Lina Xu, 2021. "Assessing the Informational Content of Official Australian Bureau of Meteorology Forecasts of Wind Speed," The Economic Record, The Economic Society of Australia, vol. 97(319), pages 525-547, December.
    3. Capistrán, Carlos & López-Moctezuma, Gabriel, 2014. "Forecast revisions of Mexican inflation and GDP growth," International Journal of Forecasting, Elsevier, vol. 30(2), pages 177-191.
    4. Sinclair, Tara M. & Gamber, Edward N. & Stekler, Herman & Reid, Elizabeth, 2012. "Jointly evaluating the Federal Reserve’s forecasts of GDP growth and inflation," International Journal of Forecasting, Elsevier, vol. 28(2), pages 309-314.
    5. Shea, Paul, 2015. "Red herrings and revelations: does learning about a new variable worsen forecasts?," Economic Modelling, Elsevier, vol. 49(C), pages 395-406.
    6. Emilio Zanetti Chini, 2018. "Forecaster’s utility and forecasts coherence," CREATES Research Papers 2018-01, Department of Economics and Business Economics, Aarhus University.
    7. Christian Pierdzioch & Jan-Christoph Rülke & Peter Tillmann, 2013. "Using forecasts to uncover the loss function of FOMC members," MAGKS Papers on Economics 201302, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    8. Mehmet Pinar & Thanasis Stengos & M. Ege Yazgan, 2018. "Quantile forecast combination using stochastic dominance," Empirical Economics, Springer, vol. 55(4), pages 1717-1755, December.
    9. Dr Silvia Lui & Dr Martin Weale & Dr. James Mitchell, 2009. "The utility of expectational data: Firm-level evidence using matched qualitative-quantitative UK surveys," National Institute of Economic and Social Research (NIESR) Discussion Papers 343, National Institute of Economic and Social Research.
    10. Pierdzioch, Christian & Rülke, Jan-Christoph, 2013. "Do inflation targets anchor inflation expectations?," Economic Modelling, Elsevier, vol. 35(C), pages 214-223.
    11. Buse, Rebekka & Schienle, Melanie, 2019. "Measuring connectedness of euro area sovereign risk," International Journal of Forecasting, Elsevier, vol. 35(1), pages 25-44.
    12. Lima, Luiz Renato & Meng, Fanning & Godeiro, Lucas, 2020. "Quantile forecasting with mixed-frequency data," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1149-1162.
    13. Bauer, Christian & Neuenkirch, Matthias, 2017. "Forecast uncertainty and the Taylor rule," Journal of International Money and Finance, Elsevier, vol. 77(C), pages 99-116.
    14. Timmermann Allan & Capistrán Carlos, 2006. "Disagreement and Biases in Inflation Expectations," Working Papers 2006-07, Banco de México.
    15. Pablo Pincheira B. & Nicolás Fernández, 2011. "Jaque Mate a las Proyecciones de Consenso," Working Papers Central Bank of Chile 630, Central Bank of Chile.
    16. Nazaria Solferino & Robert Waldmann, 2010. "Predicting the signs of forecast errors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(5), pages 476-485.
    17. Demetrescu, Matei & Hacioglu Hoke, Sinem, 2018. "Predictive regressions under asymmetric loss: factor augmentation and model selection," Bank of England working papers 723, Bank of England.
    18. Jens J. Krüger, 2014. "A multivariate evaluation of German output growth and inflation forecasts," Economics Bulletin, AccessEcon, vol. 34(3), pages 1410-1418.
    19. Anatolyev, Stanislav, 2009. "Dynamic modeling under linear-exponential loss," Economic Modelling, Elsevier, vol. 26(1), pages 82-89, January.
    20. Coroneo, Laura & Iacone, Fabrizio & Paccagnini, Alessia & Santos Monteiro, Paulo, 2023. "Testing the predictive accuracy of COVID-19 forecasts," International Journal of Forecasting, Elsevier, vol. 39(2), pages 606-622.
    21. Cui, Qiurong & Xu, Yuqing & Zhang, Zhengjun & Chan, Vincent, 2021. "Max-linear regression models with regularization," Journal of Econometrics, Elsevier, vol. 222(1), pages 579-600.
    22. William A. Branch, 2014. "Nowcasting and the Taylor Rule," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 46(5), pages 1035-1055, August.
    23. Guidolin, Massimo & Hyde, Stuart & McMillan, David & Ono, Sadayuki, 2009. "Non-linear predictability in stock and bond returns: When and where is it exploitable?," International Journal of Forecasting, Elsevier, vol. 25(2), pages 373-399.
    24. Goodwin, Thomas & Tian, Jing, 2017. "A state space approach to evaluate multi-horizon forecasts," Working Papers 2017-15, University of Tasmania, Tasmanian School of Business and Economics.
    25. Sun, Yuying & Wang, Shouyang & Zhang, Xun, 2018. "How efficient are China's macroeconomic forecasts? Evidences from a new forecasting evaluation approach," Economic Modelling, Elsevier, vol. 68(C), pages 506-513.
    26. Andrew J. Patton & Allan Timmermann, 2011. "Forecast Rationality Tests Based on Multi-Horizon Bounds," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 1-17, June.
    27. Fritsche, Ulrich & Pierdzioch, Christian & Rülke, Jan-Christoph & Stadtmann, Georg, 2015. "Forecasting the Brazilian real and the Mexican peso: Asymmetric loss, forecast rationality, and forecaster herding," International Journal of Forecasting, Elsevier, vol. 31(1), pages 130-139.
    28. Jalles, João Tovar, 2017. "On the rationality and efficiency of inflation forecasts: Evidence from advanced and emerging market economies," Research in International Business and Finance, Elsevier, vol. 40(C), pages 175-189.
    29. Alp, Tansel & Demetrescu, Matei, 2010. "Joint forecasts of Dow Jones stocks under general multivariate loss function," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2360-2371, November.
    30. Joanna Bruzda, 2020. "Multistep quantile forecasts for supply chain and logistics operations: bootstrapping, the GARCH model and quantile regression based approaches," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 309-336, March.
    31. Wang, Yiyao & Lee, Tae-Hwy, 2014. "Asymmetric loss in the Greenbook and the Survey of Professional Forecasters," International Journal of Forecasting, Elsevier, vol. 30(2), pages 235-245.
    32. Atsushi Inoue & Barbara Rossi, 2011. "Out-of-sample forecast tests robust to the choice of window size," Working Papers 11-31, Federal Reserve Bank of Philadelphia.
    33. Kostas Mouratidis & Dimitris Kenourgios & Aris Samitas, 2010. "Evaluating currency crisis:A multivariate Markov switching approach," Working Papers 2010018, The University of Sheffield, Department of Economics, revised Oct 2010.
    34. Carlos Capistrán & Allan Timmermann, 2009. "Disagreement and Biases in Inflation Expectations," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(2‐3), pages 365-396, March.
    35. Faust, Jon & Wright, Jonathan H., 2013. "Forecasting Inflation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 2-56, Elsevier.
    36. Chevillon, Guillaume, 2016. "Multistep forecasting in the presence of location shifts," International Journal of Forecasting, Elsevier, vol. 32(1), pages 121-137.
    37. Conrad, Christian, 2017. "When does information on forecast variance improve the performance of a combined forecast?," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168200, Verein für Socialpolitik / German Economic Association.
    38. Gneiting, Tilmann, 2011. "Quantiles as optimal point forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 197-207, April.
    39. Philip Hans Franses & Michael McAleer & Rianne Legerstee, 2009. "Expert opinion versus expertise in forecasting," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 63(3), pages 334-346, August.
    40. Florian Peters & Simas Kucinskas, 2018. "Measuring Biases in Expectation Formation," Tinbergen Institute Discussion Papers 18-058/IV, Tinbergen Institute.
    41. Andrea Betancor & Pablo Pincheira, 2008. "Forecasting Inflation Forecast Errors," Working Papers Central Bank of Chile 477, Central Bank of Chile.
    42. Xinglin Yang & Peng Wang, 2018. "VIX futures pricing with conditional skewness," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(9), pages 1126-1151, September.
    43. Demetrescu, Matei & Golosnoy, Vasyl & Titova, Anna, 2020. "Bias corrections for exponentially transformed forecasts: Are they worth the effort?," International Journal of Forecasting, Elsevier, vol. 36(3), pages 761-780.
    44. G. Kontogeorgos & K. Lambrias, 2022. "Evaluating the Eurosystem/ECB staff macroeconomic projections: The first 20 years," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 213-229, March.
    45. Brownlees, Christian T. & Gallo, Giampiero M., 2011. "Shrinkage estimation of semiparametric multiplicative error models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 365-378.
    46. João Henrique Gonçalves Mazzeu & Esther Ruiz & Helena Veiga, 2018. "Uncertainty And Density Forecasts Of Arma Models: Comparison Of Asymptotic, Bayesian, And Bootstrap Procedures," Journal of Economic Surveys, Wiley Blackwell, vol. 32(2), pages 388-419, April.
    47. Barbara Rossi, 2011. "Comment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 25-29, August.
    48. Bovi, Maurizio, 2019. "A Time-Varying Expectations Formation Mechanism," MPRA Paper 97624, University Library of Munich, Germany.
    49. Bruzda, Joanna, 2019. "Quantile smoothing in supply chain and logistics forecasting," International Journal of Production Economics, Elsevier, vol. 208(C), pages 122-139.
    50. Tian, Jing & Goodwin, Thomas, 2018. "An unobserved component modeling approach to evaluate multi-horizon forecasts," Working Papers 2018-04, University of Tasmania, Tasmanian School of Business and Economics.
    51. Lillestøl, Jostein & Sinding-Larsen, Richard, 2015. "Best estimate reporting with asymmetric loss," Discussion Papers 2015/7, Norwegian School of Economics, Department of Business and Management Science.
    52. Siddhartha S. Bora & Ani L. Katchova & Todd H. Kuethe, 2021. "The Rationality of USDA Forecasts under Multivariate Asymmetric Loss," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(3), pages 1006-1033, May.
    53. Bourmpoula, Evangelia. & Wieser, Christina., 2014. "An accuracy assessment of the global employment trends' unemployment rate forecasts," ILO Working Papers 994888903402676, International Labour Organization.
    54. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    55. Chia-Lin Chang & Philip Hans Franses & Michael McAleer, 2009. "How Accurate are Government Forecasts of Economic Fundamentals? The Case of Taiwan," CIRJE F-Series CIRJE-F-637, CIRJE, Faculty of Economics, University of Tokyo.
    56. Stanislav Anatolyev & Natalia Kryzhanovskaya, 2009. "Directional Prediction of Returns under Asymmetric Loss: Direct and Indirect Approaches," Working Papers w0136, Center for Economic and Financial Research (CEFIR).
    57. Rodríguez-Vargas, Adolfo, 2020. "Forecasting Costa Rican inflation with machine learning methods," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 1(1).
    58. Xinyu Zhang & Alan T. K. Wan & Sherry Z. Zhou, 2011. "Focused Information Criteria, Model Selection, and Model Averaging in a Tobit Model With a Nonzero Threshold," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 132-142, June.
    59. Federico Bassetti & Roberto Casarin & Marco Del Negro, 2022. "A Bayesian Approach to Inference on Probabilistic Surveys," Staff Reports 1025, Federal Reserve Bank of New York.
    60. Bourmpoula, Evangelia. & Wieser, Christina., 2014. "An accuracy assessment of the global employment trends' unemployment rate forecasts," Global Employment Trends Reports 994888903402676, International Labour Office, Economic and Labour Market Analysis Department.
    61. Giovannelli, Alessandro & Pericoli, Filippo Maria, 2020. "Are GDP forecasts optimal? Evidence on European countries," International Journal of Forecasting, Elsevier, vol. 36(3), pages 963-973.
    62. Ildeberta Abreu, 2011. "International organisations’ vs. private analysts’ forecasts: an evaluation," Working Papers w201120, Banco de Portugal, Economics and Research Department.
    63. Sizova, Natalia, 2011. "Integrated variance forecasting: Model based vs. reduced form," Journal of Econometrics, Elsevier, vol. 162(2), pages 294-311, June.
    64. Qiu, Yajie & Deschamps, Bruno & Liu, Xiaoquan, 2024. "Uncertainty and macroeconomic forecasts: Evidence from survey data," Journal of Economic Behavior & Organization, Elsevier, vol. 224(C), pages 463-480.
    65. Veiga, Helena, 2015. "Model uncertainty and the forecast accuracy of ARMA models: A survey," DES - Working Papers. Statistics and Econometrics. WS ws1508, Universidad Carlos III de Madrid. Departamento de Estadística.
    66. Roman Huptas, 2019. "Point forecasting of intraday volume using Bayesian autoregressive conditional volume models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(4), pages 293-310, July.
    67. Gneiting, Tilmann, 2011. "Quantiles as optimal point forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 197-207.
    68. Luetkepohl Helmut & Xu Fang, 2011. "Forecasting Annual Inflation with Seasonal Monthly Data: Using Levels versus Logs of the Underlying Price Index," Journal of Time Series Econometrics, De Gruyter, vol. 3(1), pages 1-23, February.
    69. Michael W. McCracken & Giorgio Valente, 2012. "Asymptotic Inference for Performance Fees and the Predictability of Asset Returns," Working Papers 2012-049, Federal Reserve Bank of St. Louis.
    70. Pablo Pincheira, 2010. "A Real Time Evaluation of the Central Bank of Chile GDP Growth Forecasts," Working Papers Central Bank of Chile 556, Central Bank of Chile.
    71. Thiago De Oliveira Souza, 2011. "Forecasting Investment-Grade Credit-Spreads. A Regularized Approach," Working Papers ECARES ECARES 2011-037, ULB -- Universite Libre de Bruxelles.
    72. Kontogeorgos, Georgios & Lambrias, Kyriacos, 2019. "An analysis of the Eurosystem/ECB projections," Working Paper Series 2291, European Central Bank.
    73. Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
    74. Kexin Ding & Ani L. Katchova, 2024. "Testing the optimality of USDA's WASDE forecasts under unknown loss," Agribusiness, John Wiley & Sons, Ltd., vol. 40(4), pages 846-865, October.
    75. Olga Isengildina‐Massa & Berna Karali & Todd H. Kuethe & Ani L. Katchova, 2021. "Joint Evaluation of the System of USDA's Farm Income Forecasts," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 43(3), pages 1140-1160, September.
    76. Donayre, Luiggi & Panovska, Irina, 2016. "Nonlinearities in the U.S. wage Phillips curve," Journal of Macroeconomics, Elsevier, vol. 48(C), pages 19-43.
    77. Capistrán Carlos, 2007. "Optimality Tests for Multi-Horizon Forecasts," Working Papers 2007-14, Banco de México.
    78. Henri Karttunen, 2020. "An autoregressive model based on the generalized hyperbolic distribution," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(3), pages 787-816, September.

  22. Guidolin, Massimo & Timmermann, Allan, 2007. "Properties of equilibrium asset prices under alternative learning schemes," Journal of Economic Dynamics and Control, Elsevier, vol. 31(1), pages 161-217, January.

    Cited by:

    1. Volker Wieland & Christos Koulovatianos, 2011. "Asset Pricing under Rational Learning about Rare Disasters," 2011 Meeting Papers 1417, Society for Economic Dynamics.
    2. Christos Koulovatianos, 2010. "A Paradox of Environmental Awareness Campaigns," Discussion Papers 10/17, University of Nottingham, School of Economics.
    3. Milani, Fabio, 2017. "Learning about the interdependence between the macroeconomy and the stock market," International Review of Economics & Finance, Elsevier, vol. 49(C), pages 223-242.
    4. Massimo Guidolin, 2006. "High equity premia and crash fears - Rational foundations," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 28(3), pages 693-708, August.
    5. Bernales, Alejandro & Chen, Louisa & Valenzuela, Marcela, 2017. "Learning and forecasts about option returns through the volatility risk premium," Journal of Economic Dynamics and Control, Elsevier, vol. 82(C), pages 312-330.
    6. Subrahmanyam, Avanidhar, 2008. "Learning from experience and trading volume," Review of Financial Economics, Elsevier, vol. 17(4), pages 245-260, December.
    7. Hommes, C.H. & Zhu, M., 2012. "Behavioral Learning Equilibria," CeNDEF Working Papers 12-09, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    8. Massimo Guidolin, 2005. "Pessimistic beliefs under rational learning: quantitative implications for the equity premium puzzle," Working Papers 2005-005, Federal Reserve Bank of St. Louis.
    9. Boudoukh, Jacob & Israel, Ronen & Richardson, Matthew, 2022. "Biases in long-horizon predictive regressions," Journal of Financial Economics, Elsevier, vol. 145(3), pages 937-969.
    10. Geoffrey J. Warren, 2008. "Implications for Asset Pricing Puzzles of a Roll‐over Assumption for the Risk‐Free Asset," International Review of Finance, International Review of Finance Ltd., vol. 8(3‐4), pages 125-157, September.
    11. Timmermann, Allan, 2008. "Elusive return predictability," International Journal of Forecasting, Elsevier, vol. 24(1), pages 1-18.
    12. Du, Kai, 2019. "Investor expectations, earnings management, and asset prices," Journal of Economic Dynamics and Control, Elsevier, vol. 105(C), pages 134-157.
    13. Bernales, Alejandro & Guidolin, Massimo, 2015. "Learning to smile: Can rational learning explain predictable dynamics in the implied volatility surface?," Journal of Financial Markets, Elsevier, vol. 26(C), pages 1-37.
    14. Lei Shi, 2010. "Portfolio Analysis and Equilibrium Asset Pricing with Heterogeneous Beliefs," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2010, January-A.
    15. Avanidhar Subrahmanyam, 2008. "Learning from experience and trading volume," Review of Financial Economics, John Wiley & Sons, vol. 17(4), pages 245-260, December.
    16. James B. Bullard & Jacek Suda, 2008. "The stability of macroeconomic systems with Bayesian learners," Working Papers 2008-043, Federal Reserve Bank of St. Louis.
    17. Quaye, Enoch & Tunaru, Radu, 2022. "The stock implied volatility and the implied dividend volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 134(C).
    18. Xue-Zhong He & Lei Shi, 2016. "A Binomial Model of Asset and Option Pricing with Heterogeneous Beliefs," Published Paper Series 2016-4, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    19. Consiglio, Andrea & Russino, Annalisa, 2007. "How does learning affect market liquidity? A simulation analysis of a double-auction financial market with portfolio traders," Journal of Economic Dynamics and Control, Elsevier, vol. 31(6), pages 1910-1937, June.
    20. Christos Koulovatianos, 2015. "Strategic Exploitation of a Common-Property Resource Under Rational Learning About its Reproduction," Dynamic Games and Applications, Springer, vol. 5(1), pages 94-119, March.
    21. Avanidhar Subrahmanyam, 2009. "Optimal financial education," Review of Financial Economics, John Wiley & Sons, vol. 18(1), pages 1-9, January.
    22. Brianzoni, Serena & Campisi, Giovanni, 2020. "Dynamical analysis of a financial market with fundamentalists, chartists, and imitators," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    23. Subrahmanyam, Avanidhar, 2009. "Optimal financial education," Review of Financial Economics, Elsevier, vol. 18(1), pages 1-9, January.
    24. Gandré, Pauline, 2020. "US stock prices and recency-biased learning in the run-up to the Global Financial Crisis and its aftermath," Journal of International Money and Finance, Elsevier, vol. 104(C).

  23. Patton, Andrew J. & Timmermann, Allan, 2007. "Testing Forecast Optimality Under Unknown Loss," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1172-1184, December.

    Cited by:

    1. Clements, Michael P., 2008. "Explanations of the inconsistencies in survey respondents'forecasts," The Warwick Economics Research Paper Series (TWERPS) 870, University of Warwick, Department of Economics.
    2. D'Agostino, Antonello & McQuinn, Kieran & Whelan, Karl, 2010. "Are Some Forecasters Really Better Than Others?," Research Technical Papers 5/RT/10, Central Bank of Ireland.
    3. Sinclair, Tara M. & Gamber, Edward N. & Stekler, Herman & Reid, Elizabeth, 2012. "Jointly evaluating the Federal Reserve’s forecasts of GDP growth and inflation," International Journal of Forecasting, Elsevier, vol. 28(2), pages 309-314.
    4. Wieland, Volker & Wolters, Maik, 2013. "Forecasting and Policy Making," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 239-325, Elsevier.
    5. Aretz, Kevin & Bartram, Söhnke M. & Pope, Peter F., 2011. "Asymmetric Loss Functions and the Rationality of Expected Stock Returns," MPRA Paper 47343, University Library of Munich, Germany.
    6. Emilio Zanetti Chini, 2018. "Forecaster’s utility and forecasts coherence," CREATES Research Papers 2018-01, Department of Economics and Business Economics, Aarhus University.
    7. Christian Pierdzioch & Jan-Christoph Rülke & Peter Tillmann, 2013. "Using forecasts to uncover the loss function of FOMC members," MAGKS Papers on Economics 201302, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    8. Timo Dimitriadis & Andrew J. Patton & Patrick W. Schmidt, 2019. "Testing Forecast Rationality for Measures of Central Tendency," Papers 1910.12545, arXiv.org, revised Jul 2024.
    9. Dr Silvia Lui & Dr Martin Weale & Dr. James Mitchell, 2009. "The utility of expectational data: Firm-level evidence using matched qualitative-quantitative UK surveys," National Institute of Economic and Social Research (NIESR) Discussion Papers 343, National Institute of Economic and Social Research.
    10. Francis X. Diebold & Minchul Shin, 2017. "Assessing point forecast accuracy by stochastic error distance," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 588-598, October.
    11. Chia-Lin Chang & Philip Hans Franses & Michael McAleer, 2010. "Combining Non-Replicable Forecasts," Working Papers in Economics 10/35, University of Canterbury, Department of Economics and Finance.
    12. Foltas, Alexander & Pierdzioch, Christian, 2020. "Business-cycle reports and the efficiency of macroeconomic forecasts for Germany," Working Papers 22, German Research Foundation's Priority Programme 1859 "Experience and Expectation. Historical Foundations of Economic Behaviour", Humboldt University Berlin.
    13. Wagner Piazza Gaglianone & Luiz Renato Lima, 2014. "Constructing Optimal Density Forecasts From Point Forecast Combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(5), pages 736-757, August.
    14. Matteo Iacopini & Francesco Ravazzolo & Luca Rossini, 2020. "Proper scoring rules for evaluating asymmetry in density forecasting," Working Papers No 06/2020, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    15. Knüppel, Malte & Schultefrankenfeld, Guido, 2018. "Assessing the uncertainty in central banks' inflation outlooks," Discussion Papers 56/2018, Deutsche Bundesbank.
    16. Andrew J. Patton & Allan Timmermann, 2008. "The Resolution of Macroeconomic Uncertainty: Evidence from Survey Forecast," CREATES Research Papers 2008-54, Department of Economics and Business Economics, Aarhus University.
    17. Michael Clements, 2017. "Do forecasters target first or later releases of national accounts data?," ICMA Centre Discussion Papers in Finance icma-dp2017-03, Henley Business School, University of Reading.
    18. Michael P. Clements, 2018. "Do Macroforecasters Herd?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(2-3), pages 265-292, March.
    19. Ulrich Fritsche & Artur Tarassow, 2017. "Vergleichende Evaluation der Konjunkturprognosen des Instituts für Makroökonomie und Konjunkturforschung an der Hans-Böckler-Stiftung für den Zeitraum 2005-2014," IMK Studies 54-2017, IMK at the Hans Boeckler Foundation, Macroeconomic Policy Institute.
    20. Timmermann Allan & Capistrán Carlos, 2006. "Disagreement and Biases in Inflation Expectations," Working Papers 2006-07, Banco de México.
    21. Michael P. Clements, 2022. "Forecaster Efficiency, Accuracy, and Disagreement: Evidence Using Individual‐Level Survey Data," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 54(2-3), pages 537-568, March.
    22. Demetrescu, Matei & Hacioglu Hoke, Sinem, 2018. "Predictive regressions under asymmetric loss: factor augmentation and model selection," Bank of England working papers 723, Bank of England.
    23. Chini, Emilio Zanetti, 2023. "Can we estimate macroforecasters’ mis-behavior?," Journal of Economic Dynamics and Control, Elsevier, vol. 149(C).
    24. Christian Pierdzioch & Monique B. Reid & Rangan Gupta, 2014. "Forecasting the South African Inflation Rate: On Asymmetric Loss and Forecast Rationality," Working Papers 201475, University of Pretoria, Department of Economics.
    25. Robert P. Lieli & Augusto Nieto-Barthaburu, 2023. "Forecasting with Feedback," Papers 2308.15062, arXiv.org, revised Aug 2024.
    26. Michael P. Clements, 2014. "US Inflation Expectations and Heterogeneous Loss Functions, 1968–2010," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(1), pages 1-14, January.
    27. Andrew J. Patton & Allan Timmermann, 2011. "Forecast Rationality Tests Based on Multi-Horizon Bounds," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 1-17, June.
    28. Fritsche, Ulrich & Pierdzioch, Christian & Rülke, Jan-Christoph & Stadtmann, Georg, 2015. "Forecasting the Brazilian real and the Mexican peso: Asymmetric loss, forecast rationality, and forecaster herding," International Journal of Forecasting, Elsevier, vol. 31(1), pages 130-139.
    29. Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    30. Behrens, Christoph & Pierdzioch, Christian & Risse, Marian, 2018. "Testing the optimality of inflation forecasts under flexible loss with random forests," Economic Modelling, Elsevier, vol. 72(C), pages 270-277.
    31. Foltas, Alexander, 2024. "Inefficient forecast narratives: A BERT-based approach," Working Papers 45, German Research Foundation's Priority Programme 1859 "Experience and Expectation. Historical Foundations of Economic Behaviour", Humboldt University Berlin.
    32. Pierdzioch, Christian & Rülke, Jan-Christoph & Stadtmann, Georg, 2012. "On the loss function of the Bank of Canada: A note," Economics Letters, Elsevier, vol. 115(2), pages 155-159.
    33. Patrick Schmidt & Matthias Katzfuss & Tilmann Gneiting, 2021. "Interpretation of point forecasts with unknown directive," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(6), pages 728-743, September.
    34. Bhattacharya, Debopam, 2013. "Evaluating treatment protocols using data combination," Journal of Econometrics, Elsevier, vol. 173(2), pages 160-174.
    35. Wang, Yiyao & Lee, Tae-Hwy, 2014. "Asymmetric loss in the Greenbook and the Survey of Professional Forecasters," International Journal of Forecasting, Elsevier, vol. 30(2), pages 235-245.
    36. Carlos Capistrán & Allan Timmermann, 2009. "Disagreement and Biases in Inflation Expectations," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(2‐3), pages 365-396, March.
    37. Tsuchiya, Yoichi, 2023. "Assessing the World Bank’s growth forecasts," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 64-84.
    38. Dovern, Jonas & Jannsen, Nils, 2017. "Systematic errors in growth expectations over the business cycle," International Journal of Forecasting, Elsevier, vol. 33(4), pages 760-769.
    39. Michael P. Clements, 2020. "Do Survey Joiners and Leavers Differ from Regular Participants? The US SPF GDP Growth and Inflation Forecasts," ICMA Centre Discussion Papers in Finance icma-dp2020-01, Henley Business School, University of Reading.
    40. Dimitriadis, Timo & Schnaitmann, Julie, 2021. "Forecast encompassing tests for the expected shortfall," International Journal of Forecasting, Elsevier, vol. 37(2), pages 604-621.
    41. Lieli, Robert P. & Stinchcombe, Maxwell B. & Grolmusz, Viola M., 2019. "Unrestricted and controlled identification of loss functions: Possibility and impossibility results," International Journal of Forecasting, Elsevier, vol. 35(3), pages 878-890.
    42. Gneiting, Tilmann, 2011. "Quantiles as optimal point forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 197-207, April.
    43. Philip Hans Franses & Michael McAleer & Rianne Legerstee, 2009. "Expert opinion versus expertise in forecasting," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 63(3), pages 334-346, August.
    44. Joerg Doepke & Ulrich Fritsche & Boriss Siliverstovs, 2009. "Evaluating German Business Cycle Forecasts Under an Asymmetric Loss Function," Macroeconomics and Finance Series 200905, University of Hamburg, Department of Socioeconomics.
    45. Christoph Behrens, 2019. "A Nonparametric Evaluation of the Optimality of German Export and Import Growth Forecasts under Flexible Loss," Economies, MDPI, vol. 7(3), pages 1-23, September.
    46. Timo Dimitriadis & Julie Schnaitmann, 2019. "Forecast Encompassing Tests for the Expected Shortfall," Papers 1908.04569, arXiv.org, revised Aug 2020.
    47. Tsuchiya, Yoichi, 2015. "Herding behavior and loss functions of exchange rate forecasters over interventions and financial crises," International Review of Economics & Finance, Elsevier, vol. 39(C), pages 266-276.
    48. Lima, Luiz Renato Regis de Oliveira & Issler, João Victor, 2007. "A panel data approach to economic forecasting: the bias-corrected average forecast," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 650, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    49. Efthymios G. Pavlidis & Ivan Paya & David A. Peel, 2018. "Using Market Expectations to Test for Speculative Bubbles in the Crude Oil Market," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(5), pages 833-856, August.
    50. Issler, João Victor & Rodrigues, Claudia & Burjack, Rafael, 2014. "Using common features to understand the behavior of metal-commodity prices and forecast them at different horizons," Journal of International Money and Finance, Elsevier, vol. 42(C), pages 310-335.
    51. Matei Demetrescu & Christoph Roling & Anna Titova, 2021. "Reevaluating the prudence of economic forecasts in the EU: The role of instrument persistence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(1), pages 151-161, January.
    52. G. Kontogeorgos & K. Lambrias, 2022. "Evaluating the Eurosystem/ECB staff macroeconomic projections: The first 20 years," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 213-229, March.
    53. Gaglianone, Wagner Piazza & Issler, João Victor, 2019. "Microfounded forecasting," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 813, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    54. Philip Hans Franses & Max Welz, 2022. "Evaluating heterogeneous forecasts for vintages of macroeconomic variables," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(4), pages 829-839, July.
    55. Angelo Mont’Alverne Duarte & Wagner Piazza Gaglianone & Osmani Teixeira de Carvalho Guillén & João Victor Issler, 2020. "Commodity Prices and Global Economic Activity: a derived-demand approach," Working Papers Series 539, Central Bank of Brazil, Research Department.
    56. Miah, Fazlul & Khalifa, Ahmed Ali & Hammoudeh, Shawkat, 2016. "Further evidence on the rationality of interest rate expectations: A comprehensive study of developed and emerging economies," Economic Modelling, Elsevier, vol. 54(C), pages 574-590.
    57. Higgins, Matthew L. & Mishra, Sagarika, 2012. "State dependent asymmetric loss and the consensus forecast of real U.S. GDP growth," Working Papers fe_2012_10, Deakin University, Department of Economics.
    58. Manzanares, Andrés & Garcí­a, Juan Angel, 2007. "Reporting biases and survey results: evidence from European professional forecasters," Working Paper Series 836, European Central Bank.
    59. Bruzda, Joanna, 2019. "Quantile smoothing in supply chain and logistics forecasting," International Journal of Production Economics, Elsevier, vol. 208(C), pages 122-139.
    60. Nakazono, Yoshiyuki, 2013. "Strategic behavior of Federal Open Market Committee board members: Evidence from members’ forecasts," Journal of Economic Behavior & Organization, Elsevier, vol. 93(C), pages 62-70.
    61. Henk Kranendonk & Debby Lanser & P.H. Franses, 2007. "On the optimality of expert-adjusted forecasts," CPB Discussion Paper 92, CPB Netherlands Bureau for Economic Policy Analysis.
    62. Wagner Piazza Gaglianone & João Victor Issler & Silvia Maria Matos, 2017. "Applying a microfounded-forecasting approach to predict Brazilian inflation," Empirical Economics, Springer, vol. 53(1), pages 137-163, August.
    63. Boskabadi, Elahe, 2022. "Economic policy uncertainty and forecast bias in the survey of professional forecasters," MPRA Paper 115081, University Library of Munich, Germany.
    64. Chia-Lin Chang & Philip Hans Franses & Michael McAleer, 2009. "How Accurate are Government Forecasts of Economic Fundamentals? The Case of Taiwan," CIRJE F-Series CIRJE-F-637, CIRJE, Faculty of Economics, University of Tokyo.
    65. Clements, Michael P., 2006. "Internal consistency of survey respondentsíforecasts: Evidence based on the Survey of Professional Forecasters," Economic Research Papers 269742, University of Warwick - Department of Economics.
    66. Bruzda, Joanna, 2020. "Demand forecasting under fill rate constraints—The case of re-order points," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1342-1361.
    67. Michael P Clements, 2014. "Assessing the Evidence of Macro- Forecaster Herding: Forecasts of Inflation and Output Growth," ICMA Centre Discussion Papers in Finance icma-dp2014-12, Henley Business School, University of Reading.
    68. Peter, Eckley, 2015. "(Non)rationality of consumer inflation perceptions," MPRA Paper 77082, University Library of Munich, Germany.
    69. Valentina Corradi & Sainan Jin & Norman R. Swanson, 2023. "Robust forecast superiority testing with an application to assessing pools of expert forecasters," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(4), pages 596-622, June.
    70. Wagner Piazza Gaglianone & Luiz Renato Lima, 2012. "Constructing Density Forecasts from Quantile Regressions," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(8), pages 1589-1607, December.
    71. Giovannelli, Alessandro & Pericoli, Filippo Maria, 2020. "Are GDP forecasts optimal? Evidence on European countries," International Journal of Forecasting, Elsevier, vol. 36(3), pages 963-973.
    72. Baghestani, Hamid & Khallaf, Ashraf, 2012. "Predictions of growth in U.S. corporate profits: Asymmetric vs. symmetric loss," International Review of Economics & Finance, Elsevier, vol. 22(1), pages 222-229.
    73. Sizova, Natalia, 2011. "Integrated variance forecasting: Model based vs. reduced form," Journal of Econometrics, Elsevier, vol. 162(2), pages 294-311, June.
    74. Sarah Miller & Patrick Sabourin, 2023. "What consistent responses on future inflation by consumers can reveal," Discussion Papers 2023-7, Bank of Canada.
    75. Maurizio Bovi & Roy Cerqueti, 2016. "Forecasting macroeconomic fundamentals in economic crises," Annals of Operations Research, Springer, vol. 247(2), pages 451-469, December.
    76. Veiga, Helena, 2015. "Model uncertainty and the forecast accuracy of ARMA models: A survey," DES - Working Papers. Statistics and Econometrics. WS ws1508, Universidad Carlos III de Madrid. Departamento de Estadística.
    77. Gneiting, Tilmann, 2011. "Quantiles as optimal point forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 197-207.
    78. Sung No & Michael Salassi, 2009. "A Sequential Rationality Test of USDA Preliminary Price Estimates for Selected Program Crops: Rice, Soybeans, and Wheat," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 15(4), pages 470-482, November.
    79. Elliott, Graham & Timmermann, Allan G, 2016. "Forecasting in Economics and Finance," University of California at San Diego, Economics Working Paper Series qt6z55v472, Department of Economics, UC San Diego.
    80. Lena Dräger & Jan-Oliver Menz & Ulrich Fritsche, 2011. "Perceived Inflation under Loss Aversion," Macroeconomics and Finance Series 201105, University of Hamburg, Department of Socioeconomics.
    81. Ulu, Yasemin, 2013. "Multivariate test for forecast rationality under asymmetric loss functions: Recent evidence from MMS survey of inflation–output forecasts," Economics Letters, Elsevier, vol. 119(2), pages 168-171.
    82. Kontogeorgos, Georgios & Lambrias, Kyriacos, 2019. "An analysis of the Eurosystem/ECB projections," Working Paper Series 2291, European Central Bank.
    83. Komunjer, Ivana, 2013. "Quantile Prediction," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 961-994, Elsevier.
    84. Frenkel, Michael & Rülke, Jan-Christoph & Zimmermann, Lilli, 2013. "Do private sector forecasters chase after IMF or OECD forecasts?," Journal of Macroeconomics, Elsevier, vol. 37(C), pages 217-229.
    85. Rülke, Jan-Christoph & Silgoner, Maria & Wörz, Julia, 2016. "Herding behavior of business cycle forecasters," International Journal of Forecasting, Elsevier, vol. 32(1), pages 23-33.
    86. Kexin Ding & Ani L. Katchova, 2024. "Testing the optimality of USDA's WASDE forecasts under unknown loss," Agribusiness, John Wiley & Sons, Ltd., vol. 40(4), pages 846-865, October.

  24. Hashem Pesaran & Davide Pettenuzzo & Allan Timmermann, 2007. "Learning, Structural Instability, and Present Value Calculations," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 253-288.
    See citations under working paper version above.
  25. Pesaran, M. Hashem & Timmermann, Allan, 2007. "Selection of estimation window in the presence of breaks," Journal of Econometrics, Elsevier, vol. 137(1), pages 134-161, March.

    Cited by:

    1. Wang, Yudong & Hao, Xianfeng, 2023. "Forecasting the real prices of crude oil: What is the role of parameter instability?," Energy Economics, Elsevier, vol. 117(C).
    2. Konstantakis, Konstantinos N. & Michaelides, Panayotis G. & Mariolis, Theodore, 2018. "A non-linear post-Keynesian Goodwin-type endogenous model of the cycle for the USA," MPRA Paper 90036, University Library of Munich, Germany.
    3. Brandon J. Bates & Mikkel Plagborg-Møller & James H. Stock & Mark W. Watson, "undated". "Consistent factor estimation in dynamic factor models with structural instability," Working Paper 84631, Harvard University OpenScholar.
    4. Barbara Rossi, 2011. "Advances in Forecasting Under Instability," Working Papers 11-20, Duke University, Department of Economics.
    5. Carlo Altavilla & Matteo Ciccarelli, 2011. "Monetary Policy Analysis in Real-Time. Vintage Combination from a Real-Time Dataset," CESifo Working Paper Series 3372, CESifo.
    6. Yin, Anwen, 2015. "Forecasting and model averaging with structural breaks," ISU General Staff Papers 201501010800005727, Iowa State University, Department of Economics.
    7. Delle Monache, Davide & Petrella, Ivan, 2017. "Adaptive models and heavy tails with an application to inflation forecasting," International Journal of Forecasting, Elsevier, vol. 33(2), pages 482-501.
    8. Chen, Guojin & Liu, Yanzhen & Zhang, Yu, 2020. "Can systemic risk measures predict economic shocks? Evidence from China," China Economic Review, Elsevier, vol. 64(C).
    9. Campa, Jose Manuel & Gavilan, Angel, 2011. "Current accounts in the euro area: An intertemporal approach," Journal of International Money and Finance, Elsevier, vol. 30(1), pages 205-228, February.
    10. Christophe Boucher & Bertrand Maillet, 2012. "Prévoir sans persistance," Post-Print hal-01386006, HAL.
    11. Massacci, Daniele & Kapetanios, George, 2024. "Forecasting in factor augmented regressions under structural change," International Journal of Forecasting, Elsevier, vol. 40(1), pages 62-76.
    12. Fabian Baetje & Lukas Menkhoff, 2016. "Equity Premium Prediction: Are Economic and Technical Indicators Unstable?," Discussion Papers of DIW Berlin 1552, DIW Berlin, German Institute for Economic Research.
    13. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2019. "How is Machine Learning Useful for Macroeconomic Forecasting?," CIRANO Working Papers 2019s-22, CIRANO.
    14. Ke Yang & Langnan Chen & Fengping Tian, 2015. "Realized Volatility Forecast of Stock Index Under Structural Breaks," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(1), pages 57-82, January.
    15. Emanuela Ciapanna & Marco Taboga, 2019. "Bayesian Analysis of Coefficient Instability in Dynamic Regressions," Econometrics, MDPI, vol. 7(3), pages 1-32, June.
    16. Tongxiang Liu & Yu Jin & Yuyang Gao, 2019. "A New Hybrid Approach for Short-Term Electric Load Forecasting Applying Support Vector Machine with Ensemble Empirical Mode Decomposition and Whale Optimization," Energies, MDPI, vol. 12(8), pages 1-20, April.
    17. Benavides, Guillermo & Capistrán, Carlos, 2012. "Forecasting exchange rate volatility: The superior performance of conditional combinations of time series and option implied forecasts," Journal of Empirical Finance, Elsevier, vol. 19(5), pages 627-639.
    18. Xiu Xu & Andrija Mihoci & Wolfgang Karl Hardle, 2020. "lCARE -- localizing Conditional AutoRegressive Expectiles," Papers 2009.13215, arXiv.org.
    19. Xiaojie Xu, 2017. "Short-run price forecast performance of individual and composite models for 496 corn cash markets," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(14), pages 2593-2620, October.
    20. Hansen, Bruce E., 2010. "Averaging estimators for autoregressions with a near unit root," Journal of Econometrics, Elsevier, vol. 158(1), pages 142-155, September.
    21. Tian, Jing & Anderson, Heather M., 2014. "Forecast combinations under structural break uncertainty," International Journal of Forecasting, Elsevier, vol. 30(1), pages 161-175.
    22. Torben G. Andersen & Rasmus T. Varneskov, 2021. "Testing for Parameter Instability and Structural Change in Persistent Predictive Regressions," NBER Working Papers 28570, National Bureau of Economic Research, Inc.
    23. Giovannelli, Alessandro & Massacci, Daniele & Soccorsi, Stefano, 2021. "Forecasting stock returns with large dimensional factor models," Journal of Empirical Finance, Elsevier, vol. 63(C), pages 252-269.
    24. Kose, M. Ayhan & Ha, Jongrim & Ohnsorge, Franziska, 2021. "One-Stop Source: A Global Database of Inflation," CEPR Discussion Papers 16327, C.E.P.R. Discussion Papers.
    25. Tae-Hwy Lee & Shahnaz Parsaeian & Aman Ullah, 2022. "Forecasting under Structural Breaks Using Improved Weighted Estimation," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202212, University of Kansas, Department of Economics.
    26. Do, Linh Phuong Catherine & Lin, Kuan-Heng & Molnár, Peter, 2016. "Electricity consumption modelling: A case of Germany," Economic Modelling, Elsevier, vol. 55(C), pages 92-101.
    27. Edda Claus, 2011. "Seven Leading Indexes of New Zealand Employment," The Economic Record, The Economic Society of Australia, vol. 87(276), pages 76-89, March.
    28. Marta Boczon, 2018. "Balanced Growth Approach to Forecasting Recessions," Working Paper 6487, Department of Economics, University of Pittsburgh.
    29. M. Hashem Pesaran & Til Schuermann & L. Vanessa Smith, 2008. "Forecasting economic and financial variables with global VARs," Staff Reports 317, Federal Reserve Bank of New York.
    30. Jing Tian & Heather M. Anderson, 2011. "Forecasting Under Strucural Break Uncertainty," Monash Econometrics and Business Statistics Working Papers 8/11, Monash University, Department of Econometrics and Business Statistics.
    31. David E. Rapach & Jack K. Strauss, 2008. "Structural breaks and GARCH models of exchange rate volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(1), pages 65-90.
    32. Erhard Reschenhofer, 2010. "Forecasting volatility: double averaging and weighted medians," International Journal of Computational Economics and Econometrics, Inderscience Enterprises Ltd, vol. 1(3/4), pages 317-326.
    33. João F. Caldeira & Guilherme V. Moura & Francisco J. Nogales & André A. P. Santos, 2017. "Combining Multivariate Volatility Forecasts: An Economic-Based Approach," Journal of Financial Econometrics, Oxford University Press, vol. 15(2), pages 247-285.
    34. Fantazzini, Dean & Shangina, Tamara, 2019. "The importance of being informed: forecasting market risk measures for the Russian RTS index future using online data and implied volatility over two decades," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 55, pages 5-31.
    35. Cho, Haeran & Korkas, Karolos K., 2022. "High-dimensional GARCH process segmentation with an application to Value-at-Risk," Econometrics and Statistics, Elsevier, vol. 23(C), pages 187-203.
    36. Luca Nocciola, "undated". "Finite sample forecast properties and window length under breaks in cointegrated systems," Discussion Papers 19/07, University of Nottingham, Granger Centre for Time Series Econometrics.
    37. Tom Boot & Andreas Pick, 2017. "A near optimal test for structural breaks when forecasting under square error loss," Tinbergen Institute Discussion Papers 17-039/III, Tinbergen Institute.
    38. Tahir, Suleiman & Adegbite, Emmanuel & Guney, Yilmaz, 2017. "An international examination of the economic effectiveness of banking recapitalization," International Business Review, Elsevier, vol. 26(3), pages 417-434.
    39. Jesus Lago & Grzegorz Marcjasz & Bart De Schutter & Rafa{l} Weron, 2020. "Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark," Papers 2008.08004, arXiv.org, revised Dec 2020.
    40. Karolina Konopczak & Aleksander Łożykowski, 2021. "Efekt fiskalny uszczelniania systemu podatkowego w Polsce: próba oszacowania w zakresie podatku CIT," Ekonomista, Polskie Towarzystwo Ekonomiczne, issue 1, pages 25-55.
    41. Salisu, Afees A. & Adekunle, Wasiu & Alimi, Wasiu A. & Emmanuel, Zachariah, 2019. "Predicting exchange rate with commodity prices: New evidence from Westerlund and Narayan (2015) estimator with structural breaks and asymmetries," Resources Policy, Elsevier, vol. 62(C), pages 33-56.
    42. John M. Maheu & Stephen Gordon, 2004. "Learning, Forecasting and Structural Breaks," Cahiers de recherche 0422, CIRPEE.
    43. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
    44. Juraj Hucek & Alexander Karsay & Marian Vavra, 2015. "Short-term Forecasting of Real GDP Using Monthly Data," Working and Discussion Papers OP 1/2015, Research Department, National Bank of Slovakia.
    45. Tim Bollerslev & Andrew J. Patton & Wenjing Wang, 2016. "Daily House Price Indices: Construction, Modeling, and Longer‐run Predictions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(6), pages 1005-1025, September.
    46. Wang, Cindy Shin-Huei & Bauwens, Luc & Hsiao, Cheng, 2013. "Forecasting a long memory process subject to structural breaks," Journal of Econometrics, Elsevier, vol. 177(2), pages 171-184.
    47. Sun, Yuying & Hong, Yongmiao & Wang, Shouyang & Zhang, Xinyu, 2023. "Penalized time-varying model averaging," Journal of Econometrics, Elsevier, vol. 235(2), pages 1355-1377.
    48. Artur Tarassow, 2017. "Forecasting growth of U.S. aggregate and household-sector M2 after 2000 using economic uncertainty measures," Macroeconomics and Finance Series 201702, University of Hamburg, Department of Socioeconomics.
    49. Charlotte Christiansen & Maik Schmeling & Andreas Schrimpf, 2012. "A Comprehensive Look at Financial Volatility Prediction by Economic Variables," BIS Working Papers 374, Bank for International Settlements.
    50. Jari Hännikäinen, 2016. "Selection of an Estimation Window in the Presence of Data Revisions and Recent Structural Breaks," Working Papers 1692, Tampere University, Faculty of Management and Business, Economics.
    51. Biqing Cai & Jiti Gao, 2017. "A simple nonlinear predictive model for stock returns," Monash Econometrics and Business Statistics Working Papers 18/17, Monash University, Department of Econometrics and Business Statistics.
    52. Katrin Wölfel & Christoph S. Weber, 2017. "Searching for the Fed’s reaction function," Empirical Economics, Springer, vol. 52(1), pages 191-227, February.
    53. Morales-Arias, Leonardo & Moura, Guilherme V., 2013. "Adaptive forecasting of exchange rates with panel data," International Journal of Forecasting, Elsevier, vol. 29(3), pages 493-509.
    54. Rodrigues, Bruno Dore & Stevenson, Maxwell J., 2013. "Takeover prediction using forecast combinations," International Journal of Forecasting, Elsevier, vol. 29(4), pages 628-641.
    55. Bartosz Uniejewski & Katarzyna Maciejowska, 2022. "LASSO Principal Component Averaging -- a fully automated approach for point forecast pooling," Papers 2207.04794, arXiv.org.
    56. Deryugina, Elena & Ponomarenko, Alexey & Rozhkova, Anna, 2020. "When are credit gap estimates reliable?," Economic Analysis and Policy, Elsevier, vol. 67(C), pages 221-238.
    57. Alptekin, Aynur & Broadstock, David C. & Chen, Xiaoqi & Wang, Dong, 2019. "Time-varying parameter energy demand functions: Benchmarking state-space methods against rolling-regressions," Energy Economics, Elsevier, vol. 82(C), pages 26-41.
    58. Xiao, Liye & Shao, Wei & Liang, Tulu & Wang, Chen, 2016. "A combined model based on multiple seasonal patterns and modified firefly algorithm for electrical load forecasting," Applied Energy, Elsevier, vol. 167(C), pages 135-153.
    59. Timmermann, Allan, 2018. "Forecasting Methods in Finance," CEPR Discussion Papers 12692, C.E.P.R. Discussion Papers.
    60. Wang, Yudong & Hao, Xianfeng, 2022. "Forecasting the real prices of crude oil: A robust weighted least squares approach," Energy Economics, Elsevier, vol. 116(C).
    61. Georgios Papadopoulos & Dionysios Chionis & Nikolaos P. Rachaniotis, 2018. "Macro-financial linkages during tranquil and crisis periods: evidence from stressed economies," Risk Management, Palgrave Macmillan, vol. 20(2), pages 142-166, May.
    62. Todd E. Clark & Michael W. McCracken, 2010. "Averaging forecasts from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 5-29.
    63. Schrimpf, Andreas & Wang, Qingwei, 2010. "A reappraisal of the leading indicator properties of the yield curve under structural instability," International Journal of Forecasting, Elsevier, vol. 26(4), pages 836-857, October.
    64. Heng, Jiani & Wang, Jianzhou & Xiao, Liye & Lu, Haiyan, 2017. "Research and application of a combined model based on frequent pattern growth algorithm and multi-objective optimization for solar radiation forecasting," Applied Energy, Elsevier, vol. 208(C), pages 845-866.
    65. Raffaella Giacomini & Barbara Rossi, 2014. "Forecasting in Nonstationary Environments: What Works and What Doesn't in Reduced-Form and Structural Models," Working Papers 819, Barcelona School of Economics.
    66. Liudas Giraitis & George Kapetanios & Simon Price, 2012. "Adaptive Forecasting in the Presence of Recent and Ongoing Structural Change," Working Papers 691, Queen Mary University of London, School of Economics and Finance.
    67. Pesaran, M.H. & Assenmacher-Wesche, K., 2007. "Assessing forecast uncertainties in a VECX* model for Switzerland: an exercise in forecast combination across models and observation windows," Cambridge Working Papers in Economics 0746, Faculty of Economics, University of Cambridge.
    68. Rodrigo A. de Marcos & Antonio Bello & Javier Reneses, 2019. "Short-Term Electricity Price Forecasting with a Composite Fundamental-Econometric Hybrid Methodology," Energies, MDPI, vol. 12(6), pages 1-15, March.
    69. M. Mogliani & T. Ferrière, 2016. "Rationality of announcements, business cycle asymmetry, and predictability of revisions. The case of French GDP," Working papers 600, Banque de France.
    70. Jana Eklund & George Kapetanios & Simon Price, 2011. "Forecasting in the presence of recent structural change," CAMA Working Papers 2011-23, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    71. Chatziantoniou, Ioannis & Degiannakis, Stavros & Filis, George, 2019. "Futures-based forecasts: How useful are they for oil price volatility forecasting?," Energy Economics, Elsevier, vol. 81(C), pages 639-649.
    72. Lazar, Emese & Wang, Shixuan & Xue, Xiaohan, 2023. "Loss function-based change point detection in risk measures," European Journal of Operational Research, Elsevier, vol. 310(1), pages 415-431.
    73. Cem Cakmakli & Dick van Dijk, 2010. "Getting the Most out of Macroeconomic Information for Predicting Stock Returns and Volatility," Tinbergen Institute Discussion Papers 10-115/4, Tinbergen Institute.
    74. John M Maheu & Thomas H McCurdy, 2007. "How useful are historical data for forecasting the long-run equity return distribution?," Working Papers tecipa-293, University of Toronto, Department of Economics.
    75. Dellas, Harris & Gibson, Heather D. & Hall, Stephen G. & Tavlas, George S., 2018. "The macroeconomic and fiscal implications of inflation forecast errors," Journal of Economic Dynamics and Control, Elsevier, vol. 93(C), pages 203-217.
    76. Joscha Beckmann & Rainer Schüssler, 2014. "Forecasting Exchange Rates under Model and Parameter Uncertainty," CQE Working Papers 3214, Center for Quantitative Economics (CQE), University of Muenster.
    77. Wei, Xiaoqiao & Yang, Yuhong, 2012. "Robust forecast combinations," Journal of Econometrics, Elsevier, vol. 166(2), pages 224-236.
    78. Noureldin Diaa, 2018. "Much Ado about the Egyptian Pound: Exchange Rate Misalignment and the Path Towards Equilibrium," Review of Middle East Economics and Finance, De Gruyter, vol. 14(2), pages 1-19, August.
    79. Anne Sofie Jore & James Mitchell & Shaun Vahey, 2008. "Combining Forecast Densities from VARs with Uncertain Instabilities," Reserve Bank of New Zealand Discussion Paper Series DP2008/18, Reserve Bank of New Zealand.
    80. Mwasi Paza Mboya & Philipp Sibbertsen, 2023. "Optimal forecasts in the presence of discrete structural breaks under long memory," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1889-1908, November.
    81. Dai, Hongyan & Xiao, Qin & Chen, Songlin & Zhou, Weihua, 2023. "Data-driven demand forecast for O2O operations: An adaptive hierarchical incremental approach," International Journal of Production Economics, Elsevier, vol. 259(C).
    82. Jeongwoo Kim, 2019. "Optimally adjusted last cluster for prediction based on balancing the bias and variance by bootstrapping," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-31, November.
    83. Jana Eklund & George Kapetanios & Simon Price, 2013. "Robust Forecast Methods and Monitoring during Structural Change," Manchester School, University of Manchester, vol. 81, pages 3-27, October.
    84. George Kapetanios & Massimiliano Marcellino & Fabrizio Venditti, 2017. "Large time-varying parameter VARs: a non-parametric approach," Temi di discussione (Economic working papers) 1122, Bank of Italy, Economic Research and International Relations Area.
    85. Aiolfi Marco & Capistrán Carlos & Timmermann Allan, 2010. "Forecast Combinations," Working Papers 2010-04, Banco de México.
    86. Groen, Jan J.J. & Kapetanios, George & Price, Simon, 2009. "A real time evaluation of Bank of England forecasts of inflation and growth," International Journal of Forecasting, Elsevier, vol. 25(1), pages 74-80.
    87. Davide De Gaetano, 2016. "Forecast Combinations For Realized Volatility In Presence Of Structural Breaks," Departmental Working Papers of Economics - University 'Roma Tre' 0208, Department of Economics - University Roma Tre.
    88. Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2010. "Out-of-sample equity premium prediction: economic fundamentals vs. moving-average rules," Working Papers 2010-008, Federal Reserve Bank of St. Louis.
    89. Stephen G. Hall & George S. Tavlas & Yongli Wang, 2023. "Forecasting inflation: the use of dynamic factor analysis and nonlinear combinations," Working Papers 314, Bank of Greece.
    90. Dean Fantazzini & Stephan Zimin, 2020. "A multivariate approach for the simultaneous modelling of market risk and credit risk for cryptocurrencies," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 47(1), pages 19-69, March.
    91. Boonsoo Koo & Myung Hwan Seo, 2013. "Structural-break models under mis-specification: implications for forecasting," Monash Econometrics and Business Statistics Working Papers 11/13, Monash University, Department of Econometrics and Business Statistics.
    92. Markiewicz, Agnieszka & Pick, Andreas, 2014. "Adaptive learning and survey data," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PB), pages 685-707.
    93. Atsushi Inoue & Barbara Rossi, 2011. "Out-of-sample forecast tests robust to the choice of window size," Working Papers 11-31, Federal Reserve Bank of Philadelphia.
    94. Li Liu & Zhiyuan Pan & Yudong Wang, 2022. "Shrinking return forecasts," The Financial Review, Eastern Finance Association, vol. 57(3), pages 641-661, August.
    95. Davide Delle Monache & Ivan Petrella, 2014. "Adaptive Models and Heavy Tails," Working Papers 720, Queen Mary University of London, School of Economics and Finance.
    96. Andrew B. Martinez & Jennifer L. Castle & David F. Hendry, 2021. "Smooth Robust Multi-Horizon Forecasts," Economics Papers 2021-W01, Economics Group, Nuffield College, University of Oxford.
    97. Fotios Petropoulos & Evangelos Spiliotis, 2021. "The Wisdom of the Data: Getting the Most Out of Univariate Time Series Forecasting," Forecasting, MDPI, vol. 3(3), pages 1-20, June.
    98. Bauwens, Luc & Korobilis, Dimitris & Koop, Gary & Rombouts, Jeroen V.K., 2011. "A Comparison Of Forecasting Procedures For Macroeconomic Series: The Contribution Of Structural Break Models," SIRE Discussion Papers 2011-25, Scottish Institute for Research in Economics (SIRE).
    99. Terence Mills & Kerry Patterson, 2013. "Modelling the Trend: The Historical Origins of Some Modern Methods and Ideas," Economics Discussion Papers em-dp2013-03, Department of Economics, University of Reading.
    100. Raffaella Giacomini & Barbara Rossi, 2013. "Forecasting in macroeconomics," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 17, pages 381-408, Edward Elgar Publishing.
    101. Yusui Tang & Feng Ma & Yaojie Zhang & Yu Wei, 2022. "Forecasting the oil price realized volatility: A multivariate heterogeneous autoregressive model," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4770-4783, October.
    102. Jennifer Castle & David Hendry, 2012. "Forecasting by factors, by variables, or both?," Economics Series Working Papers 600, University of Oxford, Department of Economics.
    103. Cooper, Michael & Gulen, Huseyin & Ion, Mihai, 2024. "The use of asset growth in empirical asset pricing models," Journal of Financial Economics, Elsevier, vol. 151(C).
    104. Bańbura, Marta & Bobeica, Elena, 2023. "Does the Phillips curve help to forecast euro area inflation?," International Journal of Forecasting, Elsevier, vol. 39(1), pages 364-390.
    105. Davide De Gaetano, 2018. "Forecast Combinations in the Presence of Structural Breaks: Evidence from U.S. Equity Markets," Mathematics, MDPI, vol. 6(3), pages 1-19, March.
    106. Didier Nibbering & Richard Paap, 2024. "Forecasting carbon emissions using asymmetric grouping," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 2228-2256, September.
    107. Yongmiao Hong & Tae-Hwy Lee & Yuying Sun & Shouyang Wang & Xinyu Zhang, 2017. "Time-varying Model Averaging," Working Papers 202001, University of California at Riverside, Department of Economics.
    108. Grzegorz Marcjasz & Tomasz Serafin & Rafal Weron, 2018. "Selection of calibration windows for day-ahead electricity price forecasting," HSC Research Reports HSC/18/06, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    109. Caldeira, João F. & Moura, Guilherme V. & Santos, André A.P., 2016. "Predicting the yield curve using forecast combinations," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 79-98.
    110. M. Hashem Pesaran & Andreas Pick, 2008. "Forecasting Random Walks Under Drift Instability," CESifo Working Paper Series 2293, CESifo.
    111. Kim, Hyun Hak & Swanson, Norman R., 2014. "Forecasting financial and macroeconomic variables using data reduction methods: New empirical evidence," Journal of Econometrics, Elsevier, vol. 178(P2), pages 352-367.
    112. Fantazziini, Dean, 2014. "Nowcasting and Forecasting the Monthly Food Stamps Data in the US using Online Search Data," MPRA Paper 59696, University Library of Munich, Germany.
    113. Chevillon, Guillaume, 2016. "Multistep forecasting in the presence of location shifts," International Journal of Forecasting, Elsevier, vol. 32(1), pages 121-137.
    114. Hyein Shim & Hyeyoen Kim & Sunghyun Kim & Doojin Ryu, 2016. "Testing the relative purchasing power parity hypothesis: the case of Korea," Applied Economics, Taylor & Francis Journals, vol. 48(25), pages 2383-2395, May.
    115. Martin Baumgärtner & Jens Klose, 2019. "Forecasting exchange rates with commodity prices—a global country analysis," The World Economy, Wiley Blackwell, vol. 42(9), pages 2546-2565, September.
    116. João F. Caldeira & Rangan Gupta & Hudson S. Torrent, 2020. "Forecasting U.S. Aggregate Stock Market Excess Return: Do Functional Data Analysis Add Economic Value?," Mathematics, MDPI, vol. 8(11), pages 1-16, November.
    117. Aristidou, Chrystalleni & Lee, Kevin & Shields, Kalvinder, 2022. "Fundamentals, regimes and exchange rate forecasts: Insights from a meta exchange rate model," Journal of International Money and Finance, Elsevier, vol. 123(C).
    118. Pesaran, M. Hashem & Pick, Andreas & Pranovich, Mikhail, 2013. "Optimal forecasts in the presence of structural breaks," Journal of Econometrics, Elsevier, vol. 177(2), pages 134-152.
    119. Afees A. Salisu & Wasiu Adekunle & Zachariah Emmanuel & Wasiu A. Alimi, 2018. "Predicting exchange rate with commodity prices: The role of structural breaks and asymmetries," Working Papers 055, Centre for Econometric and Allied Research, University of Ibadan.
    120. Nicolau, Mihaela & Palomba, Giulio, 2015. "Dynamic relationships between spot and futures prices. The case of energy and gold commodities," Resources Policy, Elsevier, vol. 45(C), pages 130-143.
    121. Rossen, Anja, 2011. "On the predictive content of nonlinear transformations of lagged autoregression residuals and time series observations," HWWI Research Papers 113, Hamburg Institute of International Economics (HWWI).
    122. Hendry, David F. & Mizon, Grayham E., 2014. "Unpredictability in economic analysis, econometric modeling and forecasting," Journal of Econometrics, Elsevier, vol. 182(1), pages 186-195.
    123. Pablo Guerróon‐Quintana & Molin Zhong, 2023. "Macroeconomic forecasting in times of crises," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(3), pages 295-320, April.
    124. Rossi, Barbara & Inoue, Atsushi & Jin, Lu, 2014. "Window Selection for Out-of-Sample Forecasting with Time-Varying Parameters," CEPR Discussion Papers 10168, C.E.P.R. Discussion Papers.
    125. Castle, Jennifer L. & Clements, Michael P. & Hendry, David F., 2013. "Forecasting by factors, by variables, by both or neither?," Journal of Econometrics, Elsevier, vol. 177(2), pages 305-319.
    126. Konstantakis, Konstantinos N. & Michaelides, Panayotis G. & Mariolis, Theodore, 2014. "An endogenous Goodwin-Keynes business cycle model: Evidence for Germany (1991-2007)," MPRA Paper 90035, University Library of Munich, Germany.
    127. Funk, Christoph, 2018. "Forecasting the real price of oil - Time-variation and forecast combination," Energy Economics, Elsevier, vol. 76(C), pages 288-302.
    128. Zhu, Yinchu & Timmermann, Allan, 2022. "Conditional rotation between forecasting models," Journal of Econometrics, Elsevier, vol. 231(2), pages 329-347.
    129. Davide De Gaetano, 2017. "Forecasting With Garch Models Under Structural Breaks: An Approach Based On Combinations Across Estimation Windows," Departmental Working Papers of Economics - University 'Roma Tre' 0219, Department of Economics - University Roma Tre.
    130. Nikolaos Giannellis & Stephen G. Hall & Georgios P. Kouretas & George S. Tavlas, 2024. "Forecasting in turbulent times," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(4), pages 819-826, July.
    131. Galvão, Ana Beatriz & Garratt, Anthony & Mitchell, James, 2021. "Does judgment improve macroeconomic density forecasts?," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1247-1260.
    132. Smith, Ron, 2009. "EMU and the Lucas Critique," Economic Modelling, Elsevier, vol. 26(4), pages 744-750, July.
    133. Sylvia Kaufmann, 2010. "Dating and forecasting turning points by Bayesian clustering with dynamic structure: a suggestion with an application to Austrian data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 309-344.
    134. Beckmann, Joscha & Schüssler, Rainer, 2016. "Forecasting exchange rates under parameter and model uncertainty," Journal of International Money and Finance, Elsevier, vol. 60(C), pages 267-288.
    135. Gaies, Brahim & Nakhli, Mohamed Sahbi & Sahut, Jean-Michel & Schweizer, Denis, 2023. "Interactions between investors’ fear and greed sentiment and Bitcoin prices," The North American Journal of Economics and Finance, Elsevier, vol. 67(C).
    136. Timmermann, Allan & Zhu, Yinchu, 2021. "Conditional Rotation Between Forecasting Models," CEPR Discussion Papers 15917, C.E.P.R. Discussion Papers.
    137. Guoshi Tong, 2017. "Market Timing under Limited Information: An Empirical Investigation in US Treasury Market," Annals of Economics and Finance, Society for AEF, vol. 18(2), pages 291-322, November.
    138. Dorsey, Robert E. & Hu, Haixin & Mayer, Walter J. & Wang, Hui-chen, 2010. "Hedonic versus repeat-sales housing price indexes for measuring the recent boom-bust cycle," Journal of Housing Economics, Elsevier, vol. 19(2), pages 75-93, June.
    139. Timmermann, Allan, 2008. "Elusive return predictability," International Journal of Forecasting, Elsevier, vol. 24(1), pages 1-18.
    140. Castle, Jennifer L. & Doornik, Jurgen A. & Hendry, David F., 2024. "Improving models and forecasts after equilibrium-mean shifts," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1085-1100.
    141. Pesaran, M.H. & Pick, A. & Pranovich, M., 2011. "Optimal Forecasts in the Presence of Structural Breaks (Updated 14 November 2011)," Cambridge Working Papers in Economics 1163, Faculty of Economics, University of Cambridge.
    142. Inoue, Atsushi & Jin, Lu & Rossi, Barbara, 2017. "Rolling window selection for out-of-sample forecasting with time-varying parameters," Journal of Econometrics, Elsevier, vol. 196(1), pages 55-67.
    143. Hirano, Keisuke & Wright, Jonathan H., 2022. "Analyzing cross-validation for forecasting with structural instability," Journal of Econometrics, Elsevier, vol. 226(1), pages 139-154.
    144. Andrea Monticini & Francesco Ravazzolo, 2014. "Forecasting the intraday market price of money," DISCE - Working Papers del Dipartimento di Economia e Finanza def010, Università Cattolica del Sacro Cuore, Dipartimenti e Istituti di Scienze Economiche (DISCE).
    145. Wang, Yudong & Hao, Xianfeng & Wu, Chongfeng, 2021. "Forecasting stock returns: A time-dependent weighted least squares approach," Journal of Financial Markets, Elsevier, vol. 53(C).
    146. Zhang, Xiaomeng & Zhang, Xinyu, 2023. "Optimal model averaging based on forward-validation," Journal of Econometrics, Elsevier, vol. 237(2).
    147. Dandan Liu & Rui Li & Zijun Wang, 2011. "Testing for structural breaks in panel varying coefficient models: with an application to OECD health expenditure," Empirical Economics, Springer, vol. 40(1), pages 95-118, February.
    148. Mönch, Emanuel & Stein, Tobias, 2021. "Equity premium predictability over the business cycle," Discussion Papers 25/2021, Deutsche Bundesbank.
    149. James D. Hamilton, 2016. "Macroeconomic Regimes and Regime Shifts," NBER Working Papers 21863, National Bureau of Economic Research, Inc.
    150. Mawuli Segnon & Stelios Bekiros, 2020. "Forecasting volatility in bitcoin market," Annals of Finance, Springer, vol. 16(3), pages 435-462, September.
    151. Alastair R. Hall & Denise R. Osborn & Nikolaos Sakkas, 2013. "Inference on Structural Breaks using Information Criteria," Manchester School, University of Manchester, vol. 81, pages 54-81, October.
    152. Lyócsa, Štefan & Molnár, Peter, 2018. "Exploiting dependence: Day-ahead volatility forecasting for crude oil and natural gas exchange-traded funds," Energy, Elsevier, vol. 155(C), pages 462-473.
    153. Mammen, Enno & Martínez-Miranda, María Dolores & Nielsen, Jens Perch & Vogt, Michael, 2021. "Calendar effect and in-sample forecasting," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 31-52.
    154. Çakmaklı, Cem & van Dijk, Dick, 2016. "Getting the most out of macroeconomic information for predicting excess stock returns," International Journal of Forecasting, Elsevier, vol. 32(3), pages 650-668.
    155. Gaoxiu Qiao & Yangli Cao & Feng Ma & Weiping Li, 2023. "Liquidity and realized covariance forecasting: a hybrid method with model uncertainty," Empirical Economics, Springer, vol. 64(1), pages 437-463, January.
    156. Glennon, Dennis & Kiefer, Hua & Mayock, Tom, 2018. "Measurement error in residential property valuation: An application of forecast combination," Journal of Housing Economics, Elsevier, vol. 41(C), pages 1-29.
    157. Theodosiou, Marina, 2011. "Forecasting monthly and quarterly time series using STL decomposition," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1178-1195, October.
    158. Tae-Hwy Lee & Shahnaz Parsaeian & Aman Ullah, 2022. "Optimal Forecast under Structural Breaks," Working Papers 202208, University of California at Riverside, Department of Economics.
    159. Baltagi, Badi H., 2013. "Panel Data Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 995-1024, Elsevier.
    160. Huang, Tao & Fildes, Robert & Soopramanien, Didier, 2019. "Forecasting retailer product sales in the presence of structural change," European Journal of Operational Research, Elsevier, vol. 279(2), pages 459-470.
    161. Michael P Clements & Ana Beatriz Galvao, 2017. "Data Revisions and Real-time Probabilistic Forecasting of Macroeconomic Variables," ICMA Centre Discussion Papers in Finance icma-dp2017-01, Henley Business School, University of Reading.
    162. Zongwu Cai & Gunawan, 2023. "A Combination Forecast for Nonparametric Models with Structural Breaks," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202310, University of Kansas, Department of Economics, revised Sep 2023.
    163. Yoontae Jeon & Thomas H. McCurdy, 2017. "Time-Varying Window Length for Correlation Forecasts," Econometrics, MDPI, vol. 5(4), pages 1-29, December.
    164. Stephen G. Hall & George S. Tavlas & Yongli Wang & Deborah Gefang, 2024. "Inflation forecasting with rolling windows: An appraisal," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(4), pages 827-851, July.
    165. Mayr, Johannes, 2010. "Forecasting Macroeconomic Aggregates," Munich Dissertations in Economics 11140, University of Munich, Department of Economics.
    166. Anwen Yin, 2024. "Predictive model averaging with parameter instability and heteroskedasticity," Bulletin of Economic Research, Wiley Blackwell, vol. 76(2), pages 418-442, April.
    167. Katarzyna Hubicka & Grzegorz Marcjasz & Rafal Weron, 2018. "A note on averaging day-ahead electricity price forecasts across calibration windows," HSC Research Reports HSC/18/03, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    168. Panos K. Pouliasis & Ilias D. Visvikis & Nikos C. Papapostolou & Alexander A. Kryukov, 2020. "A novel risk management framework for natural gas markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(3), pages 430-459, March.
    169. George Bagdatoglou & Alexandros Kontonikas & Mark E. Wohar, 2016. "Forecasting Us Inflation Using Dynamic General-To-Specific Model Selection," Bulletin of Economic Research, Wiley Blackwell, vol. 68(2), pages 151-167, April.
    170. Mihaela NICOLAU & Giulio PALOMBA & Ilaria TRAINI, 2013. "Are Futures Prices Influenced by Spot;Prices or Vice-versa? An Analysis of Crude;Oil, Natural Gas and Gold Markets," Working Papers 394, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    171. Mikihito Nishi, 2024. "Estimating Time-Varying Parameters of Various Smoothness in Linear Models via Kernel Regression," Papers 2406.14046, arXiv.org, revised Oct 2024.
    172. Oh, Juhyun & Suh, Dong Hee, 2024. "Exploring the import allocation of wood pellets: Insights from price and policy influences under the renewable portfolio standard," Forest Policy and Economics, Elsevier, vol. 161(C).
    173. Marta Boczoń & Jean-François Richard, 2020. "Balanced Growth Approach to Tracking Recessions," Econometrics, MDPI, vol. 8(2), pages 1-35, April.
    174. Chrystalleni Aristidou & Kevin Lee & Kalvinder Shields, 2015. "Real-Time Data should be used in Forecasting Output Growth and Recessionary Events in the US," Discussion Papers 2015/13, University of Nottingham, Centre for Finance, Credit and Macroeconomics (CFCM).
    175. Pilar Gargallo & Jesus Miguel & Pilar Olave & Manuel Salvador, 2010. "Evaluating value at risk using selection criteria of the model and the information set," Applied Financial Economics, Taylor & Francis Journals, vol. 20(18), pages 1415-1428.
    176. Xu, Xiu & Mihoci, Andrija & Härdle, Wolfgang Karl, 2018. "lCARE - localizing conditional autoregressive expectiles," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 198-220.
    177. Yousuf, Kashif & Ng, Serena, 2021. "Boosting high dimensional predictive regressions with time varying parameters," Journal of Econometrics, Elsevier, vol. 224(1), pages 60-87.
    178. Yu Jeffrey Hu & Jeroen Rombouts & Ines Wilms, 2023. "Fast Forecasting of Unstable Data Streams for On-Demand Service Platforms," Papers 2303.01887, arXiv.org, revised May 2024.
    179. Christophe Boucher & Bertrand Maillet, 2012. "Prévoir sans persistance," Documents de travail du Centre d'Economie de la Sorbonne 12001, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    180. Salisu, Afees A. & Swaray, Raymond & Oloko, Tirimisiyu F., 2019. "Improving the predictability of the oil–US stock nexus: The role of macroeconomic variables," Economic Modelling, Elsevier, vol. 76(C), pages 153-171.
    181. Jakob Krause, 2019. "A convergence-speed-dependent data quantity definition and its effect on risk estimation," Journal of Asset Management, Palgrave Macmillan, vol. 20(6), pages 469-475, October.
    182. El-Shazly, Alaa, 2016. "Structural breaks and monetary dynamics: A time series analysis," Economic Modelling, Elsevier, vol. 53(C), pages 133-143.
    183. Yin, Anwen, 2019. "Out-of-sample equity premium prediction in the presence of structural breaks," International Review of Financial Analysis, Elsevier, vol. 65(C).
    184. Xiao, Liye & Wang, Jianzhou & Hou, Ru & Wu, Jie, 2015. "A combined model based on data pre-analysis and weight coefficients optimization for electrical load forecasting," Energy, Elsevier, vol. 82(C), pages 524-549.
    185. Francesco Bianchi & Sydney C. Ludvigson & Sai Ma, 2022. "Belief Distortions and Macroeconomic Fluctuations," American Economic Review, American Economic Association, vol. 112(7), pages 2269-2315, July.
    186. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    187. Atak, Alev & Kapetanios, George, 2013. "A factor approach to realized volatility forecasting in the presence of finite jumps and cross-sectional correlation in pricing errors," Economics Letters, Elsevier, vol. 120(2), pages 224-228.
    188. Pauwels, Laurent, 2019. "Predicting China’s Monetary Policy with Forecast Combinations," Working Papers BAWP-2019-07, University of Sydney Business School, Discipline of Business Analytics.
    189. Dendramis, Y. & Tzavalis, E. & Adraktas, G., 2018. "Credit risk modelling under recessionary and financially distressed conditions," Journal of Banking & Finance, Elsevier, vol. 91(C), pages 160-175.
    190. Yuqing Feng & Yaojie Zhang & Yudong Wang, 2024. "Out‐of‐sample volatility prediction: Rolling window, expanding window, or both?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(3), pages 567-582, April.
    191. Mehmet Sahiner, 2022. "Forecasting volatility in Asian financial markets: evidence from recursive and rolling window methods," SN Business & Economics, Springer, vol. 2(10), pages 1-74, October.
    192. Clements, Michael P., 2016. "Real-time factor model forecasting and the effects of instability," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 661-675.
    193. Chen, Guojin & Liu, Yanzhen & Zhang, Yu, 2021. "Systemic risk measures and distribution forecasting of macroeconomic shocks," International Review of Economics & Finance, Elsevier, vol. 75(C), pages 178-196.
    194. Guido Bulligan & Roberto Golinelli & Giuseppe Parigi, 2010. "Forecasting monthly industrial production in real-time: from single equations to factor-based models," Empirical Economics, Springer, vol. 39(2), pages 303-336, October.
    195. Stefano Cassella & Huseyin Gulen, 2018. "Extrapolation Bias and the Predictability of Stock Returns by Price-Scaled Variables," The Review of Financial Studies, Society for Financial Studies, vol. 31(11), pages 4345-4397.
    196. Wu, Chuanzhen, 2021. "Window effect with Markov-switching GARCH model in cryptocurrency market," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    197. Gantungalag Altansukh & Denise R. Osborn, 2022. "Using structural break inference for forecasting time series," Empirical Economics, Springer, vol. 63(1), pages 1-41, July.
    198. Uwe Hassler & Marc-Oliver Pohle, 2019. "Forecasting under Long Memory and Nonstationarity," Papers 1910.08202, arXiv.org.
    199. Richard A. Ashley & Kwok Ping Tsang, 2014. "Credible Granger-Causality Inference with Modest Sample Lengths: A Cross-Sample Validation Approach," Econometrics, MDPI, vol. 2(1), pages 1-20, March.
    200. Xiaojie Xu, 2020. "Corn Cash Price Forecasting," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(4), pages 1297-1320, August.
    201. Ke Yang & Langnan Chen, 2014. "Realized Volatility Forecast: Structural Breaks, Long Memory, Asymmetry, and Day-of-the-Week Effect," International Review of Finance, International Review of Finance Ltd., vol. 14(3), pages 345-392, September.
    202. Ahumada, Hildegart A. & Garegnani, Maria Lorena, 2012. "Forecasting a monetary aggregate under instability: Argentina after 2001," International Journal of Forecasting, Elsevier, vol. 28(2), pages 412-427.
    203. Andre Jungmittag, 2016. "Combination of Forecasts across Estimation Windows: An Application to Air Travel Demand," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(4), pages 373-380, July.
    204. Ulrich Gunter & Irem Önder & Egon Smeral, 2020. "Are Combined Tourism Forecasts Better at Minimizing Forecasting Errors?," Forecasting, MDPI, vol. 2(3), pages 1-19, June.
    205. Anthony Garratt & Ivan Petrella, 2022. "Commodity prices and inflation risk," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(2), pages 392-414, March.
    206. Elliott, Graham & Timmermann, Allan G, 2016. "Forecasting in Economics and Finance," University of California at San Diego, Economics Working Paper Series qt6z55v472, Department of Economics, UC San Diego.
    207. Boot, Tom & Pick, Andreas, 2020. "Does modeling a structural break improve forecast accuracy?," Journal of Econometrics, Elsevier, vol. 215(1), pages 35-59.
    208. Allan Timmermann, 2018. "Forecasting Methods in Finance," Annual Review of Financial Economics, Annual Reviews, vol. 10(1), pages 449-479, November.
    209. Wang, Zijun, 2009. "Stock returns and the short-run predictability of health expenditure: Some empirical evidence," International Journal of Forecasting, Elsevier, vol. 25(3), pages 587-601, July.
    210. Enrique Moral-Benito, 2015. "Model Averaging In Economics: An Overview," Journal of Economic Surveys, Wiley Blackwell, vol. 29(1), pages 46-75, February.
    211. Hoornweg, V., 2013. "Some Tools for Robustifying Econometric Analyses," Econometric Institute Research Papers 50163, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    212. Karolina Konopczak, 2020. "Kwantyfikacja zmian luki VAT: podejście ekonometryczne," Gospodarka Narodowa. The Polish Journal of Economics, Warsaw School of Economics, issue 2, pages 25-42.
    213. Aue, Alexander & Horváth, Lajos & Reimherr, Matthew L., 2009. "Delay times of sequential procedures for multiple time series regression models," Journal of Econometrics, Elsevier, vol. 149(2), pages 174-190, April.
    214. Tarassow, Artur, 2019. "Forecasting U.S. money growth using economic uncertainty measures and regularisation techniques," International Journal of Forecasting, Elsevier, vol. 35(2), pages 443-457.
    215. Madadkhani, Shiva & Ikonnikova, Svetlana, 2024. "Toward high-resolution projection of electricity prices: A machine learning approach to quantifying the effects of high fuel and CO2 prices," Energy Economics, Elsevier, vol. 129(C).
    216. Hongwei Zhang & Qiang He & Ben Jacobsen & Fuwei Jiang, 2020. "Forecasting stock returns with model uncertainty and parameter instability," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(5), pages 629-644, August.
    217. Vasyl Golosnoy, 2007. "Sequential monitoring of minimum variance portfolio," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 91(1), pages 39-55, March.
    218. Davide De Gaetano, 2018. "Forecast Combinations for Structural Breaks in Volatility: Evidence from BRICS Countries," JRFM, MDPI, vol. 11(4), pages 1-13, October.
    219. Biqing Cai & Jiti Gao, 2013. "Hermite Series Estimation in Nonlinear Cointegrating Models," Monash Econometrics and Business Statistics Working Papers 17/13, Monash University, Department of Econometrics and Business Statistics.
    220. Jing Tian & Qing Zhou, 2018. "Improving equity premium forecasts by incorporating structural break uncertainty," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 58(S1), pages 619-656, November.
    221. Bennett, Donyetta & Mekelburg, Erik & Strauss, Jack & Williams, T.H., 2024. "Unlocking the black box of sentiment and cryptocurrency: What, which, why, when and how?," Global Finance Journal, Elsevier, vol. 60(C).
    222. Salisu, Afees A. & Ndako, Umar B. & Oloko, Tirimisiyu F., 2019. "Assessing the inflation hedging of gold and palladium in OECD countries," Resources Policy, Elsevier, vol. 62(C), pages 357-377.
    223. Biolsi, Christopher, 2021. "Labor productivity forecasts based on a Beveridge–Nelson filter: Is there statistical evidence for a slowdown?," Journal of Macroeconomics, Elsevier, vol. 69(C).
    224. Hasanov, Akram Shavkatovich & Poon, Wai Ching & Al-Freedi, Ajab & Heng, Zin Yau, 2018. "Forecasting volatility in the biofuel feedstock markets in the presence of structural breaks: A comparison of alternative distribution functions," Energy Economics, Elsevier, vol. 70(C), pages 307-333.
    225. Daniel Wochner, 2020. "Dynamic Factor Trees and Forests – A Theory-led Machine Learning Framework for Non-Linear and State-Dependent Short-Term U.S. GDP Growth Predictions," KOF Working papers 20-472, KOF Swiss Economic Institute, ETH Zurich.
    226. Nonejad, Nima, 2022. "Equity premium prediction using the price of crude oil: Uncovering the nonlinear predictive impact," Energy Economics, Elsevier, vol. 115(C).
    227. Zhang, Xingmin & Zhang, Shuai, 2021. "Optimal time-varying tail risk network with a rolling window approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    228. Heather M Anderson & Farshid Vahid, 2010. "VARs, Cointegration and Common Cycle Restrictions," Monash Econometrics and Business Statistics Working Papers 14/10, Monash University, Department of Econometrics and Business Statistics.
    229. Rodrigo A. de Marcos & Derek W. Bunn & Antonio Bello & Javier Reneses, 2020. "Short-Term Electricity Price Forecasting with Recurrent Regimes and Structural Breaks," Energies, MDPI, vol. 13(20), pages 1-14, October.
    230. Emilio Blanco & Fiorella Dogliolo & Lorena Garegnani, 2022. "Nowcasting during the Pandemic: Lessons from Argentina," BCRA Working Paper Series 202299, Central Bank of Argentina, Economic Research Department.
    231. Mawuli Segnon & Stelios Bekiros, 2019. "Forecasting Volatility in Cryptocurrency Markets," CQE Working Papers 7919, Center for Quantitative Economics (CQE), University of Muenster.
    232. Wei, Jie & Zhang, Yonghui, 2020. "A time-varying diffusion index forecasting model," Economics Letters, Elsevier, vol. 193(C).
    233. Christophe Boucher & Bertrand Maillet, 2012. "Prévoir sans persistance," Post-Print halshs-00662771, HAL.
    234. William J. Procasky & Anwen Yin, 2022. "Forecasting high‐yield equity and CDS index returns: Does observed cross‐market informational flow have predictive power?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(8), pages 1466-1490, August.

  26. Allan Timmermann & Massimo Guidolin, 2006. "An econometric model of nonlinear dynamics in the joint distribution of stock and bond returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 1-22.

    Cited by:

    1. Aslanidis, Nektarios & Christiansen, Charlotte, 2012. "Smooth transition patterns in the realized stock–bond correlation," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 454-464.
    2. Allard, Anne-Florence & Iania, Leonardo & Smedts, Kristien, 2020. "Stock-bond return correlations: Moving away from "one-frequency-fits-all" by extending the DCC-MIDAS approach," LIDAM Reprints LFIN 2020005, Université catholique de Louvain, Louvain Finance (LFIN).
    3. Leonard C. MacLean & Yonggan Zhao & William T. Ziemba, 2016. "Optimal capital growth with convex shortfall penalties," Quantitative Finance, Taylor & Francis Journals, vol. 16(1), pages 101-117, January.
    4. Cem Cakmakli & Richard Paap & Dick J.C. van Dijk, 2011. "Modeling and Estimation of Synchronization in Multistate Markov-Switching Models," Tinbergen Institute Discussion Papers 11-002/4, Tinbergen Institute.
    5. Hanck, Christoph & Demetrescu, Matei & Kruse, Robinson, 2015. "Fixed-b Asymptotics for t-Statistics in the Presence of Time-Varying Volatility," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 112916, Verein für Socialpolitik / German Economic Association.
    6. Matteo Iacopini & Dominique Guégan, 2018. "Nonparametric Forecasting of Multivariate Probability Density Functions," Working Papers 2018:15, Department of Economics, University of Venice "Ca' Foscari".
    7. Zacharias Psaradakis & Martin Sola, 2017. "Markov-Switching Models with State-Dependent Time-Varying Transition Probabilities," Birkbeck Working Papers in Economics and Finance 1702, Birkbeck, Department of Economics, Mathematics & Statistics.
    8. Jia Liu & John M. Maheu & Yong Song, 2024. "Identification and forecasting of bull and bear markets using multivariate returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 723-745, August.
    9. Massimo Guidolin & Allan Timmerman, 2006. "Asset allocation under multivariate regime switching," Working Papers 2005-002, Federal Reserve Bank of St. Louis.
    10. Collin-Dufresne, Pierre & Daniel, Kent & Sağlam, Mehmet, 2020. "Liquidity regimes and optimal dynamic asset allocation," Journal of Financial Economics, Elsevier, vol. 136(2), pages 379-406.
    11. Matteo Barigozzi & Daniele Massacci, 2022. "Modelling Large Dimensional Datasets with Markov Switching Factor Models," Papers 2210.09828, arXiv.org, revised Dec 2024.
    12. Hossein Asgharian & Charlotte Christiansen & Ai Jun Hou, 2014. "Macro-Finance Determinants of the Long-Run Stock-Bond Correlation: The DCC-MIDAS Specification," CREATES Research Papers 2014-13, Department of Economics and Business Economics, Aarhus University.
    13. Zeynep Senyuz & Emre Yoldas, 2015. "Financial Stress and Equilibrium Dynamics in Money Markets," Finance and Economics Discussion Series 2015-91, Board of Governors of the Federal Reserve System (U.S.).
    14. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    15. Christian Leschinski & Michelle Voges & Philipp Sibbertsen, 2021. "Integration and Disintegration of EMU Government Bond Markets," Econometrics, MDPI, vol. 9(1), pages 1-17, March.
    16. Marcelle Chauvet & Zeynep Senyuz & Emre Yoldas, 2013. "What does financial volatility tell us about macroeconomic fluctuations?," Finance and Economics Discussion Series 2013-61, Board of Governors of the Federal Reserve System (U.S.).
    17. Walid, Chkili & Chaker, Aloui & Masood, Omar & Fry, John, 2011. "Stock market volatility and exchange rates in emerging countries: A Markov-state switching approach," Emerging Markets Review, Elsevier, vol. 12(3), pages 272-292, September.
    18. Demetrescu, Matei & Kruse, Robinson, 2015. "Testing heteroskedastic time series for normality," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 113221, Verein für Socialpolitik / German Economic Association.
    19. Erik Kole & Dick Dijk, 2017. "How to Identify and Forecast Bull and Bear Markets?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(1), pages 120-139, January.
    20. Guidolin, Massimo & Ono, Sadayuki, 2006. "Are the dynamic linkages between the macroeconomy and asset prices time-varying?," Journal of Economics and Business, Elsevier, vol. 58(5-6), pages 480-518.
    21. Thomas Flavin & Dolores Lagoa-Varela, 2016. "Do long-term bonds hedge equity risk? Evidence from Spain," Economics Department Working Paper Series n275-16.pdf, Department of Economics, National University of Ireland - Maynooth.
    22. Zhou, Yinggang, 2014. "Modeling the joint dynamics of risk-neutral stock index and bond yield volatilities," Journal of Banking & Finance, Elsevier, vol. 38(C), pages 216-228.
    23. Anastasios G. Malliaris & Ramaprasad Bhar, 2011. "Dividends, Momentum, and Macroeconomic Variables as Determinants of the US Equity Premium Across Economic Regimes," Review of Behavioral Finance, Emerald Group Publishing Limited, vol. 3(1), pages 27-53, April.
    24. Pami Dua & Divya Tuteja, 2021. "Regime Shifts in the Behaviour of International Currency and Equity Markets: A Markov-Switching Analysis," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 309-336, December.
    25. Dungey, Mardi & Erdemlioglu, Deniz & Matei, Marius & Yang, Xiye, 2018. "Testing for mutually exciting jumps and financial flights in high frequency data," Journal of Econometrics, Elsevier, vol. 202(1), pages 18-44.
    26. Haas, Markus & Mittnik, Stefan, 2008. "Multivariate regimeswitching GARCH with an application to international stock markets," CFS Working Paper Series 2008/08, Center for Financial Studies (CFS).
    27. Nguyen, Hoang & Javed, Farrukh, 2021. "Dynamic relationship between Stock and Bond returns: A GAS MIDAS copula approach," Working Papers 2021:15, Örebro University, School of Business.
    28. Dendramis, Yiannis & Kapetanios, George & Tzavalis, Elias, 2014. "Level shifts in stock returns driven by large shocks," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 41-51.
    29. Markellos, Raphael N. & Psychoyios, Dimitris, 2018. "Interest rate volatility and risk management: Evidence from CBOE Treasury options," The Quarterly Review of Economics and Finance, Elsevier, vol. 68(C), pages 190-202.
    30. Kang-Soek Lee, 2017. "Safe-haven currency: An empirical identification," Review of International Economics, Wiley Blackwell, vol. 25(4), pages 924-947, September.
    31. Anandadeep Mandal & Sunil S. Poshakwale & Gabriel J. Power, 2021. "Do investors gain from forecasting the asymmetric return co‐movements of financial and real assets?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 3246-3268, July.
    32. Urom, Christian & Onwuka, Kevin O. & Uma, Kalu E. & Yuni, Denis N., 2020. "Regime dependent effects and cyclical volatility spillover between crude oil price movements and stock returns," International Economics, Elsevier, vol. 161(C), pages 10-29.
    33. Vassilios Babalos & Mehmet Balcilar & Rangan Gupta & Nikolaos Philippas, 2014. "Revisiting Herding Behavior in REITs: A RegimeSwitching Approach," Working Papers 15-15, Eastern Mediterranean University, Department of Economics.
    34. Apostolos Thomadakis, 2012. "Contagion or Flight-to-Quality Phenomena in Stock and Bond Returns," School of Economics Discussion Papers 0612, School of Economics, University of Surrey.
    35. Lu, Xinjie & Ma, Feng & Wang, Jiqian & Wang, Jianqiong, 2020. "Examining the predictive information of CBOE OVX on China’s oil futures volatility: Evidence from MS-MIDAS models," Energy, Elsevier, vol. 212(C).
    36. Balcılar, Mehmet & Demirer, Rıza & Hammoudeh, Shawkat, 2015. "Regional and global spillovers and diversification opportunities in the GCC equity sectors," Emerging Markets Review, Elsevier, vol. 24(C), pages 160-187.
    37. Gnabo, Jean-Yves & Hvozdyk, Lyudmyla & Lahaye, Jérôme, 2014. "System-wide tail comovements: A bootstrap test for cojump identification on the S&P 500, US bonds and currencies," Journal of International Money and Finance, Elsevier, vol. 48(PA), pages 147-174.
    38. Balcilar, Mehmet & Demirer, Rıza & Hammoudeh, Shawkat, 2013. "Investor herds and regime-switching: Evidence from Gulf Arab stock markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 23(C), pages 295-321.
    39. Henri Nyberg, 2018. "Forecasting US interest rates and business cycle with a nonlinear regime switching VAR model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(1), pages 1-15, January.
    40. Flavin, Thomas J. & Lagoa-Varela, Dolores, 2021. "On the stability of stock-bond comovements across market conditions in the Eurozone periphery," Global Finance Journal, Elsevier, vol. 49(C).
    41. Yizhan Shu & Chenyu Yu & John M. Mulvey, 2024. "Downside risk reduction using regime-switching signals: a statistical jump model approach," Journal of Asset Management, Palgrave Macmillan, vol. 25(5), pages 493-507, September.
    42. Lieven Baele, 2010. "The Determinants of Stock and Bond Return Comovements," The Review of Financial Studies, Society for Financial Studies, vol. 23(6), pages 2374-2428, June.
    43. Massimo Guidolin & Allan Timmermann, 2008. "International asset allocation under regime switching, skew, and kurtosis preferences," The Review of Financial Studies, Society for Financial Studies, vol. 21(2), pages 889-935, April.
    44. Avino, Davide & Nneji, Ogonna, 2014. "Are CDS spreads predictable? An analysis of linear and non-linear forecasting models," International Review of Financial Analysis, Elsevier, vol. 34(C), pages 262-274.
    45. Guidolin, Massimo & Hyde, Stuart & McMillan, David & Ono, Sadayuki, 2009. "Non-linear predictability in stock and bond returns: When and where is it exploitable?," International Journal of Forecasting, Elsevier, vol. 25(2), pages 373-399.
    46. Lorán Chollete & Andréas Heinen & Alfonso Valdesogo, 2009. "Modeling International Financial Returns with a Multivariate Regime-switching Copula," Journal of Financial Econometrics, Oxford University Press, vol. 7(4), pages 437-480, Fall.
    47. Massimo Guidolin & Stuart Hyde & David McMillan & Sadayuki Ono, 2010. "Does the macroeconomy predict U.K. asset returns in a nonlinear fashion? comprehensive out-of-sample evidence," Working Papers 2010-039, Federal Reserve Bank of St. Louis.
    48. Deng, Chao & Su, Xiaojian & Wang, Gangjin & Peng, Cheng, 2022. "The existence of flight-to-quality under extreme conditions: Evidence from a nonlinear perspective in Chinese stocks and bonds' sectors," Economic Modelling, Elsevier, vol. 113(C).
    49. Arjan Berkelaar & Roy Kouwenberg, 2011. "A Liability-Relative Drawdown Approach to Pension Asset Liability Management," Palgrave Macmillan Books, in: Gautam Mitra & Katharina Schwaiger (ed.), Asset and Liability Management Handbook, chapter 14, pages 352-382, Palgrave Macmillan.
    50. Massimo Guidolin & Giovanna Nicodano, 2009. "Small caps in international equity portfolios: the effects of variance risk," Annals of Finance, Springer, vol. 5(1), pages 15-48, January.
    51. Yousefi, Hamed & Najand, Mohammad, 2022. "Geographical diversification using ETFs: Multinational evidence from COVID-19 pandemic," International Review of Financial Analysis, Elsevier, vol. 83(C).
    52. Scholz, Michael & Sperlich, Stefan & Nielsen, Jens Perch, 2016. "Nonparametric long term prediction of stock returns with generated bond yields," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 82-96.
    53. Massimo Guidolin, 2011. "Markov Switching Models in Empirical Finance," Working Papers 415, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    54. Chen, Louisa & Verousis, Thanos & Wang, Kai & Zhou, Zhiping, 2023. "Financial stress and commodity price volatility," Energy Economics, Elsevier, vol. 125(C).
    55. Hammerschmid, Regina & Lohre, Harald, 2018. "Regime shifts and stock return predictability," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 138-160.
    56. Matei Demetrescu & Christoph Hanck & Robinson Kruse, 2016. "Fixed-b Inference in the Presence of Time-Varying Volatility," CREATES Research Papers 2016-01, Department of Economics and Business Economics, Aarhus University.
    57. Massimo Guidolin & Manuela Pedio, 2019. "Forecasting and Trading Monetary Policy Effects on the Riskless Yield Curve with Regime Switching Nelson†Siegel Models," Working Papers 639, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    58. Stolyarov, Dmitriy & Tesar, Linda L., 2021. "Interest rate trends in a global context," Economic Modelling, Elsevier, vol. 101(C).
    59. Eraslan, Sercan, 2016. "Safe-haven demand for housing in London," Economic Modelling, Elsevier, vol. 58(C), pages 482-493.
    60. Chevallier, Julien, 2011. "Evaluating the carbon-macroeconomy relationship: Evidence from threshold vector error-correction and Markov-switching VAR models," Economic Modelling, Elsevier, vol. 28(6), pages 2634-2656.
    61. Demetrescu, Matei & Salish, Nazarii, 2024. "(Structural) VAR models with ignored changes in mean and volatility," International Journal of Forecasting, Elsevier, vol. 40(2), pages 840-854.
    62. Massimo Guidolin & Manuela Pedio, 2019. "Forecasting and Trading Monetary Policy Switching Nelson-Siegel Models," BAFFI CAREFIN Working Papers 19106, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    63. Mehmet Balcilar & Riza Demirer & Shawkat Hammoudeh & Ahmed Khalifa, 2013. "Do Global Shocks Drive Investor Herds in Oil-Rich Frontier Markets?," Working Papers 819, Economic Research Forum, revised Dec 2013.
    64. John M Maheu & Thomas H McCurdy & Yong Song, 2010. "Components of bull and bear markets: bull corrections and bear rallies," Working Papers tecipa-402, University of Toronto, Department of Economics.
    65. Dominique Guegan & Matteo Iacopini, 2018. "Nonparametric forecasting of multivariate probability density functions," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01821815, HAL.
    66. Donatien Hainaut & Renaud MacGilchrist, 2012. "Strategic asset allocation with switching dependence," Annals of Finance, Springer, vol. 8(1), pages 75-96, February.
    67. Yoldas, Emre & Senyuz, Zeynep, 2018. "Financial stress and equilibrium dynamics in term interbank funding markets," Journal of Financial Stability, Elsevier, vol. 34(C), pages 136-149.
    68. Guidolin, Massimo & Hyde, Stuart, 2012. "Can VAR models capture regime shifts in asset returns? A long-horizon strategic asset allocation perspective," Journal of Banking & Finance, Elsevier, vol. 36(3), pages 695-716.
    69. Massimo Guidolin & Carrie Fangzhou Na, 2007. "The economic and statistical value of forecast combinations under regime switching: an application to predictable U.S. returns," Working Papers 2006-059, Federal Reserve Bank of St. Louis.
    70. Audrino, Francesco & Corsi, Fulvio, 2010. "Modeling tick-by-tick realized correlations," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2372-2382, November.
    71. Mei, Dexiang & Ma, Feng & Liao, Yin & Wang, Lu, 2020. "Geopolitical risk uncertainty and oil future volatility: Evidence from MIDAS models," Energy Economics, Elsevier, vol. 86(C).
    72. Francesco Chincoli & Massimo Guidolin, 2017. "Linear and nonlinear predictability in investment style factors: multivariate evidence," Journal of Asset Management, Palgrave Macmillan, vol. 18(6), pages 476-509, October.
    73. Chang, Kuang-Liang, 2022. "Do economic policy uncertainty indices matter in joint volatility cycles between U.S. and Japanese stock markets?," Finance Research Letters, Elsevier, vol. 47(PA).
    74. Lieven Baele & Geert Bekaert & Koen Inghelbrecht, 2007. "The determinants of stock and bond return comovements," Working Paper Research 119, National Bank of Belgium.
    75. Giulia Dal Pra & Massimo Guidolin & Manuela Pedio & Fabiola Vasile, 2016. "Do Regimes in Excess Stock Return Predictability Create Economic Value? An Out-of-Sample Portfolio Analysis," BAFFI CAREFIN Working Papers 1637, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    76. John Powell & Rubén Roa & Jing Shi & Viliphonh Xayavong, 2007. "A Test for Long-Term Cyclical Clustering of Stock Market Regimes," Australian Journal of Management, Australian School of Business, vol. 32(2), pages 205-221, December.
    77. Aloui, Chaker & Hammoudeh, Shawkat & Hamida, Hela Ben, 2015. "Price discovery and regime shift behavior in the relationship between sharia stocks and sukuk: A two-state Markov switching analysis," Pacific-Basin Finance Journal, Elsevier, vol. 34(C), pages 121-135.
    78. Thomas Q. Pedersen, 2015. "Predictable Return Distributions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(2), pages 114-132, March.
    79. Chang, Kuang-Liang, 2009. "Do macroeconomic variables have regime-dependent effects on stock return dynamics? Evidence from the Markov regime switching model," Economic Modelling, Elsevier, vol. 26(6), pages 1283-1299, November.
    80. Massacci, Daniele, 2014. "A two-regime threshold model with conditional skewed Student t distributions for stock returns," Economic Modelling, Elsevier, vol. 43(C), pages 9-20.
    81. Giampietro, Marta & Guidolin, Massimo & Pedio, Manuela, 2018. "Estimating stochastic discount factor models with hidden regimes: Applications to commodity pricing," European Journal of Operational Research, Elsevier, vol. 265(2), pages 685-702.
    82. Haas, Markus, 2016. "A note on optimal portfolios under regime-switching," VfS Annual Conference 2016 (Augsburg): Demographic Change 145493, Verein für Socialpolitik / German Economic Association.
    83. Constandina Koki & Stefanos Leonardos & Georgios Piliouras, 2020. "Exploring the Predictability of Cryptocurrencies via Bayesian Hidden Markov Models," Papers 2011.03741, arXiv.org, revised Dec 2020.
    84. Wu, Chih-Chiang & Liang, Shin-Shun, 2011. "The economic value of range-based covariance between stock and bond returns with dynamic copulas," Journal of Empirical Finance, Elsevier, vol. 18(4), pages 711-727, September.
    85. Matei Demetrescu & Christoph Hanck & Robinson Kruse‐Becher, 2022. "Robust inference under time‐varying volatility: A real‐time evaluation of professional forecasters," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 1010-1030, August.
    86. Yang, Lu & Hamori, Shigeyuki, 2014. "Spillover effect of US monetary policy to ASEAN stock markets: Evidence from Indonesia, Singapore, and Thailand," Pacific-Basin Finance Journal, Elsevier, vol. 26(C), pages 145-155.
    87. Apostolos Thomadakis, 2012. "Measuring Financial Contagion with Extreme Coexceedances," School of Economics Discussion Papers 1112, School of Economics, University of Surrey.
    88. Markus Hahn & Sylvia Frühwirth-Schnatter & Jörn Sass, 2009. "Estimating models based on Markov jump processes given fragmented observation series," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 93(4), pages 403-425, December.
    89. Piñeiro-Chousa, Juan & López-Cabarcos, M. Ángeles & Šević, Aleksandar, 2022. "Green bond market and Sentiment: Is there a switching Behaviour?," Journal of Business Research, Elsevier, vol. 141(C), pages 520-527.
    90. Dungey, Mardi H. & Flavin, Thomas & Sheenan, Lisa, 2020. "Banks and Sovereigns: Did Adversity Bring Them Closer?," QBS Working Paper Series 2020/05, Queen's University Belfast, Queen's Business School.
    91. Suman Das & Saikat Sinha Roy, 2021. "Predicting regime switching in BRICS currency volatility: a Markov switching autoregressive approach," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 48(2), pages 165-180, June.
    92. Demetrescu, Matei & Rodrigues, Paulo M.M., 2022. "Residual-augmented IVX predictive regression," Journal of Econometrics, Elsevier, vol. 227(2), pages 429-460.
    93. Huseyin Gulen & Yuhang Xing & Lu Zhang, 2011. "Value versus Growth: Time‐Varying Expected Stock Returns," Financial Management, Financial Management Association International, vol. 40(2), pages 381-407, June.
    94. Chevallier, Julien, 2011. "A model of carbon price interactions with macroeconomic and energy dynamics," Energy Economics, Elsevier, vol. 33(6), pages 1295-1312.
    95. Wu, Chih-Chiang & Chiu, Junmao, 2017. "Economic evaluation of asymmetric and price range information in gold and general financial markets," Journal of International Money and Finance, Elsevier, vol. 74(C), pages 53-68.
    96. Massimo Guidolin, 2013. "Markov switching models in asset pricing research," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 1, pages 3-44, Edward Elgar Publishing.
    97. Guidolin, Massimo & Timmermann, Allan, 2006. "Term structure of risk under alternative econometric specifications," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 285-308.
    98. Martín Solá & Zacharias Psaradakis & Fabio Spagnolo & Nicola Spagnolo, 2010. "Some Cautionary Results Concerning Markov-Switching Models with Time-Varying Transition Probabilities," Department of Economics Working Papers 2010-12, Universidad Torcuato Di Tella.
    99. Lee, Chia-Hao & Chou, Pei-I, 2020. "Structural breaks in the correlations between Asian and US stock markets," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    100. Gloria González-Rivera & Tae-Hwy Lee, 2007. "Nonlinear Time Series in Financial Forecasting," Working Papers 200803, University of California at Riverside, Department of Economics, revised Feb 2008.
    101. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Clara Vega, 2006. "Real-time price discovery in global stock, bond and foreign exchange markets," International Finance Discussion Papers 871, Board of Governors of the Federal Reserve System (U.S.).
    102. Jin, Xin & Maheu, John M., 2016. "Modeling covariance breakdowns in multivariate GARCH," Journal of Econometrics, Elsevier, vol. 194(1), pages 1-23.
    103. Flavin, Thomas J. & Morley, Ciara E. & Panopoulou, Ekaterini, 2014. "Identifying safe haven assets for equity investors through an analysis of the stability of shock transmission," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 33(C), pages 137-154.
    104. Campbell, John Y. & Sunderam, Adi & Viceira, Luis M., 2017. "Inflation Bets or Deflation Hedges? The Changing Risks of Nominal Bonds," Critical Finance Review, now publishers, vol. 6(2), pages 263-301, September.
    105. Chan, Kam Fong & Treepongkaruna, Sirimon & Brooks, Robert & Gray, Stephen, 2011. "Asset market linkages: Evidence from financial, commodity and real estate assets," Journal of Banking & Finance, Elsevier, vol. 35(6), pages 1415-1426, June.
    106. Yanlin Shi, 2023. "Long memory and regime switching in the stochastic volatility modelling," Annals of Operations Research, Springer, vol. 320(2), pages 999-1020, January.
    107. Ermolov, Andrey, 2022. "Time-varying risk of nominal bonds: How important are macroeconomic shocks?," Journal of Financial Economics, Elsevier, vol. 145(1), pages 1-28.
    108. Wasim Ahmad & N. Bhanumurthy & Sanjay Sehgal, 2015. "Regime dependent dynamics and European stock markets: Is asset allocation really possible?," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 42(1), pages 77-107, February.
    109. Koki, Constandina & Leonardos, Stefanos & Piliouras, Georgios, 2022. "Exploring the predictability of cryptocurrencies via Bayesian hidden Markov models," Research in International Business and Finance, Elsevier, vol. 59(C).
    110. Feng, Lingbing & Rao, Haicheng & Lucey, Brian & Zhu, Yiying, 2024. "Volatility forecasting on China's oil futures: New evidence from interpretable ensemble boosting trees," International Review of Economics & Finance, Elsevier, vol. 92(C), pages 1595-1615.
    111. Kole, Erik & van Dijk, Dick, 2023. "Moments, shocks and spillovers in Markov-switching VAR models," Journal of Econometrics, Elsevier, vol. 236(2).
    112. Andrew J. Patton & Yasin Simsek, 2023. "Generalized Autoregressive Score Trees and Forests," Papers 2305.18991, arXiv.org.
    113. Chourdakis, Kyriakos & Dendramis, Yiannis & Tzavalis, Elias, 2014. "Are regime-shift sources of risk priced in the market?," Journal of Empirical Finance, Elsevier, vol. 28(C), pages 151-170.
    114. Massacci, Daniele, 2013. "A switching model with flexible threshold variable: With an application to nonlinear dynamics in stock returns," Economics Letters, Elsevier, vol. 119(2), pages 199-203.
    115. Ayben Koy, 2017. "Modelling Nonlinear Dynamics of Oil Futures Market," Econometric Research in Finance, SGH Warsaw School of Economics, Collegium of Economic Analysis, vol. 2(1), pages 23-42, June.
    116. Aloui, Chaker & Jammazi, Rania, 2009. "The effects of crude oil shocks on stock market shifts behaviour: A regime switching approach," Energy Economics, Elsevier, vol. 31(5), pages 789-799, September.
    117. Dewandaru, Ginanjar & Masih, Rumi & Bacha, Obiyathulla I. & Masih, A. Mansur M., 2014. "The Role of Islamic Asset Classes in the Diversified Portfolios: Mean Variance Spanning Test," MPRA Paper 56857, University Library of Munich, Germany.
    118. Gigante, Gimede & Guarniero, Pieralberto & Pasini, Simona, 2024. "Markovian analysis of U.S. Treasury volatility: Asymmetric responses to macroeconomic announcements," Economics Letters, Elsevier, vol. 239(C).
    119. Harumi Ohmi & Tatsuyoshi Okimoto, 2016. "Trends in stock-bond correlations," Applied Economics, Taylor & Francis Journals, vol. 48(6), pages 536-552, February.
    120. Massimo Guidolin & Stuart Hyde, 2008. "Equity portfolio diversification under time-varying predictability and comovements: evidence from Ireland, the US, and the UK," Working Papers 2008-005, Federal Reserve Bank of St. Louis.
    121. Adekunle, Salami Saheed & Masih, Mansur, 2017. "Assessing the viability of Sukuk for portfolio diversification using MS-DCC-GARCH," MPRA Paper 79443, University Library of Munich, Germany.
    122. Liu, Chunbo & Zhang, Xuan & Zhou, Zhiping, 2023. "Are commodity futures a hedge against inflation? A Markov-switching approach," International Review of Financial Analysis, Elsevier, vol. 86(C).
    123. Raza, Hamid & Wu, Weiou, 2018. "Quantile dependence between the stock, bond and foreign exchange markets – Evidence from the UK," The Quarterly Review of Economics and Finance, Elsevier, vol. 69(C), pages 286-296.
    124. Bejaoui, Azza & Karaa, Adel, 2016. "Revisiting the bull and bear markets notions in the Tunisian stock market: New evidence from multi-state duration-dependence Markov-switching models," Economic Modelling, Elsevier, vol. 59(C), pages 529-545.
    125. Akay, Ozgur (Ozzy) & Senyuz, Zeynep & Yoldas, Emre, 2013. "Hedge fund contagion and risk-adjusted returns: A Markov-switching dynamic factor approach," Journal of Empirical Finance, Elsevier, vol. 22(C), pages 16-29.
    126. MacLean, Leonard C. & Zhao, Yonggan & Ziemba, William T., 2014. "Optimal capital growth with convex shortfall penalties," LSE Research Online Documents on Economics 59292, London School of Economics and Political Science, LSE Library.
    127. Dominique Guegan & Matteo Iacopini, 2018. "Nonparametric forecasting of multivariate probability density functions," Post-Print halshs-01821815, HAL.
    128. Dominique Guégan & Matteo Iacopini, 2018. "Nonparameteric forecasting of multivariate probability density functions," Documents de travail du Centre d'Economie de la Sorbonne 18012, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    129. Constantin Anghelache & Marius Popovici & Alina – Georgiana Solomon & Emilia Stanciu, 2017. "Aggregates in Real Expression and Price Indices by Deflation," International Journal of Academic Research in Business and Social Sciences, Human Resource Management Academic Research Society, International Journal of Academic Research in Business and Social Sciences, vol. 7(6), pages 1053-1060, June.
    130. Julien Chevallier, 2013. "Price relationships in crude oil futures: new evidence from CFTC disaggregated data," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 15(2), pages 133-170, April.
    131. Brad Case & Massimo Guidolin & Yildiray Yildirim, 2014. "Markov Switching Dynamics in REIT Returns: Univariate and Multivariate Evidence on Forecasting Performance," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 42(2), pages 279-342, June.
    132. Chevallier, Julien, 2012. "Global imbalances, cross-market linkages, and the financial crisis: A multivariate Markov-switching analysis," Economic Modelling, Elsevier, vol. 29(3), pages 943-973.
    133. MacLean, Leonard C. & Zhao, Yonggan & Ziemba, William T., 2016. "Optimal capital growth with convex shortfall penalties," LSE Research Online Documents on Economics 65486, London School of Economics and Political Science, LSE Library.
    134. Mehmet Balcilar & Riza Demirer & Rangan Gupta & Mark E. Wohar, 2019. "The Risk Exposures of Safe Havens to Global and Regional Stock Market Shocks: A Novel Approach," Working Papers 201915, University of Pretoria, Department of Economics.
    135. Klaus Grobys, 2012. "Active PortofolioManagement in the Presence of Regime Switching: What Are the Benefits of Defensive Asset Allocation Strategies If the Investor Faces Bear Markets?," The Review of Finance and Banking, Academia de Studii Economice din Bucuresti, Romania / Facultatea de Finante, Asigurari, Banci si Burse de Valori / Catedra de Finante, vol. 4(1), pages 015-031, June.
    136. Julien Chevallier, 2012. "EUAs and CERs: Interactions in a Markov regime-switching environment," Economics Bulletin, AccessEcon, vol. 32(1), pages 86-101.
    137. Ma, Feng & Zhang, Yaojie & Huang, Dengshi & Lai, Xiaodong, 2018. "Forecasting oil futures price volatility: New evidence from realized range-based volatility," Energy Economics, Elsevier, vol. 75(C), pages 400-409.
    138. Chen, XiaoHua & Maringer, Dietmar, 2011. "Detecting time-variation in corporate bond index returns: A smooth transition regression model," Journal of Banking & Finance, Elsevier, vol. 35(1), pages 95-103, January.

  27. Robert Kosowski & Allan Timmermann & Russ Wermers & Hal White, 2006. "Can Mutual Fund “Stars” Really Pick Stocks? New Evidence from a Bootstrap Analysis," Journal of Finance, American Finance Association, vol. 61(6), pages 2551-2595, December.
    See citations under working paper version above.
  28. Aiolfi, Marco & Timmermann, Allan, 2006. "Persistence in forecasting performance and conditional combination strategies," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 31-53.

    Cited by:

    1. Barbara Rossi, 2011. "Advances in Forecasting Under Instability," Working Papers 11-20, Duke University, Department of Economics.
    2. Panopoulou, Ekaterini & Vrontos, Spyridon, 2015. "Hedge fund return predictability; To combine forecasts or combine information?," Journal of Banking & Finance, Elsevier, vol. 56(C), pages 103-122.
    3. Granziera, Eleonora & Sekhposyan, Tatevik, 2019. "Predicting relative forecasting performance: An empirical investigation," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1636-1657.
    4. Hsiao, Cheng & Wan, Shui Ki, 2014. "Is there an optimal forecast combination?," Journal of Econometrics, Elsevier, vol. 178(P2), pages 294-309.
    5. Krüger Fabian & Pohlmeier Winfried & Mokinski Frieder, 2011. "Combining Survey Forecasts and Time Series Models: The Case of the Euribor," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(1), pages 63-81, February.
    6. Zhenni Ding & Huayou Chen & Ligang Zhou, 2023. "Using shapely values to define subgroups of forecasts for combining," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 905-923, July.
    7. George Papadopoulos & Savas Papadopoulos & Thomas Sager, 2016. "Credit risk stress testing for EU15 banks: a model combination approach," Working Papers 203, Bank of Greece.
    8. Benavides, Guillermo & Capistrán, Carlos, 2012. "Forecasting exchange rate volatility: The superior performance of conditional combinations of time series and option implied forecasts," Journal of Empirical Finance, Elsevier, vol. 19(5), pages 627-639.
    9. Elena Andreou & Eric Ghysels & Andros Kourtellos, 2010. "Should macroeconomic forecasters use daily financial data and how?," University of Cyprus Working Papers in Economics 09-2010, University of Cyprus Department of Economics.
    10. Cristiana Belu Manescu & Ine Van Robays, 2016. "Forecasting the Brent Oil Price: Addressing Time-Variation in Forecast Performance," CESifo Working Paper Series 6242, CESifo.
    11. Masayoshi Hayashi, 2012. "Forecasting Welfare Caseloads: The Case of the Japanese Public Assistance Program," CIRJE F-Series CIRJE-F-846, CIRJE, Faculty of Economics, University of Tokyo.
    12. Boriss Siliverstovs & Daniel S. Wochner, 2021. "State‐dependent evaluation of predictive ability," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 547-574, April.
    13. Fernandez-Perez, Adrian & Fuertes, Ana-Maria & Miffre, Joëlle, 2019. "A comprehensive appraisal of style-integration methods," Journal of Banking & Finance, Elsevier, vol. 105(C), pages 134-150.
    14. Bravo, Jorge M. & Ayuso, Mercedes & Holzmann, Robert & Palmer, Edward, 2021. "Addressing the life expectancy gap in pension policy," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 200-221.
    15. Hilde C. Bjørnland & Karsten Gerdrup & Anne Sofie Jore & Christie Smith & Leif Anders Thorsrud, 2012. "Does Forecast Combination Improve Norges Bank Inflation Forecasts?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 74(2), pages 163-179, April.
    16. Jan R. Magnus & Wendun Wang & Xinyu Zhang, 2016. "Weighted-Average Least Squares Prediction," Econometric Reviews, Taylor & Francis Journals, vol. 35(6), pages 1040-1074, June.
    17. , 2019. "The Contribution of Jump Signs and Activity to Forecasting Stock Price Volatility," Working Papers 1902, Federal Reserve Bank of Dallas, revised 17 Dec 2022.
    18. Benjamin Avanzi & Yanfeng Li & Bernard Wong & Alan Xian, 2022. "Ensemble distributional forecasting for insurance loss reserving," Papers 2206.08541, arXiv.org, revised Jun 2024.
    19. Bec, Frédérique & Mogliani, Matteo, 2015. "Nowcasting French GDP in real-time with surveys and “blocked” regressions: Combining forecasts or pooling information?," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1021-1042.
    20. Lux, Thomas & Morales-Arias, Leonardo, 2010. "Forecasting volatility under fractality, regime-switching, long memory and student-t innovations," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2676-2692, November.
    21. Pablo Pincheira, 2012. "Are Forecast Combinations Efficient?," Working Papers Central Bank of Chile 661, Central Bank of Chile.
    22. Turgut Kisinbay & Chikako Baba, 2011. "Predicting Recessions: A New Approach for Identifying Leading Indicators and Forecast Combinations," IMF Working Papers 2011/235, International Monetary Fund.
    23. Christopher Krauss & Xuan Anh Do & Nicolas Huck, 2017. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," Post-Print hal-01515120, HAL.
    24. Lux, Thomas & Morales-Arias, Leonardo, 2010. "Relative forecasting performance of volatility models: Monte Carlo evidence," Kiel Working Papers 1582, Kiel Institute for the World Economy (IfW Kiel).
    25. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    26. Liebermann, Joëlle, 2012. "Short-term forecasting of quarterly gross domestic product growth," Quarterly Bulletin Articles, Central Bank of Ireland, pages 74-84, February.
    27. Lux, Thomas & Morales-Arias, Leonardo, 2009. "Forecasting volatility under fractality, regime-switching, long memory and student-t innovations," Kiel Working Papers 1532, Kiel Institute for the World Economy (IfW Kiel).
    28. Jordan, Steven J. & Vivian, Andrew & Wohar, Mark E., 2014. "Sticky prices or economically-linked economies: The case of forecasting the Chinese stock market," Journal of International Money and Finance, Elsevier, vol. 41(C), pages 95-109.
    29. Bork, Lasse & Møller, Stig V., 2015. "Forecasting house prices in the 50 states using Dynamic Model Averaging and Dynamic Model Selection," International Journal of Forecasting, Elsevier, vol. 31(1), pages 63-78.
    30. Andrawis, Robert R. & Atiya, Amir F. & El-Shishiny, Hisham, 2011. "Forecast combinations of computational intelligence and linear models for the NN5 time series forecasting competition," International Journal of Forecasting, Elsevier, vol. 27(3), pages 672-688, July.
    31. Morales-Arias, Leonardo & Moura, Guilherme V., 2013. "Adaptive forecasting of exchange rates with panel data," International Journal of Forecasting, Elsevier, vol. 29(3), pages 493-509.
    32. Andrejs Bessonovs, 2015. "Suite of Latvia's GDP forecasting models," Working Papers 2015/01, Latvijas Banka.
    33. Gupta, Rangan & Majumdar, Anandamayee & Pierdzioch, Christian & Wohar, Mark E., 2017. "Do terror attacks predict gold returns? Evidence from a quantile-predictive-regression approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 65(C), pages 276-284.
    34. Morales-Arias, Leonardo & Moura, Guilherme V., 2010. "A conditionally heteroskedastic global inflation model," Kiel Working Papers 1666, Kiel Institute for the World Economy (IfW Kiel).
    35. Pesaran, M. Hashem & Pettenuzzo, Davide & Timmermann, Allan, 2004. "Forecasting Time Series Subject to Multiple Structural Breaks," IZA Discussion Papers 1196, Institute of Labor Economics (IZA).
    36. Psaradellis, Ioannis & Sermpinis, Georgios, 2016. "Modelling and trading the U.S. implied volatility indices. Evidence from the VIX, VXN and VXD indices," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1268-1283.
    37. Qian Chen & Xiang Gao & Shan Xie & Li Sun & Shuairu Tian & Shigeyuki Hamori, 2021. "On the Predictability of China Macro Indicator with Carbon Emissions Trading," Energies, MDPI, vol. 14(5), pages 1-24, February.
    38. Kajal Lahiri & Huaming Peng & Yongchen Zhao, 2013. "Testing the Value of Probability Forecasts for Calibrated Combining," Discussion Papers 13-02, University at Albany, SUNY, Department of Economics.
    39. Kyosuke Chikamatsu, Naohisa Hirakata, Yosuke Kido, Kazuki Otaka, 2018. "Nowcasting Japanese GDPs," Bank of Japan Working Paper Series 18-E-18, Bank of Japan.
    40. Qian, Yilin & Thompson, Ryan & Vasnev, Andrey L, 2022. "Global combinations of expert forecasts," Working Papers BAWP-2022-02, University of Sydney Business School, Discipline of Business Analytics.
    41. Diebold, Francis X. & Shin, Minchul, 2019. "Machine learning for regularized survey forecast combination: Partially-egalitarian LASSO and its derivatives," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1679-1691.
    42. Bahar Şen Doğan & Murat Midiliç, 2019. "Forecasting Turkish real GDP growth in a data-rich environment," Empirical Economics, Springer, vol. 56(1), pages 367-395, January.
    43. Eder Andrade da Silva & Carlos Alejandro Urzagasti & Joylan Nunes Maciel & Jorge Javier Gimenez Ledesma & Marco Roberto Cavallari & Oswaldo Hideo Ando Junior, 2022. "Development of a Self-Calibrated Embedded System for Energy Management in Low Voltage," Energies, MDPI, vol. 15(22), pages 1-21, November.
    44. Hubrich, Kirstin & Skudelny, Frauke, 2016. "Forecast combination for euro area inflation: a cure in times of crisis?," Working Paper Series 1972, European Central Bank.
    45. Todd E. Clark & Michael W. McCracken, 2010. "Averaging forecasts from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 5-29.
    46. Lux, Thomas & Morales-Arias, Leonardo & Sattarhoff, Cristina, 2011. "A Markov-switching multifractal approach to forecasting realized volatility," Kiel Working Papers 1737, Kiel Institute for the World Economy (IfW Kiel).
    47. Foroni, Claudia & Marcellino, Massimiliano, 2014. "A comparison of mixed frequency approaches for nowcasting Euro area macroeconomic aggregates," International Journal of Forecasting, Elsevier, vol. 30(3), pages 554-568.
    48. Alex Nikolsko‐Rzhevskyy, 2011. "Monetary Policy Estimation in Real Time: Forward‐Looking Taylor Rules without Forward‐Looking Data," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 43(5), pages 871-897, August.
    49. Talagala, Thiyanga S. & Li, Feng & Kang, Yanfei, 2022. "FFORMPP: Feature-based forecast model performance prediction," International Journal of Forecasting, Elsevier, vol. 38(3), pages 920-943.
    50. Mawuli Segnon & Thomas Lux & Rangan Gupta, 2015. "Modeling and Forecasting Carbon Dioxide Emission Allowance Spot Price Volatility: Multifractal vs. GARCH-Type Volatility Models," Working Papers 201550, University of Pretoria, Department of Economics.
    51. Antoine Mandel & Amir Sani, 2016. "Learning Time-Varying Forecast Combinations," Documents de travail du Centre d'Economie de la Sorbonne 16036, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    52. Segnon, Mawuli & Lux, Thomas & Gupta, Rangan, 2017. "Modeling and forecasting the volatility of carbon dioxide emission allowance prices: A review and comparison of modern volatility models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 692-704.
    53. Claudia FORONI & Massimiliano MARCELLINO, 2012. "A Comparison of Mixed Frequency Approaches for Modelling Euro Area Macroeconomic Variables," Economics Working Papers ECO2012/07, European University Institute.
    54. Antoine Mandel & Amir Sani, 2017. "A Machine Learning Approach to the Forecast Combination Puzzle," Working Papers halshs-01317974, HAL.
    55. Eo, Yunjong & Kang, Kyu Ho, 2020. "The effects of conventional and unconventional monetary policy on forecasting the yield curve," Journal of Economic Dynamics and Control, Elsevier, vol. 111(C).
    56. Barrera, Carlos, 2013. "El sistema de predicción desagregada: Una evaluación de las proyecciones de inflación 2006-2011," Working Papers 2013-009, Banco Central de Reserva del Perú.
    57. Jordan, Steven J. & Vivian, Andrew & Wohar, Mark E., 2017. "Forecasting market returns: bagging or combining?," International Journal of Forecasting, Elsevier, vol. 33(1), pages 102-120.
    58. Nonejad, Nima, 2023. "Conditional out-of-sample predictability of aggregate equity returns and aggregate equity return volatility using economic variables," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 91-122.
    59. Alain Galli & Christian Hepenstrick & Rolf Scheufele, 2019. "Mixed-Frequency Models for Tracking Short-Term Economic Developments in Switzerland," International Journal of Central Banking, International Journal of Central Banking, vol. 15(2), pages 151-178, June.
    60. Helmut Herwartz & Leonardo Morales-Arias, 2009. "In-sample and out-of-sample properties of international stock return dynamics conditional on equilibrium pricing factors," The European Journal of Finance, Taylor & Francis Journals, vol. 15(1), pages 1-28.
    61. Aiolfi Marco & Capistrán Carlos & Timmermann Allan, 2010. "Forecast Combinations," Working Papers 2010-04, Banco de México.
    62. Knut Are Aastveit & Karsten R. Gerdrup & Anne Sofie Jore & Leif Anders Thorsrud, 2011. "Nowcasting GDP in real-time: A density combination approach," Working Paper 2011/11, Norges Bank.
    63. Alexandra Bozhechkova & Urmat Dzhunkeev, 2024. "CLARA and CARLSON: Combination of Ensemble and Neural Network Machine Learning Methods for GDP Forecasting," Russian Journal of Money and Finance, Bank of Russia, vol. 83(3), pages 45-69, September.
    64. Marcus P. A. Cobb, 2021. "Nowcasting Chilean household consumption with electronic payment data," Working Papers Central Bank of Chile 931, Central Bank of Chile.
    65. Ryan Thompson & Yilin Qian & Andrey L. Vasnev, 2022. "Flexible global forecast combinations," Papers 2207.07318, arXiv.org, revised Mar 2024.
    66. Ulrich Gunter, 2021. "Improving Hotel Room Demand Forecasts for Vienna across Hotel Classes and Forecast Horizons: Single Models and Combination Techniques Based on Encompassing Tests," Forecasting, MDPI, vol. 3(4), pages 1-36, November.
    67. Sancetta, A., 2007. "Online Forecast Combination for Dependent Heterogeneous Data," Cambridge Working Papers in Economics 0718, Faculty of Economics, University of Cambridge.
    68. Ahmar, Ansari Saleh, 2019. "Reliability Test of SutteARIMA to Forecast Artificial Data," OSF Preprints 9zn7v, Center for Open Science.
    69. Samuels, Jon D. & Sekkel, Rodrigo M., 2017. "Model Confidence Sets and forecast combination," International Journal of Forecasting, Elsevier, vol. 33(1), pages 48-60.
    70. Caldeira, João F. & Moura, Guilherme V. & Santos, André A.P., 2016. "Predicting the yield curve using forecast combinations," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 79-98.
    71. Bayer, Sebastian, 2018. "Combining Value-at-Risk forecasts using penalized quantile regressions," Econometrics and Statistics, Elsevier, vol. 8(C), pages 56-77.
    72. David E. Rapach & Jack K. Strauss, 2008. "Forecasting US employment growth using forecast combining methods," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(1), pages 75-93.
    73. Gibbs, Christopher G. & Vasnev, Andrey L., 2024. "Conditionally optimal weights and forward-looking approaches to combining forecasts," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1734-1751.
    74. Strauss, Jack, 2013. "Does housing drive state-level job growth? Building permits and consumer expectations forecast a state’s economic activity," Journal of Urban Economics, Elsevier, vol. 73(1), pages 77-93.
    75. Yang, Ke & Tian, Fengping & Chen, Langnan & Li, Steven, 2017. "Realized volatility forecast of agricultural futures using the HAR models with bagging and combination approaches," International Review of Economics & Finance, Elsevier, vol. 49(C), pages 276-291.
    76. João F. Caldeira & Rangan Gupta & Hudson S. Torrent, 2020. "Forecasting U.S. Aggregate Stock Market Excess Return: Do Functional Data Analysis Add Economic Value?," Mathematics, MDPI, vol. 8(11), pages 1-16, November.
    77. Herwartz, Helmut & Golosnoy, Vasyl, 2007. "Semiparametric Approaches to the Prediction of Conditional Correlation Matrices in Finance," Economics Working Papers 2007-23, Christian-Albrechts-University of Kiel, Department of Economics.
    78. Bin Chen & Kenwin Maung, 2020. "Time-varying Forecast Combination for High-Dimensional Data," Papers 2010.10435, arXiv.org.
    79. Chen, Bin & Maung, Kenwin, 2023. "Time-varying forecast combination for high-dimensional data," Journal of Econometrics, Elsevier, vol. 237(2).
    80. Chan, Felix & Pauwels, Laurent L., 2018. "Some theoretical results on forecast combinations," International Journal of Forecasting, Elsevier, vol. 34(1), pages 64-74.
    81. Pablo Guerróon‐Quintana & Molin Zhong, 2023. "Macroeconomic forecasting in times of crises," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(3), pages 295-320, April.
    82. Zhu, Yinchu & Timmermann, Allan, 2022. "Conditional rotation between forecasting models," Journal of Econometrics, Elsevier, vol. 231(2), pages 329-347.
    83. Chanont Banternghansa & Michael W. McCracken, 2010. "Real-time forecast averaging with ALFRED," Working Papers 2010-033, Federal Reserve Bank of St. Louis.
    84. Karsten R. Gerdrup & Anne Sofie Jore & Christie Smith & Leif Anders Thorsrud, 2009. "Evaluating ensemble density combination - forecasting GDP and inflation," Working Paper 2009/19, Norges Bank.
    85. Yoonseok Lee & Donggyu Sul, 2021. "Depth-Weighted Forecast Combination: Application to COVID-19 Cases," Center for Policy Research Working Papers 238, Center for Policy Research, Maxwell School, Syracuse University.
    86. Chikamatsu, Kyosuke & Hirakata, Naohisa & Kido, Yosuke & Otaka, Kazuki, 2021. "Mixed-frequency approaches to nowcasting GDP: An application to Japan," Japan and the World Economy, Elsevier, vol. 57(C).
    87. Soybilgen, Barış & Yazgan, Ege, 2018. "Evaluating nowcasts of bridge equations with advanced combination schemes for the Turkish unemployment rate," Economic Modelling, Elsevier, vol. 72(C), pages 99-108.
    88. Elliott, Graham & Gargano, Antonio & Timmermann, Allan, 2015. "Complete subset regressions with large-dimensional sets of predictors," Journal of Economic Dynamics and Control, Elsevier, vol. 54(C), pages 86-110.
    89. Terasvirta, Timo, 2006. "Forecasting economic variables with nonlinear models," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 8, pages 413-457, Elsevier.
    90. Timmermann, Allan & Zhu, Yinchu, 2021. "Conditional Rotation Between Forecasting Models," CEPR Discussion Papers 15917, C.E.P.R. Discussion Papers.
    91. Jordan, Steven J. & Vivian, Andrew & Wohar, Mark E., 2016. "Can commodity returns forecast Canadian sector stock returns?," International Review of Economics & Finance, Elsevier, vol. 41(C), pages 172-188.
    92. Till Weigt & Bernd Wilfling, 2018. "An approach to increasing forecast-combination accuracy through VAR error modeling," CQE Working Papers 6818, Center for Quantitative Economics (CQE), University of Muenster.
    93. Yongchen Zhao, 2021. "The robustness of forecast combination in unstable environments: a Monte Carlo study of advanced algorithms," Empirical Economics, Springer, vol. 61(1), pages 173-199, July.
    94. N.D. Geomelos & E. Xideas, 2014. "Forecasting spot prices in bulk shipping using multivariate and univariate models," Cogent Economics & Finance, Taylor & Francis Journals, vol. 2(1), pages 1-37, December.
    95. David Rapach & Jack Strauss, 2010. "Bagging or Combining (or Both)? An Analysis Based on Forecasting U.S. Employment Growth," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 511-533.
    96. Magnus, J.R. & Wang, W. & Zhang, Xinyu, 2012. "WALS Prediction," Discussion Paper 2012-043, Tilburg University, Center for Economic Research.
    97. Nikolsko-Rzhevskyy, Alex, 2008. "Monetary Policy Evaluation in Real Time: Forward-Looking Taylor Rules Without Forward-Looking Data," MPRA Paper 11352, University Library of Munich, Germany.
    98. Beltrán, Sergio & Castro, Alain & Irizar, Ion & Naveran, Gorka & Yeregui, Imanol, 2022. "Framework for collaborative intelligence in forecasting day-ahead electricity price," Applied Energy, Elsevier, vol. 306(PA).
    99. Thangjam, Aditya & Jaipuria, Sanjita & Dadabada, Pradeep Kumar, 2023. "Time-Varying approaches for Long-Term Electric Load Forecasting under economic shocks," Applied Energy, Elsevier, vol. 333(C).
    100. Marcus P. A. Cobb, 2020. "Aggregate density forecasting from disaggregate components using Bayesian VARs," Empirical Economics, Springer, vol. 58(1), pages 287-312, January.
    101. Mawuli Segnon & Stelios Bekiros, 2020. "Forecasting volatility in bitcoin market," Annals of Finance, Springer, vol. 16(3), pages 435-462, September.
    102. Park, Jin Suk & Newaz, Mohammad Khaleq, 2021. "Liquidity and short-run predictability: Evidence from international stock markets," Global Finance Journal, Elsevier, vol. 50(C).
    103. David G. McMillan & Mark E. Wohar, 2010. "Stock return predictability and dividend-price ratio: a nonlinear approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 15(4), pages 351-365.
    104. Naresh Bansal & Jack Strauss & Alireza Nasseh, 2015. "Can we consistently forecast a firm’s earnings? Using combination forecast methods to predict the EPS of Dow firms," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 39(1), pages 1-22, January.
    105. Glennon, Dennis & Kiefer, Hua & Mayock, Tom, 2018. "Measurement error in residential property valuation: An application of forecast combination," Journal of Housing Economics, Elsevier, vol. 41(C), pages 1-29.
    106. David E. Rapach & Jack K. Strauss, 2007. "Forecasting real housing price growth in the Eighth District states," Regional Economic Development, Federal Reserve Bank of St. Louis, issue Nov, pages 33-42.
    107. Kourentzes, Nikolaos & Barrow, Devon & Petropoulos, Fotios, 2019. "Another look at forecast selection and combination: Evidence from forecast pooling," International Journal of Production Economics, Elsevier, vol. 209(C), pages 226-235.
    108. Rapach, David E. & Strauss, Jack K., 2009. "Differences in housing price forecastability across US states," International Journal of Forecasting, Elsevier, vol. 25(2), pages 351-372.
    109. David E. Rapach & Jack K. Strauss, 2005. "Forecasting employment growth in Missouri with many potentially relevant predictors: an analysis of forecast combining methods," Regional Economic Development, Federal Reserve Bank of St. Louis, issue Nov, pages 97-112.
    110. Laborda, Ricardo, 2018. "Optimal combination of currency strategies," The North American Journal of Economics and Finance, Elsevier, vol. 43(C), pages 129-140.
    111. Matsypura, Dmytro & Thompson, Ryan & Vasnev, Andrey L., 2018. "Optimal selection of expert forecasts with integer programming," Omega, Elsevier, vol. 78(C), pages 165-175.
    112. Liebermann, Joelle, 2012. "Real-time forecasting in a data-rich environment," Research Technical Papers 07/RT/12, Central Bank of Ireland.
    113. Iason Kynigakis & Ekaterini Panopoulou, 2022. "Does model complexity add value to asset allocation? Evidence from machine learning forecasting models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 603-639, April.
    114. Hyun Hak Kim & Norman Swanson, 2013. "Mining Big Data Using Parsimonious Factor and Shrinkage Methods," Departmental Working Papers 201316, Rutgers University, Department of Economics.
    115. Meira, Erick & Cyrino Oliveira, Fernando Luiz & Jeon, Jooyoung, 2021. "Treating and Pruning: New approaches to forecasting model selection and combination using prediction intervals," International Journal of Forecasting, Elsevier, vol. 37(2), pages 547-568.
    116. Elena Andreou & Constantinos Kourouyiannis & Andros Kourtellos, 2012. "Volatility Forecast Combinations using Asymmetric Loss Functions," University of Cyprus Working Papers in Economics 07-2012, University of Cyprus Department of Economics.
    117. Timmermann, Allan & Guidolin, Massimo, 2007. "Forecasts of US Short-term Interest Rates: A Flexible Forecast Combination Approach," CEPR Discussion Papers 6188, C.E.P.R. Discussion Papers.
    118. Golosnoy, Vasyl & Okhrin, Yarema, 2009. "Flexible shrinkage in portfolio selection," Journal of Economic Dynamics and Control, Elsevier, vol. 33(2), pages 317-328, February.
    119. Eraslan, Sercan & Nöller, Marvin, 2020. "Recession probabilities falling from the STARs," Discussion Papers 08/2020, Deutsche Bundesbank.
    120. Nonejad, Nima, 2021. "The price of crude oil and (conditional) out-of-sample predictability of world industrial production," Journal of Commodity Markets, Elsevier, vol. 23(C).
    121. Ji Wu & Xian Cheng & Stephen Shaoyi Liao, 2020. "Tourism forecast combination using the stochastic frontier analysis technique," Tourism Economics, , vol. 26(7), pages 1086-1107, November.
    122. Michiel D. de Pooter & Francesco Ravazzolo & Dick van Dijk, 2007. "Predicting the Term Structure of Interest Rates: Incorporating Parameter Uncertainty, Model Uncertainty and Macroeconomic Information," Tinbergen Institute Discussion Papers 07-028/4, Tinbergen Institute.
    123. Nonejad, Nima, 2022. "Predicting equity premium out-of-sample by conditioning on newspaper-based uncertainty measures: A comparative study," International Review of Financial Analysis, Elsevier, vol. 83(C).
    124. Konstantin A. Kholodilin & Andreas Mense, 2012. "Forecasting the Prices and Rents for Flats in Large German Cities," Discussion Papers of DIW Berlin 1207, DIW Berlin, German Institute for Economic Research.
    125. Daniel Borup & Martin Thyrsgaard, 2017. "Statistical tests for equal predictive ability across multiple forecasting methods," CREATES Research Papers 2017-19, Department of Economics and Business Economics, Aarhus University.
    126. Stuart, Rebecca, 2018. "A quarterly Phillips curve for Switzerland using interpolated data, 1963–2016," Economic Modelling, Elsevier, vol. 70(C), pages 78-86.
    127. Huang, Yujun, 2024. "Do ESG ETFs provide downside risk protection during Covid-19? Evidence from forecast combination models," International Review of Financial Analysis, Elsevier, vol. 94(C).
    128. Rangan Gupta & Mampho P. Modise & Josine Uwilingiye, 2011. "Out-of-Sample Equity Premium Predictability in South Africa: Evidence from a Large Number of Predictors," Working Papers 201122, University of Pretoria, Department of Economics.
    129. Pablo Pincheira-Brown & Andrea Bentancor & Nicolás Hardy, 2023. "An Inconvenient Truth about Forecast Combinations," Mathematics, MDPI, vol. 11(18), pages 1-24, September.
    130. Jiun-Hua Su, 2021. "No-Regret Forecasting with Egalitarian Committees," Papers 2109.13801, arXiv.org.
    131. Xiaojie Xu, 2020. "Corn Cash Price Forecasting," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(4), pages 1297-1320, August.
    132. Ravazzolo, F. & van Dijk, H.K. & Verbeek, M.J.C.M., 2007. "Predictive gains from forecast combinations using time-varying model weights," Econometric Institute Research Papers EI 2007-26, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    133. Genre, Véronique & Kenny, Geoff & Meyler, Aidan & Timmermann, Allan, 2013. "Combining expert forecasts: Can anything beat the simple average?," International Journal of Forecasting, Elsevier, vol. 29(1), pages 108-121.
    134. Andrawis, Robert R. & Atiya, Amir F. & El-Shishiny, Hisham, 2011. "Combination of long term and short term forecasts, with application to tourism demand forecasting," International Journal of Forecasting, Elsevier, vol. 27(3), pages 870-886, July.
    135. Francis X. Diebold & Minchul Shin, 2017. "Beating the Simple Average: Egalitarian LASSO for Combining Economic Forecasts," PIER Working Paper Archive 17-017, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 20 Aug 2017.
    136. Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
    137. Jon D. Samuels & Rodrigo Sekkel, 2013. "Forecasting with Many Models: Model Confidence Sets and Forecast Combination," Staff Working Papers 13-11, Bank of Canada.
    138. Thomas Lux & Mawuli K. Segnon & Rangan Gupta, 2015. "Modeling and Forecasting Crude Oil Price Volatility: Evidence from Historical and Recent Data," Working Papers 201511, University of Pretoria, Department of Economics.
    139. Gong, Xue & Ye, Xin & Zhang, Weiguo & Zhang, Yue, 2023. "Predicting energy futures high-frequency volatility using technical indicators: The role of interaction," Energy Economics, Elsevier, vol. 119(C).
    140. Pedro Henrique Melo Albuquerque & Yaohao Peng & João Pedro Fontoura da Silva, 2022. "Making the whole greater than the sum of its parts: A literature review of ensemble methods for financial time series forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(8), pages 1701-1724, December.
    141. Yu, Xing & Li, Yanyan & Gong, Xue & Zhang, Nan, 2022. "Evaluating the performance of futures hedging using factors-driven realized volatility," International Review of Financial Analysis, Elsevier, vol. 84(C).
    142. Guo-hua Ye & Mirxat Alim & Peng Guan & De-sheng Huang & Bao-sen Zhou & Wei Wu, 2021. "Improving the precision of modeling the incidence of hemorrhagic fever with renal syndrome in mainland China with an ensemble machine learning approach," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-13, March.
    143. Daniel Borup & Jonas N. Eriksen & Mads M. Kjær & Martin Thyrsgaard, 2024. "Predicting Bond Return Predictability," Management Science, INFORMS, vol. 70(2), pages 931-951, February.
    144. an de Meulen, Philipp & Micheli, Martin & Schmidt, Torsten, 2011. "Forecasting House Prices in Germany," Ruhr Economic Papers 294, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    145. Carlos Henrique Dias Cordeiro de Castro & Fernando Antonio Lucena Aiube, 2023. "Forecasting inflation time series using score‐driven dynamic models and combination methods: The case of Brazil," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 369-401, March.
    146. Zongwu Cai & Chaoqun Ma & Xianhua Mi, 2020. "Realized Volatility Forecasting Based on Dynamic Quantile Model Averaging," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202016, University of Kansas, Department of Economics, revised Sep 2020.
    147. Chris McDonald & Leif Anders Thorsrud, 2011. "Evaluating density forecasts: model combination strategies versus the RBNZ," Reserve Bank of New Zealand Discussion Paper Series DP2011/03, Reserve Bank of New Zealand.
    148. Sabaj, Ernil & Kahveci, Mustafa, 2018. "Forecasting tax revenues in an emerging economy: The case of Albania," MPRA Paper 84404, University Library of Munich, Germany.
    149. Sancetta, Alessio, 2007. "Online forecast combinations of distributions: Worst case bounds," Journal of Econometrics, Elsevier, vol. 141(2), pages 621-651, December.
    150. Mawuli Segnon & Stelios Bekiros, 2019. "Forecasting Volatility in Cryptocurrency Markets," CQE Working Papers 7919, Center for Quantitative Economics (CQE), University of Muenster.
    151. Magnus, J.R. & Wang, W. & Zhang, Xinyu, 2012. "WALS Prediction," Other publications TiSEM 7715e942-b446-4985-8216-f, Tilburg University, School of Economics and Management.

  29. Guidolin, Massimo & Timmermann, Allan, 2006. "Term structure of risk under alternative econometric specifications," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 285-308.
    See citations under working paper version above.
  30. Paye, Bradley S. & Timmermann, Allan, 2006. "Instability of return prediction models," Journal of Empirical Finance, Elsevier, vol. 13(3), pages 274-315, June.

    Cited by:

    1. Barbara Rossi, 2011. "Advances in Forecasting Under Instability," Working Papers 11-20, Duke University, Department of Economics.
    2. Yin, Anwen, 2015. "Forecasting and model averaging with structural breaks," ISU General Staff Papers 201501010800005727, Iowa State University, Department of Economics.
    3. Jank, Stephan, 2012. "Changes in the composition of publicly traded firms: Implications for the dividend-price ratio and return predictability," CFR Working Papers 12-08, University of Cologne, Centre for Financial Research (CFR).
    4. Amélie Charles & Olivier Darné & Jae H. Kim, 2022. "Stock return predictability: Evaluation based on interval forecasts," Bulletin of Economic Research, Wiley Blackwell, vol. 74(2), pages 363-385, April.
    5. Markus Leippold & Hanlin Yang, 2023. "Mixed‐frequency predictive regressions with parameter learning," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(8), pages 1955-1972, December.
    6. Xuan, Chunji & Kim, Chang-Jin, 2020. "Structural breaks in the mean of dividend-price ratios: Implications of learning on stock return predictability," Japan and the World Economy, Elsevier, vol. 55(C).
    7. Massacci, Daniele & Kapetanios, George, 2024. "Forecasting in factor augmented regressions under structural change," International Journal of Forecasting, Elsevier, vol. 40(1), pages 62-76.
    8. Fabian Baetje & Lukas Menkhoff, 2016. "Equity Premium Prediction: Are Economic and Technical Indicators Unstable?," Discussion Papers of DIW Berlin 1552, DIW Berlin, German Institute for Economic Research.
    9. Pesaran, M.H. & Pettenuzzo, D. & Timmermann, A., 2006. "Learning, Structural Instability and Present Value Calculations," Cambridge Working Papers in Economics 0602, Faculty of Economics, University of Cambridge.
    10. Rossi, Barbara & Odendahl, Florens & Sekhposyan, Tatevik, 2020. "Comparing Forecast Performance with State Dependence," CEPR Discussion Papers 15217, C.E.P.R. Discussion Papers.
    11. Schrimpf, Andreas, 2008. "International Stock Return Predictability Under Model Uncertainty," ZEW Discussion Papers 08-048, ZEW - Leibniz Centre for European Economic Research.
    12. George Constantinides, 2012. "The Predictability of Returns with Regime Shifts in Consumption and Dividend Growth," 2012 Meeting Papers 1197, Society for Economic Dynamics.
    13. Torben G. Andersen & Rasmus T. Varneskov, 2021. "Testing for Parameter Instability and Structural Change in Persistent Predictive Regressions," NBER Working Papers 28570, National Bureau of Economic Research, Inc.
    14. Giovannelli, Alessandro & Massacci, Daniele & Soccorsi, Stefano, 2021. "Forecasting stock returns with large dimensional factor models," Journal of Empirical Finance, Elsevier, vol. 63(C), pages 252-269.
    15. Amélie Charles & Olivier Darné & Jae H. Kim, 2016. "Stock Return Predictability: Evaluation based on prediction intervals," Working Papers hal-01295037, HAL.
    16. Davide Pettenuzzo & Francesco Ravazzolo, 2014. "Optimal portfolio choice under decision-based model combinations," Working Paper 2014/15, Norges Bank.
    17. Yi-Chieh Wen & Bin Li, 2020. "Lagged country returns and international stock return predictability during business cycle recession periods," Applied Economics, Taylor & Francis Journals, vol. 52(46), pages 5005-5019, October.
    18. Gloria Gonzalez-Rivera & Yingying Sun, 2016. "Density Forecast Evaluation in Unstable Environments," Working Papers 201606, University of California at Riverside, Department of Economics.
    19. Florens Odendahl & Barbara Rossi & Tatevik Sekhposyan, 2021. "Evaluating Forecast Performance with State Dependence," Working Papers 1295, Barcelona School of Economics.
    20. Jerry Coakley & Jian Dollery & Neil Kellard, 2011. "Long memory and structural breaks in commodity futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 31(11), pages 1076-1113, November.
    21. Fernando Alexandre & Vasco J. Gabriel & Pedro Bação, 2007. "The Consumption-Wealth Ratio Under Asymmetric Adjustment," NIPE Working Papers 15/2007, NIPE - Universidade do Minho.
    22. Erhard Reschenhofer, 2010. "Forecasting volatility: double averaging and weighted medians," International Journal of Computational Economics and Econometrics, Inderscience Enterprises Ltd, vol. 1(3/4), pages 317-326.
    23. Kenichi Shimizu, 2022. "Asymptotic properties of Bayesian inference in linear regression with a structural break," Papers 2201.07319, arXiv.org.
    24. Timmermann, Allan & Pettenuzzo, Davide & Gargano, Antonio, 2014. "Bond Return Predictability: Economic Value and Links to the Macroeconomy," CEPR Discussion Papers 10104, C.E.P.R. Discussion Papers.
    25. Devpura, Neluka & Narayan, Paresh Kumar & Sharma, Susan Sunila, 2019. "Structural instability and predictability," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 63(C).
    26. Nuno Silva, 2015. "Time-Varying Stock Return Predictability: The Eurozone Case," Notas Económicas, Faculty of Economics, University of Coimbra, issue 41, pages 28-38, June.
    27. Carlo A. Favero & Arie E. Gozluklu & Andrea Tamoni, 2010. "Demographic Trends, the Dividend-Price Ratio and the Predictability of Long-Run Stock Market Returns," Working Papers 360, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    28. Tom Boot & Andreas Pick, 2017. "A near optimal test for structural breaks when forecasting under square error loss," Tinbergen Institute Discussion Papers 17-039/III, Tinbergen Institute.
    29. Narayan, Paresh Kumar & Narayan, Seema & Thuraisamy, Kannan Sivananthan, 2014. "Can institutions and macroeconomic factors predict stock returns in emerging markets?," Emerging Markets Review, Elsevier, vol. 19(C), pages 77-95.
    30. Scholz, Michael & Nielsen, Jens Perch & Sperlich, Stefan, 2015. "Nonparametric prediction of stock returns based on yearly data: The long-term view," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 143-155.
    31. Gungor, Sermin & Luger, Richard, 2020. "Small-sample tests for stock return predictability with possibly non-stationary regressors and GARCH-type effects," Journal of Econometrics, Elsevier, vol. 218(2), pages 750-770.
    32. Salisu, Afees A. & Adekunle, Wasiu & Alimi, Wasiu A. & Emmanuel, Zachariah, 2019. "Predicting exchange rate with commodity prices: New evidence from Westerlund and Narayan (2015) estimator with structural breaks and asymmetries," Resources Policy, Elsevier, vol. 62(C), pages 33-56.
    33. Awijen, Haithem & Ben Zaied, Younes & Ben Lahouel, Béchir & Khlifi, Foued, 2023. "Machine learning for US cross-industry return predictability under information uncertainty," Research in International Business and Finance, Elsevier, vol. 64(C).
    34. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
    35. Pierdzioch, Christian & Risse, Marian & Rohloff, Sebastian, 2014. "The international business cycle and gold-price fluctuations," The Quarterly Review of Economics and Finance, Elsevier, vol. 54(2), pages 292-305.
    36. Smith, Simon C., 2021. "International stock return predictability," International Review of Financial Analysis, Elsevier, vol. 78(C).
    37. Georgiev, I & Harvey, DI & Leybourne, SJ & Taylor, AM, 2018. "Testing for Parameter Instability in Predictive Regression Models," Essex Finance Centre Working Papers 21162, University of Essex, Essex Business School.
    38. Chiquoine, Benjamin & Hjalmarsson, Erik, 2009. "Jackknifing stock return predictions," Journal of Empirical Finance, Elsevier, vol. 16(5), pages 793-803, December.
    39. Carlos Carvalho & Jared D. Fisher & Davide Pettenuzzo, 2018. "Optimal Asset Allocation with Multivariate Bayesian Dynamic Linear Models," Working Papers 123, Brandeis University, Department of Economics and International Business School.
    40. Sun, Yuying & Hong, Yongmiao & Wang, Shouyang & Zhang, Xinyu, 2023. "Penalized time-varying model averaging," Journal of Econometrics, Elsevier, vol. 235(2), pages 1355-1377.
    41. Paulo M.M. Rodrigues & Matei Demetrescu, 2019. "Testing for Episodic Predictability in Stock Returns," Working Papers w201906, Banco de Portugal, Economics and Research Department.
    42. Hui Hong & Fergal O'Brien & James Ryan, 2014. "Inflation And The Subsequent Timing Of The Chinese Stock Market," Asian Academy of Management Journal of Accounting and Finance (AAMJAF), Penerbit Universiti Sains Malaysia, vol. 10(2), pages 13-35.
    43. Giorgio Canarella & Stephen M. Miller & Stephen K. Pollard, 2014. "Unemployment Rate Hysteresis and the Great Recession: Exploring the Metropolitan Evidence," Working Papers 1403, University of Nevada, Las Vegas , Department of Economics.
    44. Bätje, Fabian & Menkhoff, Lukas, 2016. "Predicting the equity premium via its components," VfS Annual Conference 2016 (Augsburg): Demographic Change 145789, Verein für Socialpolitik / German Economic Association.
    45. Tom Engsted & Thomas Q. Pedersen, 2009. "The dividend-price ratio does predict dividend growth: International evidence," CREATES Research Papers 2009-36, Department of Economics and Business Economics, Aarhus University.
    46. Timmermann, Allan, 2018. "Forecasting Methods in Finance," CEPR Discussion Papers 12692, C.E.P.R. Discussion Papers.
    47. Boucher, C. & Jasinski, A. & Tokpavi, S., 2023. "Conditional mean reversion of financial ratios and the predictability of returns," Journal of International Money and Finance, Elsevier, vol. 137(C).
    48. Yannick Hoga, 2024. "Persistence-Robust Break Detection in Predictive Quantile and CoVaR Regressions," Papers 2410.05861, arXiv.org.
    49. Kalli, Maria & Griffin, Jim E., 2014. "Time-varying sparsity in dynamic regression models," Journal of Econometrics, Elsevier, vol. 178(2), pages 779-793.
    50. Yu, Deshui & Chen, Li, 2024. "Local predictability of stock returns and cash flows," Journal of Empirical Finance, Elsevier, vol. 77(C).
    51. Schrimpf, Andreas & Wang, Qingwei, 2010. "A reappraisal of the leading indicator properties of the yield curve under structural instability," International Journal of Forecasting, Elsevier, vol. 26(4), pages 836-857, October.
    52. Roberto Gómez‐Cram, 2022. "Late to Recessions: Stocks and the Business Cycle," Journal of Finance, American Finance Association, vol. 77(2), pages 923-966, April.
    53. Waldenström, Daniel & Frey, Bruno S., 2006. "Using Markets to Measure Pre-War Threat Assessments: The Nordic Countries Facing World War II," Working Paper Series 676, Research Institute of Industrial Economics.
    54. Leland E. Farmer & Lawrence Schmidt & Allan Timmermann, 2023. "Pockets of Predictability," Journal of Finance, American Finance Association, vol. 78(3), pages 1279-1341, June.
    55. Massimo Guidolin & Manuela Pedio, 2022. "Switching Coefficients or Automatic Variable Selection: An Application in Forecasting Commodity Returns," Forecasting, MDPI, vol. 4(1), pages 1-32, February.
    56. John Cotter & Emmanuel Eyiah-Donkor & Valerio Potì, 2023. "Commodity futures return predictability and intertemporal asset pricing," Post-Print hal-04192933, HAL.
    57. Della Corte, Pasquale & Sarno, Lucio & Valente, Giorgio, 2010. "A century of equity premium predictability and the consumption-wealth ratio: An international perspective," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 313-331, June.
    58. Chang-Jin Kim & Cheolbeom Park, 2012. "Disappearing Dividends: Implications for the Dividend-Price Ratio and Return Predictability," Discussion Paper Series 1205, Institute of Economic Research, Korea University.
    59. John M Maheu & Thomas H McCurdy, 2007. "How useful are historical data for forecasting the long-run equity return distribution?," Working Papers tecipa-293, University of Toronto, Department of Economics.
    60. Andrew Ang & Dennis Kristensen, 2011. "Testing Conditional Factor Models," NBER Working Papers 17561, National Bureau of Economic Research, Inc.
    61. Rounaghi, Mohammad Mahdi & Nassir Zadeh, Farzaneh, 2016. "Investigation of market efficiency and Financial Stability between S&P 500 and London Stock Exchange: Monthly and yearly Forecasting of Time Series Stock Returns using ARMA model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 10-21.
    62. Daniel Mantilla-García & Vijay Vaidyanathan, 2017. "Predicting stock returns in the presence of uncertain structural changes and sample noise," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 31(3), pages 357-391, August.
    63. Casas Villalba, Maria Isabel, 2020. "Adaptative predictability of stock market returns," DES - Working Papers. Statistics and Econometrics. WS 31648, Universidad Carlos III de Madrid. Departamento de Estadística.
    64. Russell Davidson & Niels S. Grønborg, 2018. "Time-varying parameters: New test tailored to applications in finance and macroeconomics," CREATES Research Papers 2018-22, Department of Economics and Business Economics, Aarhus University.
    65. David G. McMillan, 2017. "Stock return predictability: the role of inflation and threshold dynamics," International Review of Applied Economics, Taylor & Francis Journals, vol. 31(3), pages 357-375, May.
    66. Chen, Haiqiang & Fang, Ying & Li, Yingxing, 2015. "Estimation And Inference For Varying-Coefficient Models With Nonstationary Regressors Using Penalized Splines," Econometric Theory, Cambridge University Press, vol. 31(4), pages 753-777, August.
    67. Nima Nonejad, 2021. "An Overview Of Dynamic Model Averaging Techniques In Time‐Series Econometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 566-614, April.
    68. Mwasi Paza Mboya & Philipp Sibbertsen, 2023. "Optimal forecasts in the presence of discrete structural breaks under long memory," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1889-1908, November.
    69. Tae-Hwy Lee & Aman Ullah & He Wang, 2024. "The second-order bias and mean squared error of quantile regression estimators," Indian Economic Review, Springer, vol. 59(1), pages 11-68, October.
    70. Kirby, Chris, 2019. "The value premium and expected business conditions," Finance Research Letters, Elsevier, vol. 30(C), pages 360-366.
    71. Zongwu Cai & Seong Yeon Chang, 2018. "A New Test In A Predictive Regression with Structural Breaks," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201811, University of Kansas, Department of Economics, revised Dec 2018.
    72. Jordan, Steven J. & Vivian, Andrew & Wohar, Mark E., 2017. "Forecasting market returns: bagging or combining?," International Journal of Forecasting, Elsevier, vol. 33(1), pages 102-120.
    73. Thomadakis, Apostolos, 2016. "Do Combination Forecasts Outperform the Historical Average? Economic and Statistical Evidence," MPRA Paper 71589, University Library of Munich, Germany.
    74. Tu, Yundong & Xie, Xinling, 2023. "Penetrating sporadic return predictability," Journal of Econometrics, Elsevier, vol. 237(1).
    75. Hammerschmid, Regina & Lohre, Harald, 2018. "Regime shifts and stock return predictability," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 138-160.
    76. Atsushi Inoue & Barbara Rossi, 2011. "Out-of-sample forecast tests robust to the choice of window size," Working Papers 11-31, Federal Reserve Bank of Philadelphia.
    77. Yin, Anwen, 2020. "Equity premium prediction and optimal portfolio decision with Bagging," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    78. Erik Hjalmarsson, 2008. "Predicting global stock returns," International Finance Discussion Papers 933, Board of Governors of the Federal Reserve System (U.S.).
    79. Chang, Seong Yeon, 2020. "A new test of asset return predictability with an unstable predictor," Economics Letters, Elsevier, vol. 196(C).
    80. Horia – Dumitru CRISTEA & Cecilia – Nicoleta ANIS, 2012. "Sectoral Study of the Correlation Risk – Return for Romanian Companies," Risk in Contemporary Economy, "Dunarea de Jos" University of Galati, Faculty of Economics and Business Administration, pages 289-292.
    81. Oliver Linton & Anisha Ghosh, 2007. "Consistent Estimation of the Risk-Return Tradeoff in the Presence of Measurement Error," FMG Discussion Papers dp605, Financial Markets Group.
    82. Christian Pierdzioch & Daniel Hartmann, 2013. "Forecasting Eurozone real-estate returns," Applied Financial Economics, Taylor & Francis Journals, vol. 23(14), pages 1185-1196, July.
    83. Henkel, Sam James & Martin, J. Spencer & Nardari, Federico, 2011. "Time-varying short-horizon predictability," Journal of Financial Economics, Elsevier, vol. 99(3), pages 560-580, March.
    84. Christis Katsouris, 2023. "Predictability Tests Robust against Parameter Instability," Papers 2307.15151, arXiv.org.
    85. Chevillon, Guillaume, 2016. "Multistep forecasting in the presence of location shifts," International Journal of Forecasting, Elsevier, vol. 32(1), pages 121-137.
    86. Massimo Guidolin & Carrie Fangzhou Na, 2007. "The economic and statistical value of forecast combinations under regime switching: an application to predictable U.S. returns," Working Papers 2006-059, Federal Reserve Bank of St. Louis.
    87. Valeriy Zakamulin & Javier Giner, 2020. "Trend following with momentum versus moving averages: a tale of differences," Quantitative Finance, Taylor & Francis Journals, vol. 20(6), pages 985-1007, June.
    88. Daniel Waldenstr�m & Bruno S. Frey, 2007. "Did Nordic Countries Recognize the Gathering Storm of World War II? Evidence from the Bond Markets," IEW - Working Papers 336, Institute for Empirical Research in Economics - University of Zurich.
    89. Mahdi Moradi & Mehdi Jabbari Nooghabi & Mohammad Mahdi Rounaghi, 2021. "Investigation of fractal market hypothesis and forecasting time series stock returns for Tehran Stock Exchange and London Stock Exchange," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 662-678, January.
    90. Afees A. Salisu & Wasiu Adekunle & Zachariah Emmanuel & Wasiu A. Alimi, 2018. "Predicting exchange rate with commodity prices: The role of structural breaks and asymmetries," Working Papers 055, Centre for Econometric and Allied Research, University of Ibadan.
    91. McMillan, David G., 2014. "Stock return, dividend growth and consumption growth predictability across markets and time: Implications for stock price movement," International Review of Financial Analysis, Elsevier, vol. 35(C), pages 90-101.
    92. Dangl, Thomas & Halling, Michael, 2012. "Predictive regressions with time-varying coefficients," Journal of Financial Economics, Elsevier, vol. 106(1), pages 157-181.
    93. Park, Cheolbeom, 2010. "When does the dividend-price ratio predict stock returns?," Journal of Empirical Finance, Elsevier, vol. 17(1), pages 81-101, January.
    94. Giulia Dal Pra & Massimo Guidolin & Manuela Pedio & Fabiola Vasile, 2016. "Do Regimes in Excess Stock Return Predictability Create Economic Value? An Out-of-Sample Portfolio Analysis," BAFFI CAREFIN Working Papers 1637, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    95. Victoria Atanasov & Stig V. Møller & Richard Priestley, 2020. "Consumption Fluctuations and Expected Returns," Journal of Finance, American Finance Association, vol. 75(3), pages 1677-1713, June.
    96. Davide Pettenuzzo & Allan G. Timmermann & Rossen I. Valkanov, 2008. "Return Predictability under Equilibrium Constraints on the Equity Premium," Working Papers 37, Brandeis University, Department of Economics and International Business School.
    97. Pettenuzzo, Davide & Timmermann, Allan, 2011. "Predictability of stock returns and asset allocation under structural breaks," Journal of Econometrics, Elsevier, vol. 164(1), pages 60-78, September.
    98. Rossi, Barbara & Inoue, Atsushi & Jin, Lu, 2014. "Window Selection for Out-of-Sample Forecasting with Time-Varying Parameters," CEPR Discussion Papers 10168, C.E.P.R. Discussion Papers.
    99. Virbickaitė, Audronė & Frey, Christoph & Macedo, Demian N., 2020. "Bayesian sequential stock return prediction through copulas," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
    100. Mangee, Nicholas, 2024. "Stock price swings and fundamentals: The role of Knightian uncertainty," International Review of Financial Analysis, Elsevier, vol. 91(C).
    101. Jonathan Iworiso & Spyridon Vrontos, 2020. "On the directional predictability of equity premium using machine learning techniques," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(3), pages 449-469, April.
    102. Chang, Kuang-Liang, 2009. "Do macroeconomic variables have regime-dependent effects on stock return dynamics? Evidence from the Markov regime switching model," Economic Modelling, Elsevier, vol. 26(6), pages 1283-1299, November.
    103. Verdickt, Gertjan, 2020. "Is fertility a leading indicator for stock returns?," Finance Research Letters, Elsevier, vol. 33(C).
    104. Jiawen Xu & Pierre Perron, 2017. "Forecasting in the presence of in and out of sample breaks," Boston University - Department of Economics - Working Papers Series WP2018-014, Boston University - Department of Economics, revised Nov 2018.
    105. Michael Johannes & Arthur Korteweg & Nicholas Polson, 2014. "Sequential Learning, Predictability, and Optimal Portfolio Returns," Journal of Finance, American Finance Association, vol. 69(2), pages 611-644, April.
    106. Jessica A. Wachter & Missaka Warusawitharana, 2006. "Predictable returns and asset allocation: Should a skeptical investor time the market?," 2006 Meeting Papers 22, Society for Economic Dynamics.
    107. Dorra Zouari & Achraf Ghorbel & Sonia Ghorbel-Zouari & Younes Boujelbène, 2014. "Volatility spillovers and dynamic correlation between liquidity risk factors in Tunisian banks," International Journal of Managerial and Financial Accounting, Inderscience Enterprises Ltd, vol. 6(1), pages 1-26.
    108. Timmermann, Allan, 2008. "Elusive return predictability," International Journal of Forecasting, Elsevier, vol. 24(1), pages 1-18.
    109. Lawrenz, Jochen & Zorn, Josef, 2017. "Predicting international stock returns with conditional price-to-fundamental ratios," Journal of Empirical Finance, Elsevier, vol. 43(C), pages 159-184.
    110. Inoue, Atsushi & Jin, Lu & Rossi, Barbara, 2017. "Rolling window selection for out-of-sample forecasting with time-varying parameters," Journal of Econometrics, Elsevier, vol. 196(1), pages 55-67.
    111. Sjoerd van den Hauwe & Richard Paap & Dick J.C. van Dijk, 2011. "An Alternative Bayesian Approach to Structural Breaks in Time Series Models," Tinbergen Institute Discussion Papers 11-023/4, Tinbergen Institute.
    112. David G. McMillan, 2021. "Forecasting sector stock market returns," Journal of Asset Management, Palgrave Macmillan, vol. 22(4), pages 291-300, July.
    113. Deshui Yu & Yayi Yan, 2023. "Joint dynamics of stock returns and cash flows: A time‐varying present‐value framework," Financial Management, Financial Management Association International, vol. 52(3), pages 513-541, September.
    114. Luo, Shikong & Yan, Xinyan & Yang, Haoyi, 2021. "Let’s take a smooth break: Stock return predictability revisited," International Review of Economics & Finance, Elsevier, vol. 75(C), pages 300-314.
    115. Seema Narayan & Russell Smyth, 2015. "The Financial Econometrics of Price Discovery and Predictability," Monash Economics Working Papers 06-15, Monash University, Department of Economics.
    116. Lyócsa, Štefan & Molnár, Peter, 2018. "Exploiting dependence: Day-ahead volatility forecasting for crude oil and natural gas exchange-traded funds," Energy, Elsevier, vol. 155(C), pages 462-473.
    117. Çakmaklı, Cem & van Dijk, Dick, 2016. "Getting the most out of macroeconomic information for predicting excess stock returns," International Journal of Forecasting, Elsevier, vol. 32(3), pages 650-668.
    118. Ilias Tsiakas & Jiahan Li & Haibin Zhang, 2020. "Equity Premium Prediction and the State of the Economy," Working Paper series 20-16, Rimini Centre for Economic Analysis.
    119. Hollmayr, Josef & Kühl, Michael, 2016. "Learning about banks' net worth and the slow recovery after the financial crisis," Discussion Papers 39/2016, Deutsche Bundesbank.
    120. Yaein Baek, 2018. "Estimation of a Structural Break Point in Linear Regression Models," Papers 1811.03720, arXiv.org, revised Jun 2020.
    121. Davide Pettenuzzo & Allan Timmermann & Rossen Valkanov, 2013. "Forecasting Stock Returns under Economic Constraints," Working Papers 57, Brandeis University, Department of Economics and International Business School.
    122. Devpura, Neluka & Narayan, Paresh Kumar & Sharma, Susan Sunila, 2018. "Is stock return predictability time-varying?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 52(C), pages 152-172.
    123. Yoontae Jeon & Thomas H. McCurdy, 2017. "Time-Varying Window Length for Correlation Forecasts," Econometrics, MDPI, vol. 5(4), pages 1-29, December.
    124. Mykola Babiak & Jozef Barunik, 2020. "Deep Learning, Predictability, and Optimal Portfolio Returns," CERGE-EI Working Papers wp677, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    125. Anwen Yin, 2024. "Predictive model averaging with parameter instability and heteroskedasticity," Bulletin of Economic Research, Wiley Blackwell, vol. 76(2), pages 418-442, April.
    126. Stephan Jank, 2015. "Changes in the Composition of Publicly Traded Firms: Implications for the Dividend-Price Ratio and Return Predictability," Management Science, INFORMS, vol. 61(6), pages 1362-1377, June.
    127. Nonejad, Nima, 2021. "Predicting equity premium using dynamic model averaging. Does the state–space representation matter?," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    128. Zhu, Xiaoneng & Zhu, Jie, 2013. "Predicting stock returns: A regime-switching combination approach and economic links," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4120-4133.
    129. Diaz, Juan & Duarte, Diogo & Galindo, Hamilton & Montecinos, Alexis & Truffa, Santiago, 2021. "The importance of large shocks to return predictability," Pacific-Basin Finance Journal, Elsevier, vol. 68(C).
    130. Hui Hong & Zhicun Bian & Chien-Chiang Lee, 2021. "COVID-19 and instability of stock market performance: evidence from the U.S," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-18, December.
    131. Amit K. Sinha, 2021. "The reliability of geometric Brownian motion forecasts of S&P500 index values," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1444-1462, December.
    132. Yousuf, Kashif & Ng, Serena, 2021. "Boosting high dimensional predictive regressions with time varying parameters," Journal of Econometrics, Elsevier, vol. 224(1), pages 60-87.
    133. Narayan, Paresh Kumar & Liu, Ruipeng, 2018. "A new GARCH model with higher moments for stock return predictability," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 56(C), pages 93-103.
    134. Hong, Hui & Chen, Naiwei & O’Brien, Fergal & Ryan, James, 2018. "Stock return predictability and model instability: Evidence from mainland China and Hong Kong," The Quarterly Review of Economics and Finance, Elsevier, vol. 68(C), pages 132-142.
    135. Salisu, Afees A. & Swaray, Raymond & Oloko, Tirimisiyu F., 2019. "Improving the predictability of the oil–US stock nexus: The role of macroeconomic variables," Economic Modelling, Elsevier, vol. 76(C), pages 153-171.
    136. Boriss Siliverstovs, 2015. "Dissecting Models' Forecasting Performance," KOF Working papers 15-397, KOF Swiss Economic Institute, ETH Zurich.
    137. Cenesizoglu, Tolga & Timmermann, Allan, 2012. "Do return prediction models add economic value?," Journal of Banking & Finance, Elsevier, vol. 36(11), pages 2974-2987.
    138. Yin, Anwen, 2019. "Out-of-sample equity premium prediction in the presence of structural breaks," International Review of Financial Analysis, Elsevier, vol. 65(C).
    139. Massacci, Daniele, 2013. "A switching model with flexible threshold variable: With an application to nonlinear dynamics in stock returns," Economics Letters, Elsevier, vol. 119(2), pages 199-203.
    140. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    141. Chi‐Hsiou Hung, 2008. "Return Predictability of Higher‐Moment CAPM Market Models," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 35(7‐8), pages 998-1022, September.
    142. David Alan Peel & Pantelis Promponas, 2016. "Forecasting the nominal exchange rate movements in a changing world. The case of the U.S. and the U.K," Working Papers 144439514, Lancaster University Management School, Economics Department.
    143. Daniel Borup & Martin Thyrsgaard, 2017. "Statistical tests for equal predictive ability across multiple forecasting methods," CREATES Research Papers 2017-19, Department of Economics and Business Economics, Aarhus University.
    144. Cai, Zongwu & Wang, Yunfei, 2014. "Testing predictive regression models with nonstationary regressors," Journal of Econometrics, Elsevier, vol. 178(P1), pages 4-14.
    145. Stefano Cassella & Huseyin Gulen, 2018. "Extrapolation Bias and the Predictability of Stock Returns by Price-Scaled Variables," The Review of Financial Studies, Society for Financial Studies, vol. 31(11), pages 4345-4397.
    146. Yu, Deshui & Huang, Difang, 2023. "Cross-sectional uncertainty and expected stock returns," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 321-340.
    147. Gantungalag Altansukh & Denise R. Osborn, 2022. "Using structural break inference for forecasting time series," Empirical Economics, Springer, vol. 63(1), pages 1-41, July.
    148. Zhou, Weilun & Gao, Jiti & Harris, David & Kew, Hsein, 2024. "Semi-parametric single-index predictive regression models with cointegrated regressors," Journal of Econometrics, Elsevier, vol. 238(1).
    149. McMillan, David G., 2019. "Stock return predictability: Using the cyclical component of the price ratio," Research in International Business and Finance, Elsevier, vol. 48(C), pages 228-242.
    150. Nima Nonejad, 2021. "Bayesian model averaging and the conditional volatility process: an application to predicting aggregate equity returns by conditioning on economic variables," Quantitative Finance, Taylor & Francis Journals, vol. 21(8), pages 1387-1411, August.
    151. Atanasov, Victoria, 2018. "World output gap and global stock returns," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 181-197.
    152. Smith, Simon C. & Timmermann, Allan, 2022. "Have risk premia vanished?," Journal of Financial Economics, Elsevier, vol. 145(2), pages 553-576.
    153. Tae-Hwy Lee & Aman Ullah & He Wang, 2023. "The Second-order Bias and Mean Squared Error of Quantile Regression Estimators," Working Papers 202313, University of California at Riverside, Department of Economics.
    154. David I. Harvey & Stephen J. Leybourne & Robert Sollis & A.M. Robert Taylor, 2021. "Real‐time detection of regimes of predictability in the US equity premium," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(1), pages 45-70, January.
    155. Boot, Tom & Pick, Andreas, 2020. "Does modeling a structural break improve forecast accuracy?," Journal of Econometrics, Elsevier, vol. 215(1), pages 35-59.
    156. Cathy Yi†Hsuan Chen & Thomas C. Chiang, 2016. "Empirical Analysis of the Intertemporal Relationship between Downside Risk and Expected Returns: Evidence from Time†varying Transition Probability Models," European Financial Management, European Financial Management Association, vol. 22(5), pages 749-796, November.
    157. Jennie Bai, 2010. "Equity premium predictions with adaptive macro indexes," Staff Reports 475, Federal Reserve Bank of New York.
    158. Allan Timmermann, 2018. "Forecasting Methods in Finance," Annual Review of Financial Economics, Annual Reviews, vol. 10(1), pages 449-479, November.
    159. Hartmann, Daniel & Kempa, Bernd & Pierdzioch, Christian, 2006. "Economic and Financial Crises and the Predictability of U.S. Stock Returns," MPRA Paper 561, University Library of Munich, Germany.
    160. Kirt Butler & Katsushi Okada, 2009. "The relative contribution of conditional mean and volatility in bivariate returns to international stock market indices," Applied Financial Economics, Taylor & Francis Journals, vol. 19(1), pages 1-15.
    161. Barras, Laurent, 2007. "International conditional asset allocation under specification uncertainty," Journal of Empirical Finance, Elsevier, vol. 14(4), pages 443-464, September.
    162. McMillan, David G., 2019. "Predicting firm level stock returns: Implications for asset pricing and economic links," The British Accounting Review, Elsevier, vol. 51(4), pages 333-351.
    163. Dichtl, Hubert & Drobetz, Wolfgang & Neuhierl, Andreas & Wendt, Viktoria-Sophie, 2021. "Data snooping in equity premium prediction," International Journal of Forecasting, Elsevier, vol. 37(1), pages 72-94.
    164. Daniel Borup & Jonas N. Eriksen & Mads M. Kjær & Martin Thyrsgaard, 2024. "Predicting Bond Return Predictability," Management Science, INFORMS, vol. 70(2), pages 931-951, February.
    165. Jiawen Xu & Pierre Perron, 2023. "Forecasting in the presence of in-sample and out-of-sample breaks," Empirical Economics, Springer, vol. 64(6), pages 3001-3035, June.
    166. Athambawa Jahfer & Abdul Hameed Mulafara, 2016. "Dividend policy and share price volatility: evidence from Colombo stock market," International Journal of Managerial and Financial Accounting, Inderscience Enterprises Ltd, vol. 8(2), pages 97-108.
    167. Jing Tian & Qing Zhou, 2018. "Improving equity premium forecasts by incorporating structural break uncertainty," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 58(S1), pages 619-656, November.
    168. Angelidis, Timotheos & Tessaromatis, Nikolaos, 2009. "Idiosyncratic risk matters! A regime switching approach," International Review of Economics & Finance, Elsevier, vol. 18(1), pages 132-141, January.
    169. Dladla, Pholile & Malikane, Christopher, 2019. "Stock return predictability: Evidence from a structural model," International Review of Economics & Finance, Elsevier, vol. 59(C), pages 412-424.
    170. Salisu, Afees A. & Ndako, Umar B. & Oloko, Tirimisiyu F., 2019. "Assessing the inflation hedging of gold and palladium in OECD countries," Resources Policy, Elsevier, vol. 62(C), pages 357-377.
    171. Procasky, William J. & Yin, Anwen, 2023. "Identifying the true nature of price discovery and cross-market informational flow in the investment grade CDS and equity markets," The North American Journal of Economics and Finance, Elsevier, vol. 64(C).
    172. Rapach, David E. & Ringgenberg, Matthew C. & Zhou, Guofu, 2016. "Short interest and aggregate stock returns," Journal of Financial Economics, Elsevier, vol. 121(1), pages 46-65.
    173. Mariia Artemova & Francisco Blasques & Siem Jan Koopman & Zhaokun Zhang, 2021. "Forecasting in a changing world: from the great recession to the COVID-19 pandemic," Tinbergen Institute Discussion Papers 21-006/III, Tinbergen Institute.
    174. Wei, Jie & Zhang, Yonghui, 2020. "A time-varying diffusion index forecasting model," Economics Letters, Elsevier, vol. 193(C).
    175. William J. Procasky & Anwen Yin, 2022. "Forecasting high‐yield equity and CDS index returns: Does observed cross‐market informational flow have predictive power?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(8), pages 1466-1490, August.
    176. Joscha Beckmann & Rainer Schüssler, 2014. "Forecasting Equity Premia using Bayesian Dynamic Model Averaging," CQE Working Papers 2914, Center for Quantitative Economics (CQE), University of Muenster.

  31. Asger Lunde & Allan Timmermann, 2005. "Completion time structures of stock price movements," Annals of Finance, Springer, vol. 1(3), pages 293-326, August.

    Cited by:

    1. Bastianin, Andrea & Conti, Francesca & Manera, Matteo, 2016. "The Impacts of Oil Price Shocks on Stock Market Volatility: Evidence from the G7 Countries," Energy: Resources and Markets 230682, Fondazione Eni Enrico Mattei (FEEM).
    2. Hayette Gatfaoui, 2010. "Investigating the dependence structure between credit default swap spreads and the U.S. financial market," Annals of Finance, Springer, vol. 6(4), pages 511-535, October.
    3. Andrea BASTIANIN & Matteo MANERA, 2015. "How Does Stock Market Volatility React to Oil Shocks?," Departmental Working Papers 2015-09, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    4. Nolte, Ingmar & Voev, Valeri, 2007. "Panel intensity models with latent factors: An application to the trading dynamics on the foreign exchange market," CoFE Discussion Papers 07/02, University of Konstanz, Center of Finance and Econometrics (CoFE).
    5. Pedro N. Rodríguez, & Simón Sosvilla-Rivero, 2006. "Forecasting Stock Price Changes: Is it Possible?," Working Papers 2006-22, FEDEA.

  32. Allan Timmermann & David Blake, 2005. "International Asset Allocation with Time-Varying Investment Opportunities," The Journal of Business, University of Chicago Press, vol. 78(1), pages 71-98, January.
    See citations under working paper version above.
  33. Pesaran, M. Hashem & Timmermann, Allan, 2005. "Small sample properties of forecasts from autoregressive models under structural breaks," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 183-217.
    See citations under working paper version above.
  34. Pesaran, Hashem & Timmermann, Allan, 2005. "Real-Time Econometrics," Econometric Theory, Cambridge University Press, vol. 21(1), pages 212-231, February.
    See citations under working paper version above.
  35. Graham Elliott & Allan Timmermann, 2005. "Optimal Forecast Combination Under Regime Switching ," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 46(4), pages 1081-1102, November.
    See citations under working paper version above.
  36. Massimo Guidolin & Allan Timmermann, 2005. "Economic Implications of Bull and Bear Regimes in UK Stock and Bond Returns," Economic Journal, Royal Economic Society, vol. 115(500), pages 111-143, January.

    Cited by:

    1. Zeng, Songlin & Bec, Frédérique, 2015. "Do stock returns rebound after bear markets? An empirical analysis from five OECD countries," Journal of Empirical Finance, Elsevier, vol. 30(C), pages 50-61.
    2. Michael T. Owyang & Jeremy Piger & Daniel Soques, 2022. "Contagious switching," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(2), pages 415-432, March.
    3. J. Cuñado & L. Gil-Alana & F. Gracia, 2009. "US stock market volatility persistence: evidence before and after the burst of the IT bubble," Review of Quantitative Finance and Accounting, Springer, vol. 33(3), pages 233-252, October.
    4. Bulla, Jan & Mergner, Sascha & Bulla, Ingo & Sesboüé, André & Chesneau, Christophe, 2010. "Markov-switching Asset Allocation: Do Profitable Strategies Exist?," MPRA Paper 21154, University Library of Munich, Germany.
    5. Mamadou Cisse & Mamadou Konte & Mohamed Toure & Smael Afolabi Assani, 2019. "Contribution to the Valuation of BRVM’s Assets: A Conditional CAPM Approach," JRFM, MDPI, vol. 12(1), pages 1-15, February.
    6. Thomas J. Flavin and Ekaterini Panopoulou, 2007. "Detecting Shift and Pure Contagion in East Asian Equity Markets: A Unified Approach," The Institute for International Integration Studies Discussion Paper Series iiisdp236, IIIS.
    7. Fletcher, Jonathan, 2011. "Do optimal diversification strategies outperform the 1/N strategy in U.K. stock returns?," International Review of Financial Analysis, Elsevier, vol. 20(5), pages 375-385.
    8. Jesus Crespo Cuaresma & Ines Fortin & Jaroslava Hlouskova & Michael Obersteiner, 2024. "Regime‐dependent commodity price dynamics: A predictive analysis," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(7), pages 2822-2847, November.
    9. Heidari , Hassan & Refah-Kahriz, Arash & Hashemi Berenjabadi, Nayyer, 2018. "Dynamic Relationship between Macroeconomic Variables and Stock Return Volatility in Tehran Stock Exchange: Multivariate MS ARMA GARCH Approach," Quarterly Journal of Applied Theories of Economics, Faculty of Economics, Management and Business, University of Tabriz, vol. 5(2), pages 223-250, August.
    10. Don Bredin & Stuart Hyde, 2008. "Regime Change and the Role of International Markets on the Stock Returns of Small Open Economies," European Financial Management, European Financial Management Association, vol. 14(2), pages 315-346, March.
    11. Dai, Zhifeng & Zhang, Xiaotong & Li, Tingyu, 2023. "Forecasting stock return volatility in data-rich environment: A new powerful predictor," The North American Journal of Economics and Finance, Elsevier, vol. 64(C).
    12. Thomas J. Flavin & Ekaterini Panopoulou & Deren Unalmis, 2008. "On the Stability of Domestic Financial Market Linkages in the Presence of time-varying Volatility," Working Papers 0810, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
    13. Carolina Fugazza & Massimo Guidolin & Giovanna Nicodano, 2009. "Time and Risk Diversification in Real Estate Investments: Assessing the Ex Post Economic Value," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 37(3), pages 341-381, September.
    14. Chang, Kuang-Liang, 2016. "Does the return-state-varying relationship between risk and return matter in modeling the time series process of stock return?," International Review of Economics & Finance, Elsevier, vol. 42(C), pages 72-87.
    15. Jilber Urbina & Miguel Santolino & Montserrat Guillen, 2021. "Covariance Principle for Capital Allocation: A Time-Varying Approach," Mathematics, MDPI, vol. 9(16), pages 1-13, August.
    16. John M Maheu & Thomas H McCurdy & Yong Song, 2009. "Extracting bull and bear markets from stock returns," Working Papers tecipa-369, University of Toronto, Department of Economics.
    17. Frédérique Bec & Annabelle de Gaye, 2019. "Le modèle autorégressif autorégressif à seuil avec effet rebond : Une application aux rendements boursiers français et américains ," Working Papers hal-02014663, HAL.
    18. Massimo Guidolin & Stuart Hyde, 2009. "What tames the Celtic Tiger? Portfolio implications from a Multivariate Markov Switching model," Applied Financial Economics, Taylor & Francis Journals, vol. 19(6), pages 463-488.
    19. Turtle, H.J. & Zhang, Chengping, 2012. "Time-varying performance of international mutual funds," Journal of Empirical Finance, Elsevier, vol. 19(3), pages 334-348.
    20. Gil-Alana, Luis A. & Shittu, Olanrewaju I. & Yaya, OlaOluwa S., 2014. "On the persistence and volatility in European, American and Asian stocks bull and bear markets," Journal of International Money and Finance, Elsevier, vol. 40(C), pages 149-162.
    21. Syed Jawad Hussain Shahzad & Saba Ameer & Muhammad Shahbaz, 2016. "Disaggregating the correlation under bearish and bullish markets: A Quantile-quantile approach," Post-Print hal-02013740, HAL.
    22. Hadhri, Sinda, 2021. "The nexus, downside risk and asset allocation between oil and Islamic stock markets: A cross-country analysis," Energy Economics, Elsevier, vol. 101(C).
    23. Guidolin, Massimo & Ono, Sadayuki, 2006. "Are the dynamic linkages between the macroeconomy and asset prices time-varying?," Journal of Economics and Business, Elsevier, vol. 58(5-6), pages 480-518.
    24. Thomas Flavin & Dolores Lagoa-Varela, 2016. "Do long-term bonds hedge equity risk? Evidence from Spain," Economics Department Working Paper Series n275-16.pdf, Department of Economics, National University of Ireland - Maynooth.
    25. Zhou, Yinggang, 2014. "Modeling the joint dynamics of risk-neutral stock index and bond yield volatilities," Journal of Banking & Finance, Elsevier, vol. 38(C), pages 216-228.
    26. Carolina Fugazza & Massimo Guidolin & Giovanna Nicodano, 2008. "Diversifying in public real estate: The ex-post performance," Journal of Asset Management, Palgrave Macmillan, vol. 8(6), pages 361-373, February.
    27. Massimo Guidolin & Giovanna Nicodano, 2007. "Managing international portfolios with small capitalization stocks," Working Papers 2007-030, Federal Reserve Bank of St. Louis.
    28. Haas, Markus & Mittnik, Stefan, 2008. "Multivariate regimeswitching GARCH with an application to international stock markets," CFS Working Paper Series 2008/08, Center for Financial Studies (CFS).
    29. Chatziantoniou, Ioannis & Filis, George & Floros, Christos, 2017. "Asset prices regime-switching and the role of inflation targeting monetary policy," Global Finance Journal, Elsevier, vol. 32(C), pages 97-112.
    30. Chan, Kalok & Yang, Jian & Zhou, Yinggang, 2018. "Conditional co-skewness and safe-haven currencies: A regime switching approach," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 58-80.
    31. John Fender, 2020. "Beyond the efficient markets hypothesis: Towards a new paradigm," Bulletin of Economic Research, Wiley Blackwell, vol. 72(3), pages 333-351, July.
    32. Anandadeep Mandal & Sunil S. Poshakwale & Gabriel J. Power, 2021. "Do investors gain from forecasting the asymmetric return co‐movements of financial and real assets?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 3246-3268, July.
    33. Apostolos Thomadakis, 2012. "Contagion or Flight-to-Quality Phenomena in Stock and Bond Returns," School of Economics Discussion Papers 0612, School of Economics, University of Surrey.
    34. Meenagh, David & Minford, Patrick & Peel, David, 2007. "Simulating stock returns under switching regimes - A new test of market efficiency," Economics Letters, Elsevier, vol. 94(2), pages 235-239, February.
    35. Donatien Hainaut & Yang Shen & Yan Zeng, 2018. "How do capital structure and economic regime affect fair prices of bank’s equity and liabilities?," Annals of Operations Research, Springer, vol. 262(2), pages 519-545, March.
    36. Angelidis, Timotheos & Degiannakis, Stavros & Filis, George, 2015. "US stock market regimes and oil price shocks," MPRA Paper 80436, University Library of Munich, Germany.
    37. Jonathan Fletcher, 2011. "An Examination of Dynamic Trading Stategies in UK and US Stock Returns," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 38(9-10), pages 1290-1310, November.
    38. Flavin, Thomas J. & Lagoa-Varela, Dolores, 2021. "On the stability of stock-bond comovements across market conditions in the Eurozone periphery," Global Finance Journal, Elsevier, vol. 49(C).
    39. Alfonso Dufour & Andrei Stancu & Simone Varotto, 2014. "The Equity-like Behaviour of Sovereign Bonds," ICMA Centre Discussion Papers in Finance icma-dp2014-16, Henley Business School, University of Reading.
    40. Bulla, Jan, 2009. "Hidden Markov models with t components. Increased persistence and other aspects," MPRA Paper 21830, University Library of Munich, Germany.
    41. Wang Pu & Yixiang Chen & Feng Ma, 2016. "Forecasting the realized volatility in the Chinese stock market: further evidence," Applied Economics, Taylor & Francis Journals, vol. 48(33), pages 3116-3130, July.
    42. Sim, Nicholas, 2016. "Modeling the dependence structures of financial assets through the Copula Quantile-on-Quantile approach," International Review of Financial Analysis, Elsevier, vol. 48(C), pages 31-45.
    43. Roy H. Kwon & Jonathan Y. Li, 2016. "A stochastic semidefinite programming approach for bounds on option pricing under regime switching," Annals of Operations Research, Springer, vol. 237(1), pages 41-75, February.
    44. Guidolin, Massimo & Hyde, Stuart, 2008. "Equity portfolio diversification under time-varying predictability: Evidence from Ireland, the US, and the UK," Journal of Multinational Financial Management, Elsevier, vol. 18(4), pages 293-312, October.
    45. Misheck Mutize & Sean J. Gossel, 2019. "Sovereign Credit Rating Announcement Effects on Foreign Currency Denominated Bond and Equity Markets in Africa," Journal of African Business, Taylor & Francis Journals, vol. 20(1), pages 135-152, January.
    46. Chang, Kuang-Liang, 2012. "The impacts of regime-switching structures and fat-tailed characteristics on the relationship between inflation and inflation uncertainty," Journal of Macroeconomics, Elsevier, vol. 34(2), pages 523-536.
    47. Emrah İ. Çevik & Turhan Korkmaz & Erdal Atukeren, 2012. "Business confidence and stock returns in the USA: a time-varying Markov regime-switching model," Applied Financial Economics, Taylor & Francis Journals, vol. 22(4), pages 299-312, February.
    48. Guidolin, Massimo & Hyde, Stuart & McMillan, David & Ono, Sadayuki, 2009. "Non-linear predictability in stock and bond returns: When and where is it exploitable?," International Journal of Forecasting, Elsevier, vol. 25(2), pages 373-399.
    49. Hainaut, Donatien, 2014. "Impulse control of pension fund contributions, in a regime switching economy," European Journal of Operational Research, Elsevier, vol. 239(3), pages 810-819.
    50. Massimo Guidolin & Stuart Hyde & David McMillan & Sadayuki Ono, 2010. "Does the macroeconomy predict U.K. asset returns in a nonlinear fashion? comprehensive out-of-sample evidence," Working Papers 2010-039, Federal Reserve Bank of St. Louis.
    51. Chang, Kuang-Liang, 2021. "Do U.S. and Japanese uncertainty shocks play important roles in affecting transition mechanisms of Japanese stock market?," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    52. Muhl, Stefan & Talpsepp, Tõnn, 2018. "Faster learning in troubled times: How market conditions affect the disposition effect," The Quarterly Review of Economics and Finance, Elsevier, vol. 68(C), pages 226-236.
    53. Massimo Guidolin & Giovanna Nicodano, 2009. "Small caps in international equity portfolios: the effects of variance risk," Annals of Finance, Springer, vol. 5(1), pages 15-48, January.
    54. Refk Selmi & Christos Kollias & Stephanos Papadamou & Rangan Gupta, 2017. "A Copula-Based Quantile-on-Quantile Regression Approach to Modeling Dependence Structure between Stock and Bond Returns: Evidence from Historical Data of India, South Africa, UK and US," Working Papers 201747, University of Pretoria, Department of Economics.
    55. Flavin, Thomas J. & Panopoulou, Ekaterini, 2009. "On the robustness of international portfolio diversification benefits to regime-switching volatility," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 19(1), pages 140-156, February.
    56. Massimo Guidolin, 2011. "Markov Switching Models in Empirical Finance," Working Papers 415, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    57. Yao Zheng & Peihwang Wei & Eric Osmer, 2022. "The relation between earnings and price momentum: Does it vary across regimes?," Review of Quantitative Finance and Accounting, Springer, vol. 58(3), pages 1145-1213, April.
    58. Thomas Flavin & Ekaterini Panopoulou, 2007. "International Portfolio Diversification and Market Linkages in the presence of regime-switching volatility," Money Macro and Finance (MMF) Research Group Conference 2006 150, Money Macro and Finance Research Group.
    59. Donatien Hainaut & Yan Shen & Yan Zeng, 2016. "How do capital structure and economic regime affect fair prices of bank's equity and liabilities?," Post-Print hal-01394133, HAL.
    60. John M Maheu & Thomas H McCurdy & Yong Song, 2010. "Components of bull and bear markets: bull corrections and bear rallies," Working Papers tecipa-402, University of Toronto, Department of Economics.
    61. Rui Fan & Stephen J. Taylor & Matteo Sandri, 2018. "Density forecast comparisons for stock prices, obtained from high‐frequency returns and daily option prices," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(1), pages 83-103, January.
    62. Massimo Guidolin & Carrie Fangzhou Na, 2007. "The economic and statistical value of forecast combinations under regime switching: an application to predictable U.S. returns," Working Papers 2006-059, Federal Reserve Bank of St. Louis.
    63. José Dias & Sofia Ramos, 2014. "The aftermath of the subprime crisis: a clustering analysis of world banking sector," Review of Quantitative Finance and Accounting, Springer, vol. 42(2), pages 293-308, February.
    64. Bertrand Candelon & Jameel Ahmed & Stefan Straetmans, 2014. "Predicting and Capitalizing on Stock Market Bears in the U.S," Working Papers 2014-409, Department of Research, Ipag Business School.
    65. Dias, José G. & Ramos, Sofia B., 2013. "A core–periphery framework in stock markets of the euro zone," Economic Modelling, Elsevier, vol. 35(C), pages 320-329.
    66. Stavros Degiannakis & Andreas Andrikopoulos & Timotheos Angelidis & Christos Floros, 2013. "Return dispersion, stock market liquidity and aggregate economic activity," Working Papers 166, Bank of Greece.
    67. Gil-Alana, Luis A. & Gupta, Rangan & Shittu, Olanrewaju I. & Yaya, OlaOluwa S., 2018. "Market efficiency of Baltic stock markets: A fractional integration approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 251-262.
    68. Bernardi, Mauro & Maruotti, Antonello & Petrella, Lea, 2017. "Multiple risk measures for multivariate dynamic heavy–tailed models," Journal of Empirical Finance, Elsevier, vol. 43(C), pages 1-32.
    69. Fiorentini, Gabriele & Planas, Christophe & Rossi, Alessandro, 2016. "Skewness and kurtosis of multivariate Markov-switching processes," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 153-159.
    70. Hussain Shahzad, Syed Jawad & Raza, Naveed & Shahbaz, Muhammad & Ali, Azwadi, 2017. "Dependence of stock markets with gold and bonds under bullish and bearish market states," Resources Policy, Elsevier, vol. 52(C), pages 308-319.
    71. Aloui, Chaker & Hammoudeh, Shawkat & Hamida, Hela Ben, 2015. "Price discovery and regime shift behavior in the relationship between sharia stocks and sukuk: A two-state Markov switching analysis," Pacific-Basin Finance Journal, Elsevier, vol. 34(C), pages 121-135.
    72. Chang, Kuang-Liang, 2009. "Do macroeconomic variables have regime-dependent effects on stock return dynamics? Evidence from the Markov regime switching model," Economic Modelling, Elsevier, vol. 26(6), pages 1283-1299, November.
    73. John Fender, 2015. "Towards a General Theory of the Stock Market," Discussion Papers 15-15, Department of Economics, University of Birmingham.
    74. Manuel Ammann & Michael Verhofen, 2006. "The Effect of Market Regimes on Style Allocation," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 20(3), pages 309-337, September.
    75. Timmermann, Allan, 2008. "Elusive return predictability," International Journal of Forecasting, Elsevier, vol. 24(1), pages 1-18.
    76. Donatien Hainaut & Franck Moraux, 2019. "A switching self-exciting jump diffusion process for stock prices," Annals of Finance, Springer, vol. 15(2), pages 267-306, June.
    77. Olivier Courtois & Xiaoshan Su, 2020. "Structural Pricing of CoCos and Deposit Insurance with Regime Switching and Jumps," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 27(4), pages 477-520, December.
    78. Apostolos Thomadakis, 2012. "Measuring Financial Contagion with Extreme Coexceedances," School of Economics Discussion Papers 1112, School of Economics, University of Surrey.
    79. Coakley, Jerry & Fuertes, Ana-Maria, 2006. "Valuation ratios and price deviations from fundamentals," Journal of Banking & Finance, Elsevier, vol. 30(8), pages 2325-2346, August.
    80. Roy Kwon & Jonathan Li, 2016. "A stochastic semidefinite programming approach for bounds on option pricing under regime switching," Annals of Operations Research, Springer, vol. 237(1), pages 41-75, February.
    81. Wang, Ling, 2022. "The dynamics of money supply determination under asset purchase programs: A market-based versus a bank-based financial system," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 79(C).
    82. Joe Brocato & Kenneth Smith, 2012. "Sudden equity price declines and the flight-to-safety phenomenon: additional evidence using daily data," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 36(3), pages 712-727, July.
    83. Carolina Fugazza & Massimo Guidolin & Giovanna Nicodano, 2007. "Investing for the Long-run in European Real Estate," The Journal of Real Estate Finance and Economics, Springer, vol. 34(1), pages 35-80, January.
    84. Angelos Kanas, 2009. "The relation between the equity risk premium and the bond maturity premium in the UK: 1900–2006," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 33(2), pages 111-127, April.
    85. Wai-Mun Chia & Mengling Li & Huanhuan Zheng, 2017. "Behavioral heterogeneity in the Australian housing market," Applied Economics, Taylor & Francis Journals, vol. 49(9), pages 872-885, February.
    86. Hainaut, Donatien & Goutte, Stephane, 2019. "A switching microstructure model for stock prices," LIDAM Reprints ISBA 2019024, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    87. Simmons-Süer, Banu, 2018. "“How relevant is capital structure for aggregate investment? a regime-switching approach”," International Review of Economics & Finance, Elsevier, vol. 53(C), pages 109-117.
    88. Chourdakis, Kyriakos & Dendramis, Yiannis & Tzavalis, Elias, 2014. "Are regime-shift sources of risk priced in the market?," Journal of Empirical Finance, Elsevier, vol. 28(C), pages 151-170.
    89. Thomas Flavin & Ekaterini Panopoulou, 2006. "Shift versus traditional contagion in Asian markets," The Institute for International Integration Studies Discussion Paper Series iiisdp176, IIIS.
    90. Yaojie Zhang & Mengxi He & Yuqi Zhao & Xianfeng Hao, 2023. "Predicting stock realized variance based on an asymmetric robust regression approach," Bulletin of Economic Research, Wiley Blackwell, vol. 75(4), pages 1022-1047, October.
    91. Nyberg, Henri, 2013. "Predicting bear and bull stock markets with dynamic binary time series models," Journal of Banking & Finance, Elsevier, vol. 37(9), pages 3351-3363.
    92. Luis Alberiko & OlaOluwa S. Yaya & Olarenwaju I. Shittu, 2015. "Fractional integration and asymmetric volatility in european, asian and american bull and bear markets. Applications to high frequency stock data," NCID Working Papers 07/2015, Navarra Center for International Development, University of Navarra.
    93. Jun Tu, 2010. "Is Regime Switching in Stock Returns Important in Portfolio Decisions?," Management Science, INFORMS, vol. 56(7), pages 1198-1215, July.
    94. Massimo Guidolin & Stuart Hyde, 2008. "Equity portfolio diversification under time-varying predictability and comovements: evidence from Ireland, the US, and the UK," Working Papers 2008-005, Federal Reserve Bank of St. Louis.
    95. Marika Křepelová & Josef Jablonský, 2013. "Analýza státních dluhopisů jako indikátoru pro akciový trh [Analysis of Government Bonds as an Indicator for Stock Market]," Politická ekonomie, Prague University of Economics and Business, vol. 2013(5), pages 605-622.
    96. Jian Yang & Yinggang Zhou & Zijun Wang, 2010. "Conditional Coskewness in Stock and Bond Markets: Time-Series Evidence," Management Science, INFORMS, vol. 56(11), pages 2031-2049, November.
    97. Bejaoui, Azza & Karaa, Adel, 2016. "Revisiting the bull and bear markets notions in the Tunisian stock market: New evidence from multi-state duration-dependence Markov-switching models," Economic Modelling, Elsevier, vol. 59(C), pages 529-545.
    98. Ayadi, Mohamed A. & Lazrak, Skander & Liao, Yusui & Welch, Robert, 2018. "Performance of fixed-income mutual funds with regime-switching models," The Quarterly Review of Economics and Finance, Elsevier, vol. 69(C), pages 217-231.
    99. Chang, Kuang-Liang & Yu, Shih-Ti, 2013. "Does crude oil price play an important role in explaining stock return behavior?," Energy Economics, Elsevier, vol. 39(C), pages 159-168.
    100. Sim, Nicholas & Zhou, Hongtao, 2015. "Oil prices, US stock return, and the dependence between their quantiles," Journal of Banking & Finance, Elsevier, vol. 55(C), pages 1-8.
    101. Afsaneh Bahrami & Abul Shamsuddin & Katherine Uylangco, 2018. "Out‐of‐sample stock return predictability in emerging markets," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 58(3), pages 727-750, September.
    102. Jan Bulla & Sascha Mergner & Ingo Bulla & André Sesboüé & Christophe Chesneau, 2011. "Markov-switching asset allocation: Do profitable strategies exist?," Journal of Asset Management, Palgrave Macmillan, vol. 12(5), pages 310-321, November.
    103. Li, Dakai, 2024. "Forecasting stock market realized volatility: The role of investor attention to the price of petroleum products," International Review of Economics & Finance, Elsevier, vol. 90(C), pages 115-122.
    104. Taamouti, Abderrahim, 2012. "Moments of multivariate regime switching with application to risk-return trade-off," Journal of Empirical Finance, Elsevier, vol. 19(2), pages 292-308.
    105. Christos Kollias & Stephanos Papadamou & Vangelis Arvanitis, 2013. "Does Terrorism Affect the Stock‐Bond Covariance? Evidence from European Countries," Southern Economic Journal, John Wiley & Sons, vol. 79(4), pages 832-848, April.
    106. Chang, Kuang-Liang, 2010. "House price dynamics, conditional higher-order moments, and density forecasts," Economic Modelling, Elsevier, vol. 27(5), pages 1029-1039, September.
    107. Wang, Yudong & Wei, Yu & Wu, Chongfeng & Yin, Libo, 2018. "Oil and the short-term predictability of stock return volatility," Journal of Empirical Finance, Elsevier, vol. 47(C), pages 90-104.
    108. Hanna, Alan J., 2018. "A top-down approach to identifying bull and bear market states," International Review of Financial Analysis, Elsevier, vol. 55(C), pages 93-110.
    109. Wang, Yudong & Ma, Feng & Wei, Yu & Wu, Chongfeng, 2016. "Forecasting realized volatility in a changing world: A dynamic model averaging approach," Journal of Banking & Finance, Elsevier, vol. 64(C), pages 136-149.
    110. Yang, Jian & Zhou, Yinggang & Wang, Zijun, 2009. "The stock-bond correlation and macroeconomic conditions: One and a half centuries of evidence," Journal of Banking & Finance, Elsevier, vol. 33(4), pages 670-680, April.
    111. Zegadło, Piotr, 2022. "Identifying bull and bear market regimes with a robust rule-based method," Research in International Business and Finance, Elsevier, vol. 60(C).
    112. Cunado, J. & Gil-Alana, L.A. & Gracia, Fernando Perez de, 2010. "Mean reversion in stock market prices: New evidence based on bull and bear markets," Research in International Business and Finance, Elsevier, vol. 24(2), pages 113-122, June.

  37. Sandeep Kapur & Allan Timmermann, 2005. "Relative Performance Evaluation Contracts and Asset Market Equilibrium," Economic Journal, Royal Economic Society, vol. 115(506), pages 1077-1102, October.
    See citations under working paper version above.
  38. Elliott, Graham & Timmermann, Allan, 2004. "Optimal forecast combinations under general loss functions and forecast error distributions," Journal of Econometrics, Elsevier, vol. 122(1), pages 47-79, September. See citations under working paper version above.
  39. Pesaran, M. Hashem & Timmermann, Allan, 2004. "How costly is it to ignore breaks when forecasting the direction of a time series?," International Journal of Forecasting, Elsevier, vol. 20(3), pages 411-425.
    See citations under working paper version above.
  40. Lunde A. & Timmermann A., 2004. "Duration Dependence in Stock Prices: An Analysis of Bull and Bear Markets," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 253-273, July. See citations under working paper version above.
  41. Timmermann, Allan & Granger, Clive W. J., 2004. "Efficient market hypothesis and forecasting," International Journal of Forecasting, Elsevier, vol. 20(1), pages 15-27.
    See citations under working paper version above.
  42. Massimo Guidolin & Allan Timmermann, 2003. "Recursive Modeling of Nonlinear Dynamics in UK Stock Returns," Manchester School, University of Manchester, vol. 71(4), pages 381-395, July.

    Cited by:

    1. Don Bredin & Stuart Hyde, 2008. "Regime Change and the Role of International Markets on the Stock Returns of Small Open Economies," European Financial Management, European Financial Management Association, vol. 14(2), pages 315-346, March.
    2. Massimo Guidolin & Stuart Hyde, 2009. "What tames the Celtic Tiger? Portfolio implications from a Multivariate Markov Switching model," Applied Financial Economics, Taylor & Francis Journals, vol. 19(6), pages 463-488.
    3. Apostolos Thomadakis, 2012. "Contagion or Flight-to-Quality Phenomena in Stock and Bond Returns," School of Economics Discussion Papers 0612, School of Economics, University of Surrey.
    4. Guidolin, Massimo & Hyde, Stuart & McMillan, David & Ono, Sadayuki, 2009. "Non-linear predictability in stock and bond returns: When and where is it exploitable?," International Journal of Forecasting, Elsevier, vol. 25(2), pages 373-399.
    5. Massimo Guidolin & Stuart Hyde & David McMillan & Sadayuki Ono, 2010. "Does the macroeconomy predict U.K. asset returns in a nonlinear fashion? comprehensive out-of-sample evidence," Working Papers 2010-039, Federal Reserve Bank of St. Louis.
    6. Aslanidis, Nektarios & Osborn, Denise R. & Sensier, Marianne, 2008. "Co-movements between US and UK stock prices: the roles of macroeconomic information and time-series varying conditional correlations," Working Papers 2072/8950, Universitat Rovira i Virgili, Department of Economics.
    7. N Aslanidis & D R Osborn & M Sensier, 2003. "Explaining Movements in UK Stock Prices: How Important is the US Market?," Economics Discussion Paper Series 0305, Economics, The University of Manchester.
    8. Nektarios Aslanidis & Denise R. Osborn & Marianne Sensier, 2008. "Comovements between US and UK stock prices: the roles of macroeconomic information and timevarying conditional correlations," Economics Discussion Paper Series 0805, Economics, The University of Manchester.
    9. Nektarios Aslanidis & Denise R. Osborn & Marianne Sensier, 2010. "Co-movements between US and UK stock prices: the role of time-varying conditional correlations," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 15(4), pages 366-380.
    10. Nektarios Aslanidis & Denise Osborn & Marianne Sensier, 2003. "Explaining movements in UK stock prices:," Working Papers 0302, University of Crete, Department of Economics.

  43. Sullivan, Ryan & Timmermann, Allan & White, Halbert, 2003. "Forecast evaluation with shared data sets," International Journal of Forecasting, Elsevier, vol. 19(2), pages 217-227.
    See citations under working paper version above.
  44. Guidolin, Massimo & Timmermann, Allan, 2003. "Option prices under Bayesian learning: implied volatility dynamics and predictive densities," Journal of Economic Dynamics and Control, Elsevier, vol. 27(5), pages 717-769, March.
    See citations under working paper version above.
  45. Pesaran, M. Hashem & Timmermann, Allan, 2002. "Market timing and return prediction under model instability," Journal of Empirical Finance, Elsevier, vol. 9(5), pages 495-510, December.
    See citations under working paper version above.
  46. Sullivan, Ryan & Timmermann, Allan & White, Halbert, 2001. "Dangers of data mining: The case of calendar effects in stock returns," Journal of Econometrics, Elsevier, vol. 105(1), pages 249-286, November.

    Cited by:

    1. Diego Winkelried & Luis A. Iberico, 2018. "Calendar effects in Latin American stock markets," Empirical Economics, Springer, vol. 54(3), pages 1215-1235, May.
    2. Kam Fong Chan & John G. Powell & Jing Shi & Tom Smith, 2018. "Dividend persistence and dividend behaviour," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 58(1), pages 127-147, March.
    3. Mateus, Irina B. & Mateus, Cesario & Todorovic, Natasa, 2019. "Review of new trends in the literature on factor models and mutual fund performance," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 344-354.
    4. Egbers, Tom & Swinkels, Laurens, 2015. "Can implied volatility predict returns on the currency carry trade?," Journal of Banking & Finance, Elsevier, vol. 59(C), pages 14-26.
    5. Ryans Bartens & Shakill Hassan, 2009. "Value, Size and Momentum Portfolios in Real Time: The Cross-Section of South African Stocks," Working Papers 154, Economic Research Southern Africa.
    6. Dichtl, Hubert & Drobetz, Wolfgang, 2015. "Sell in May and Go Away: Still good advice for investors?," International Review of Financial Analysis, Elsevier, vol. 38(C), pages 29-43.
    7. Oleg Rytchkov & Xun Zhong, 2020. "Information Aggregation and P-Hacking," Management Science, INFORMS, vol. 66(4), pages 1605-1626, April.
    8. Andrew Y. Chen & Tom Zimmermann, 2018. "Publication Bias and the Cross-Section of Stock Returns," Finance and Economics Discussion Series 2018-033, Board of Governors of the Federal Reserve System (U.S.).
    9. Kilian, Lutz & Inoue, Atsushi, 2002. "In-Sample or Out-of-Sample Tests of Predictability: Which One Should We Use?," CEPR Discussion Papers 3671, C.E.P.R. Discussion Papers.
    10. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
    11. Doyle, John R. & Chen, Catherine Huirong, 2009. "The wandering weekday effect in major stock markets," Journal of Banking & Finance, Elsevier, vol. 33(8), pages 1388-1399, August.
    12. Pedro Antonio Martín-Cervantes & María del Carmen Valls Martínez, 2023. "Unraveling the relationship between betas and ESG scores through the Random Forests methodology," Risk Management, Palgrave Macmillan, vol. 25(3), pages 1-29, September.
    13. William Ziemba, 2011. "Investing in the turn-of-the-year effect," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 25(4), pages 455-472, December.
    14. Meenagh, David & Minford, Patrick & Peel, David, 2007. "Simulating stock returns under switching regimes - A new test of market efficiency," Economics Letters, Elsevier, vol. 94(2), pages 235-239, February.
    15. Thomas Lux, 2009. "Applications of Statistical Physics in Finance and Economics," Chapters, in: J. Barkley Rosser Jr. (ed.), Handbook of Research on Complexity, chapter 9, Edward Elgar Publishing.
    16. Chatzitzisi, Evanthia & Fountas, Stilianos & Panagiotidis, Theodore, 2021. "Another look at calendar anomalies," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 823-840.
    17. Gencay, Ramazan & Selcuk, Faruk & Ulugulyagci, Abdurrahman, 2003. "High volatility, thick tails and extreme value theory in value-at-risk estimation," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 337-356, October.
    18. Doron Avramov & Guy Kaplanski & Avanidhar Subrahmanyam, 2022. "Postfundamentals Price Drift in Capital Markets: A Regression Regularization Perspective," Management Science, INFORMS, vol. 68(10), pages 7658-7681, October.
    19. Lux, Thomas, 2008. "Applications of statistical physics in finance and economics," Kiel Working Papers 1425, Kiel Institute for the World Economy (IfW Kiel).
    20. Söhnke M. Bartram & Harald Lohre & Peter F. Pope & Ananthalakshmi Ranganathan, 2021. "Navigating the factor zoo around the world: an institutional investor perspective," Journal of Business Economics, Springer, vol. 91(5), pages 655-703, July.
    21. Hsu, Po-Hsuan & Han, Qiheng & Wu, Wensheng & Cao, Zhiguang, 2018. "Asset allocation strategies, data snooping, and the 1 / N rule," Journal of Banking & Finance, Elsevier, vol. 97(C), pages 257-269.
    22. Qadan, Mahmoud & Idilbi-Bayaa, Yasmeen, 2021. "The day-of-the-week-effect on the volatility of commodities," Resources Policy, Elsevier, vol. 71(C).
    23. Kaplan, David M. & Zhuo, Longhao, 2021. "Frequentist properties of Bayesian inequality tests," Journal of Econometrics, Elsevier, vol. 221(1), pages 312-336.
    24. Yoon-Jae Whang & Young-Hyun Cho & Oliver Linton, 2006. "Are there Monday effects in Stock Returns: A Stochastic Dominance Approach," FMG Discussion Papers dp568, Financial Markets Group.
    25. Sproule, Robert & Gosselin, Gabriel, 2023. "Is the research agenda for calendar anomalies “much do about nothing”?," MPRA Paper 117001, University Library of Munich, Germany.
    26. Michael D. Hausfeld & Gordon C. Rausser & Gareth J. Macartney & Michael P. Lehmann & Sathya S. Gosselin, 2014. "Antitrust class proceedings – Then and now," Research in Law and Economics, in: The Law and Economics of Class Actions, volume 26, pages 77-133, Emerald Group Publishing Limited.
    27. White, Halbert & Timmermann, Allan & Sullivan, Ryan, 2001. "Forecast Evaluation with Shared Data Sets," CEPR Discussion Papers 3060, C.E.P.R. Discussion Papers.
    28. Linton, Oliver & Wu, Jianbin, 2020. "A coupled component DCS-EGARCH model for intraday and overnight volatility," Journal of Econometrics, Elsevier, vol. 217(1), pages 176-201.
    29. Chan, Kam Fong & Gray, Philip & Gray, Stephen & Zhong, Angel, 2020. "Political uncertainty, market anomalies and Presidential honeymoons," Journal of Banking & Finance, Elsevier, vol. 113(C).
    30. Ilias Tsiakas, 2010. "The Economic Gains Of Trading Stocks Around Holidays," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 33(1), pages 1-26, March.
    31. David M. Kaplan & Longhao Zhuo, 2017. "Frequentist size of Bayesian inequality tests," Working Papers 1709, Department of Economics, University of Missouri, revised 14 Jul 2019.
    32. Rebecca M. Baker & Tahani Coolen-Maturi & Frank P. A. Coolen, 2017. "Nonparametric predictive inference for stock returns," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(8), pages 1333-1349, June.
    33. Gleason, Katherine I. & Klock, Mark, 2006. "Intangible capital in the pharmaceutical and chemical industry," The Quarterly Review of Economics and Finance, Elsevier, vol. 46(2), pages 300-314, May.
    34. Kim, Jae H. & Shamsuddin, Abul, 2023. "Stock market anomalies: An extreme bounds analysis," International Review of Financial Analysis, Elsevier, vol. 90(C).
    35. Linton, O. & Wu, J., 2016. "A coupled component GARCH model for intraday and overnight volatility," Cambridge Working Papers in Economics 1671, Faculty of Economics, University of Cambridge.
    36. Cai, Lili & Swanson, Norman R., 2011. "In- and out-of-sample specification analysis of spot rate models: Further evidence for the period 1982-2008," Journal of Empirical Finance, Elsevier, vol. 18(4), pages 743-764, September.
    37. Kim-Leng Goh & Kim-Lian Kok, 2006. "Beating the Random Walk: Intraday Seasonality and Volatility in a Developing Stock Market," International Journal of Business and Economics, School of Management Development, Feng Chia University, Taichung, Taiwan, vol. 5(1), pages 41-59, April.
    38. Eddie C. M. Hui & Ka Kwan Kevin Chan, 2018. "Testing Calendar Effects of International Equity and Real Estate Markets," The Journal of Real Estate Finance and Economics, Springer, vol. 56(1), pages 140-158, January.
    39. Ülkü, Numan & Rogers, Madeline, 2018. "Who drives the Monday effect?," Journal of Economic Behavior & Organization, Elsevier, vol. 148(C), pages 46-65.
    40. Sven Bouman & Ben Jacobsen, 2002. "The Halloween Indicator, "Sell in May and Go Away": Another Puzzle," American Economic Review, American Economic Association, vol. 92(5), pages 1618-1635, December.
    41. Laurens Swinkels & Pim van Vliet, 2012. "An anatomy of calendar effects," Journal of Asset Management, Palgrave Macmillan, vol. 13(4), pages 271-286, August.
    42. Pesaran, M.H. & Timmermann, A., 2004. "‘Real Time Econometrics’," Cambridge Working Papers in Economics 0432, Faculty of Economics, University of Cambridge.
    43. Bertrand Maillet & Thierry Michel, 2005. "Technical Analysis Profitability when Exchange Rates are Pegged: A Note," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00308979, HAL.
    44. Dragan Tevdovski & Martin Mihajlov & Igor Sazdovski, 2012. "The Day Of The Week Effect In South Eastern Europe Stock Markets," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 3, pages 20-24, September.
    45. Alt, Raimund & Fortin, Ines & Weinberger, Simon, 2011. "The Monday effect revisited: An alternative testing approach," Journal of Empirical Finance, Elsevier, vol. 18(3), pages 447-460, June.
    46. Powell, John G. & Shi, Jing & Smith, Tom & Whaley, Robert E., 2009. "Political regimes, business cycles, seasonalities, and returns," Journal of Banking & Finance, Elsevier, vol. 33(6), pages 1112-1128, June.
    47. Joseph P & Romano & Azeem M. Shaikh & Michael Wolf, 2005. "Formalized Data Snooping Based on Generalized Error Rates," IEW - Working Papers 259, Institute for Empirical Research in Economics - University of Zurich.
    48. Oded Galor & Omer Moav, 2005. "Land Inequality and the Origin of Divergence and Overtaking in the Growth Process: Theory and Evidence," 2005 Meeting Papers 24, Society for Economic Dynamics.
    49. Adriano Koshiyama & Nick Firoozye, 2019. "Avoiding Backtesting Overfitting by Covariance-Penalties: an empirical investigation of the ordinary and total least squares cases," Papers 1905.05023, arXiv.org.
    50. Cummins, Mark & Dowling, Michael & Lucey, Brian M., 2015. "Behavioral influences in non-ferrous metals prices," Resources Policy, Elsevier, vol. 45(C), pages 9-22.
    51. Cheol‐Ho Park & Scott H. Irwin, 2007. "What Do We Know About The Profitability Of Technical Analysis?," Journal of Economic Surveys, Wiley Blackwell, vol. 21(4), pages 786-826, September.
    52. Adam Zaremba & Jacob Koby Shemer, 2018. "Price-Based Investment Strategies," Springer Books, Springer, number 978-3-319-91530-2, December.
    53. Hudson, Robert S. & Gregoriou, Andros, 2015. "Calculating and comparing security returns is harder than you think: A comparison between logarithmic and simple returns," International Review of Financial Analysis, Elsevier, vol. 38(C), pages 151-162.
    54. E. Hui & J. Wright & S. Yam, 2014. "Calendar Effects and Real Estate Securities," The Journal of Real Estate Finance and Economics, Springer, vol. 49(1), pages 91-115, July.
    55. Shanaev, Savva & Ghimire, Binam, 2022. "A generalised seasonality test and applications for cryptocurrency and stock market seasonality," The Quarterly Review of Economics and Finance, Elsevier, vol. 86(C), pages 172-185.
    56. Baur, Dirk G. & Dichtl, Hubert & Drobetz, Wolfgang & Wendt, Viktoria-Sophie, 2020. "Investing in gold – Market timing or buy-and-hold?," International Review of Financial Analysis, Elsevier, vol. 71(C).
    57. Coakley, Jerry & Kuo, Jing-Ming & Wood, Andrew, 2012. "The School’s Out effect: A new seasonal anomaly!," The British Accounting Review, Elsevier, vol. 44(3), pages 133-143.
    58. Lutz Kilian & Clara Vega, 2008. "Do energy prices respond to U.S. macroeconomic news? a test of the hypothesis of predetermined energy prices," International Finance Discussion Papers 957, Board of Governors of the Federal Reserve System (U.S.).
    59. Degenhardt, Thomas & Auer, Benjamin R., 2018. "The “Sell in May” effect: A review and new empirical evidence," The North American Journal of Economics and Finance, Elsevier, vol. 43(C), pages 169-205.
    60. Atanasova, Christina V. & Hudson, Robert S., 2010. "Technical trading rules and calendar anomalies -- Are they the same phenomena?," Economics Letters, Elsevier, vol. 106(2), pages 128-130, February.
    61. Tsiakas, Ilias, 2008. "Overnight information and stochastic volatility: A study of European and US stock exchanges," Journal of Banking & Finance, Elsevier, vol. 32(2), pages 251-268, February.
    62. Brian Lucey & Shane Whelan, 2004. "Monthly and semi-annual seasonality in the Irish equity market 1934-2000," Applied Financial Economics, Taylor & Francis Journals, vol. 14(3), pages 203-208.
    63. Enoch Cheng & Clemens C. Struck, 2019. "Time-Series Momentum: A Monte-Carlo Approach," Working Papers 201906, School of Economics, University College Dublin.
    64. Martin T. Bohl & Christian A. Salm, 2009. "The Other January Effect: International Evidence," CQE Working Papers 0809, Center for Quantitative Economics (CQE), University of Muenster.
    65. John C. Frain, 2008. "Maximum Likelihood Estimates of Regression Coefficients with alpha-stable residuals and Day of Week effects in Total Returns on Equity Indices," Trinity Economics Papers tep0108, Trinity College Dublin, Department of Economics, revised May 2008.
    66. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    67. Foong Soon Cheong, 2016. "Debunking Two Myths of the Weekend Effect," IJFS, MDPI, vol. 4(2), pages 1-9, April.
    68. Chan, Kam Fong & Marsh, Terry, 2021. "Asset prices, midterm elections, and political uncertainty," Journal of Financial Economics, Elsevier, vol. 141(1), pages 276-296.
    69. Bekiroglu, Korkut & Duru, Okan & Gulay, Emrah & Su, Rong & Lagoa, Constantino, 2018. "Predictive analytics of crude oil prices by utilizing the intelligent model search engine," Applied Energy, Elsevier, vol. 228(C), pages 2387-2397.
    70. Stephen A. Gorman & Frank J. Fabozzi, 2021. "The ABC’s of the alternative risk premium: academic roots," Journal of Asset Management, Palgrave Macmillan, vol. 22(6), pages 405-436, October.
    71. Filipovski, Vladimir & Tevdovski, Dragan, 2017. "Stock market efficiency in South Eastern Europe: testing return predictability and presence of calendar effects," MPRA Paper 76818, University Library of Munich, Germany.
    72. Hubert Dichtl, 2020. "Investing in the S&P 500 index: Can anything beat the buy‐and‐hold strategy?," Review of Financial Economics, John Wiley & Sons, vol. 38(2), pages 352-378, April.
    73. Bogdan Batrinca & Christian W. Hesse & Philip C. Treleaven, 2020. "Expiration day effects on European trading volumes," Empirical Economics, Springer, vol. 58(4), pages 1603-1638, April.
    74. Georgios Bampinas & Stilianos Fountas & Theodore Panagiotidis, 2015. "The day-of-the-week effect is weak: Evidence from the European Real Estate Sector," Discussion Paper Series 2015_02, Department of Economics, University of Macedonia, revised May 2015.
    75. Giovanis, Eleftherios, 2009. "Bootstrapping Fuzzy-GARCH Regressions on the Day of the Week Effect in Stock Returns: Applications in MATLAB," MPRA Paper 22326, University Library of Munich, Germany.
    76. Christian Handke & Lucie Guibault & Joan‐Josep Vallbé, 2021. "Copyright's impact on data mining in academic research," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 42(8), pages 1999-2016, December.
    77. Alagidede, Paul, 2008. "Month-of-the-year and pre-holiday seasonality in African stock markets," Stirling Economics Discussion Papers 2008-23, University of Stirling, Division of Economics.
    78. Lenz, Guido & Mayer, Maximilian, 2023. "Hollywood, Wall Street, and Mistrusting Individual Investors," Journal of Economic Behavior & Organization, Elsevier, vol. 210(C), pages 117-138.
    79. Strobel, Marcus & Auer, Benjamin R., 2018. "Does the predictive power of variable moving average rules vanish over time and can we explain such tendencies?," International Review of Economics & Finance, Elsevier, vol. 53(C), pages 168-184.
    80. Brian Lucey, 2004. "Robust estimates of daily seasonality in the Irish equity market," Applied Financial Economics, Taylor & Francis Journals, vol. 14(7), pages 517-523.
    81. Anthony Gu, 2004. "The Reversing Weekend Effect: Evidence from the U.S. Equity Markets," Review of Quantitative Finance and Accounting, Springer, vol. 22(1), pages 5-14, January.
    82. Carrazedo, Tiago & Curto, José Dias & Oliveira, Luís, 2016. "The Halloween effect in European sectors," Research in International Business and Finance, Elsevier, vol. 37(C), pages 489-500.
    83. Hisham Farag, 2015. "Long-term Overreaction, Regulatory Policies and Stock Market Anomalies: Evidence from Egypt," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 14(2), pages 112-139, August.
    84. Hubert Dichtl & Wolfgang Drobetz & Viktoria‐Sophie Wendt, 2021. "How to build a factor portfolio: Does the allocation strategy matter?," European Financial Management, European Financial Management Association, vol. 27(1), pages 20-58, January.
    85. Benjamin Munyan, 2015. "Regulatory Arbitrage in the Repo Market," Working Papers 15-22, Office of Financial Research, US Department of the Treasury.
    86. Gurgul Henryk & Suder Marcin, 2016. "Calendar and Seasonal Effects on the Size of Withdrawals from Atms Managed By Euronet," Statistics in Transition New Series, Statistics Poland, vol. 17(4), pages 691-722, December.
    87. Dichtl, Hubert & Drobetz, Wolfgang, 2014. "Are stock markets really so inefficient? The case of the “Halloween Indicator”," Finance Research Letters, Elsevier, vol. 11(2), pages 112-121.

  47. Perez-Quiros, Gabriel & Timmermann, Allan, 2001. "Business cycle asymmetries in stock returns: Evidence from higher order moments and conditional densities," Journal of Econometrics, Elsevier, vol. 103(1-2), pages 259-306, July.
    See citations under working paper version above.
  48. Timmermann, Allan, 2001. "Structural Breaks, Incomplete Information, and Stock Prices," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(3), pages 299-314, July.
    See citations under working paper version above.
  49. Pesaran, M Hashem & Timmermann, Allan, 2000. "A Recursive Modelling Approach to Predicting UK Stock Returns," Economic Journal, Royal Economic Society, vol. 110(460), pages 159-191, January.
    See citations under working paper version above.
  50. Timmermann, Allan, 2000. "Moments of Markov switching models," Journal of Econometrics, Elsevier, vol. 96(1), pages 75-111, May.
    See citations under working paper version above.
  51. Lunde, Asger & Timmermann, Allan & Blake, David, 1999. "The hazards of mutual fund underperformance: A Cox regression analysis," Journal of Empirical Finance, Elsevier, vol. 6(2), pages 121-152, April.
    See citations under working paper version above.
  52. Clive Granger & Allan Timmermann, 1999. "Data mining with local model specification uncertainty: a discussion of Hoover and Perez," Econometrics Journal, Royal Economic Society, vol. 2(2), pages 220-225.

    Cited by:

    1. Teodosio Perez-Amaral & Giampiero M. Gallo & Halbert White, 2003. "Flexible Tool for Model Building: the Relevant Transformation of the Inputs Network Approach (RETINA)," Documentos de Trabajo del ICAE 0309, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    2. Luc, BAUWENS & Genaro, SUCARRAT, 2006. "General to Specific Modelling of Exchange Rate Volatility : a Forecast Evaluation," Discussion Papers (ECON - Département des Sciences Economiques) 2006013, Université catholique de Louvain, Département des Sciences Economiques.
    3. Lorenzo Bencivelli & Massimiliano Marcellino & Gianluca Moretti, 2017. "Forecasting economic activity by Bayesian bridge model averaging," Empirical Economics, Springer, vol. 53(1), pages 21-40, August.
    4. Marco Aiolfi & Carlo Ambrogio Favero, "undated". "Model Uncertainty, Thick Modelling and the predictability of Stock Returns," Working Papers 221, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    5. Beenstock, Michael & Szpiro, George, 2002. "Specification search in nonlinear time-series models using the genetic algorithm," Journal of Economic Dynamics and Control, Elsevier, vol. 26(5), pages 811-835, May.
    6. Alvaro Escribano & Genaro Sucarrat, 2011. "Automated model selection in finance: General-to-speci c modelling of the mean and volatility speci cations," Working Papers 2011-09, Instituto Madrileño de Estudios Avanzados (IMDEA) Ciencias Sociales.
    7. Genaro Sucarrat & Alvaro Escribano, 2012. "Automated Model Selection in Finance: General-to-Specific Modelling of the Mean and Volatility Specifications," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 74(5), pages 716-735, October.
    8. Sucarrat, Genaro, 2009. "Automated financial multi-path GETS modelling," UC3M Working papers. Economics we093620, Universidad Carlos III de Madrid. Departamento de Economía.
    9. Bonnier, Jean-Baptiste, 2022. "Forecasting crude oil volatility with exogenous predictors: As good as it GETS?," Energy Economics, Elsevier, vol. 111(C).

  53. Blake, David & Lehmann, Bruce N & Timmermann, Allan, 1999. "Asset Allocation Dynamics and Pension Fund Performance," The Journal of Business, University of Chicago Press, vol. 72(4), pages 429-461, October.

    Cited by:

    1. Stephen Satchell & Wei Xia, 2005. "Estimation of the Risk Attitude of the Representative UK Pension Fund Investor," Birkbeck Working Papers in Economics and Finance 0509, Birkbeck, Department of Economics, Mathematics & Statistics.
    2. Fischer, Andreas M. & Greminger, Rafael P. & Grisse, Christian & Kaufmann, Sylvia, 2021. "Portfolio rebalancing in times of stress," Journal of International Money and Finance, Elsevier, vol. 113(C).
    3. Hamdani, Assaf & Kandel, Eugene & Mugerman, Yevgeny & Yafeh, Yishay, 2017. "Incentive Fees and Competition in Pension Funds: Evidence from a Regulatory Experiment," Journal of Law, Finance, and Accounting, now publishers, vol. 2(1), pages 49-86, June.
    4. Dirk Broeders & Kristy Jansen, 2021. "Pension Funds and Drivers of Heterogeneous Investment Strategies," Working Papers 712, DNB.
    5. Eduardo Roca & Victor Wong, 2008. "An analysis of the sensitivity of Australian superannuation funds to market movements: a Markov regime switching approach," Applied Financial Economics, Taylor & Francis Journals, vol. 18(7), pages 583-597.
    6. Kirsten L. MacDonald & Robert J. Bianchi & Michael E. Drew, 2020. "Equity risk versus retirement adequacy: asset allocation solutions for KiwiSaver," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(4), pages 3851-3873, December.
    7. José Alvarez & Laura Andreu & Cristina Ortiz & José Sarto, 2014. "A nonparametric approach to market timing: evidence from Spanish mutual funds," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 38(1), pages 119-132, January.
    8. Bijapur, Mohan & Croci, Manuela & Zaidi, Rida, 2012. "Do asset regulations impede portfolio diversification? evidence from European life insurance funds," LSE Research Online Documents on Economics 56618, London School of Economics and Political Science, LSE Library.
    9. Basu, Anup & Drew, Michael, 2006. "Appropriateness of Default Investment Options in Defined Contribution Plans: The Australian Evidence," MPRA Paper 3314, University Library of Munich, Germany, revised 02 Nov 2006.
    10. Akshentseva, Ksenya (Акшенцева, Ксения) & Abramov, Alexander (Абрамов, Александр) & Chernovа, Maria (Чернова, Мария), 2015. "Problems of Formation and Evaluation of Strategies for Portfolio Investment of Pension Reserves, Accruals and Collective Investments in Russia [Проблемы Формирования И Оценки Результативности Страт," Published Papers mn24, Russian Presidential Academy of National Economy and Public Administration.
    11. Lang, Gunnar & Shen, Yu & Xu, Xian, 2014. "Chinese pension fund investment efficiency: Evidence from CNCSSF stock holdings," ZEW Discussion Papers 14-007, ZEW - Leibniz Centre for European Economic Research.
    12. Anastasia Petraki & Anna Zalewska, 2017. "Jumping over a low hurdle: personal pension fund performance," Review of Quantitative Finance and Accounting, Springer, vol. 48(1), pages 153-190, January.
    13. Mercedes Alda, 2021. "The dilemma between fund‐style consistency and active management over the economic cycle. Evidence from pension funds," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 2219-2240, April.
    14. Huang, X. & Mahieu, R.J., 2012. "Performance persistence of Dutch pension plans," Other publications TiSEM 3dba651c-bb31-443f-963c-4, Tilburg University, School of Economics and Management.
    15. Darolles, Serge & Vaissié, Mathieu, 2012. "The alpha and omega of fund of hedge fund added value," Journal of Banking & Finance, Elsevier, vol. 36(4), pages 1067-1078.
    16. Gallagher, David R. & Jarnecic, Elvis, 2004. "International equity funds, performance, and investor flows: Australian evidence," Journal of Multinational Financial Management, Elsevier, vol. 14(1), pages 81-95, February.
    17. J. Annaert & J.K. De Ceuster & W. Van Hyfte, 2002. "The Value of Asset Allocation Advice - Evidence of The Economist’s Quarterly Portfolio Poll," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 02/160, Ghent University, Faculty of Economics and Business Administration.
    18. Tonks, Ian, 2002. "Performance persistence of pension fund managers," LSE Research Online Documents on Economics 24942, London School of Economics and Political Science, LSE Library.
    19. Blake, David & Cairns, Andrew & Dowd, Kevin, 2008. "Turning pension plans into pension planes: What investment strategy designers of defined contribution pension plans can learn from commercial aircraft designers," MPRA Paper 33749, University Library of Munich, Germany.
    20. Dirk W.G.A. Broeders & Damiaan H.J. Chen & Peter A. Minderhoud & C.J. Willem Schudel, 2021. "Pension Funds' Herding," International Journal of Central Banking, International Journal of Central Banking, vol. 17(1), pages 285-330, March.
    21. Xiaohong Huang & Ronald Mahieu, 2012. "Performance Persistence of Dutch Pension Funds," De Economist, Springer, vol. 160(1), pages 17-34, March.
    22. Matthew Spiegel & Harry Mamaysky & Hong Zhang, 2005. "Improved Forecasting of Mutual Fund Alphas and Betas," Yale School of Management Working Papers amz2361, Yale School of Management, revised 01 Mar 2006.
    23. Alda, Mercedes & Vicente, Ruth, 2020. "Behavioural analysis of socially responsible investment managers: specialists versus non-specialists," Research in International Business and Finance, Elsevier, vol. 54(C).
    24. Joseph Gerakos & Juhani T. Linnainmaa & Adair Morse, 2016. "Asset Managers: Institutional Performance and Smart Betas," NBER Working Papers 22982, National Bureau of Economic Research, Inc.
    25. Fabrice Hervé, 2006. "Famille de fonds de pension, performance et persistance de la performance," Working Papers CREGO 1060903, Université de Bourgogne - CREGO EA7317 Centre de recherches en gestion des organisations.
    26. Dariusz Stanko, 2003. "Performance Evaluation of Public Pension Funds: The Reformed Pension System in Poland," Finance 0306002, University Library of Munich, Germany.
    27. Blake, David, 2003. "Financial system requirements for successful pension reform," LSE Research Online Documents on Economics 24862, London School of Economics and Political Science, LSE Library.
    28. Manuel Ammann & Sebastian Fischer & Florian Weigert, 2018. "Risk Factor Exposure Variation and Mutual Fund Performance," Working Papers on Finance 1817, University of St. Gallen, School of Finance, revised Nov 2018.
    29. John Board & Charles Sutcliffe, 2005. "Joined-Up Pensions Policy in the UK: An Asset-Libility Model for Simultaneously Determining the Asset Allocation and Contribution Rate," ICMA Centre Discussion Papers in Finance icma-dp2005-11, Henley Business School, University of Reading.
    30. Jacobs, Heiko & Müller, Sebastian & Weber, Martin, 2014. "How should individual investors diversify? An empirical evaluation of alternative asset allocation policies," Journal of Financial Markets, Elsevier, vol. 19(C), pages 62-85.
    31. Marshall, Andrew & Tang, Leilei, 2011. "Assessing the impact of heteroskedasticity for evaluating hedge fund performance," International Review of Financial Analysis, Elsevier, vol. 20(1), pages 12-19, January.
    32. Artiga González, Tanja & van Lelyveld, Iman & Lučivjanská, Katarína, 2020. "Pension fund equity performance: Patience, activity or both?," Journal of Banking & Finance, Elsevier, vol. 115(C).
    33. Manuel Ammann & Christian Ehmann, 2017. "Is Governance Related to Investment Performance and Asset Allocation? Empirical Evidence from Swiss Pension Funds," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 153(3), pages 293-339, July.
    34. Broeders, Dirk & Chen, An, 2010. "Pension regulation and the market value of pension liabilities: A contingent claims analysis using Parisian options," Journal of Banking & Finance, Elsevier, vol. 34(6), pages 1201-1214, June.
    35. Lawrence Kryzanowski & Abdul Rahman, 2008. "Portfolio performance ambiguity and benchmark inefficiency revisited," Journal of Asset Management, Palgrave Macmillan, vol. 9(5), pages 321-332, December.
    36. Blake, David, 2003. "The United Kingdom pension system: key issues," LSE Research Online Documents on Economics 24851, London School of Economics and Political Science, LSE Library.
    37. Lehmann, Bruce & Timmermann, Allan, 2007. "Performance measurement and evaluation," LSE Research Online Documents on Economics 24505, London School of Economics and Political Science, LSE Library.
    38. Jiang, George J. & Yao, Tong & Yu, Tong, 2007. "Do mutual funds time the market? Evidence from portfolio holdings," Journal of Financial Economics, Elsevier, vol. 86(3), pages 724-758, December.
    39. Fabrice Hervé, 2006. "Les fonds de pension protègent-ils les investisseurs des évolutions du marché?," Working Papers CREGO 1060101, Université de Bourgogne - CREGO EA7317 Centre de recherches en gestion des organisations.
    40. Clare, Andrew & Sherman, Meadhbh Brid & Thomas, Steve, 2016. "Multi-asset class mutual funds: Can they time the market? Evidence from the US, UK and Canada," Research in International Business and Finance, Elsevier, vol. 36(C), pages 212-221.
    41. Harry Mamaysky & Matthew Spiegel & Hong Zhang, 2008. "Estimating the Dynamics of Mutual Fund Alphas and Betas," The Review of Financial Studies, Society for Financial Studies, vol. 21(1), pages 233-264, January.
    42. Blake, David & Timmermann, Allan & Tonks, Ian & Wermers, Russ, 2010. "Decentralized investment management: evidence from the pension fund industry," MPRA Paper 35767, University Library of Munich, Germany.
    43. Ian Tonks, 2002. "(UBS Pensions Series 1) Performance Persistence of Pension Fund Managers," FMG Discussion Papers dp423, Financial Markets Group.
    44. Al Janabi, Mazin A.M., 2014. "Optimal and investable portfolios: An empirical analysis with scenario optimization algorithms under crisis market prospects," Economic Modelling, Elsevier, vol. 40(C), pages 369-381.
    45. Farah, N. & Satchell, S.E., 2003. "A Loss Aversion Performance Measure," Cambridge Working Papers in Economics 0333, Faculty of Economics, University of Cambridge.
    46. Blake, David & Sarno, Lucio & Zinna, Gabriele, 2017. "The market for lemmings: The herding behavior of pension funds," Journal of Financial Markets, Elsevier, vol. 36(C), pages 17-39.
    47. Anup K. Basu & Michael E. Drew, 2009. "The Case for Gender‐Sensitive Superannuation Plan Design," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 42(2), pages 177-189, June.
    48. Luis Ferruz & Luis Vicente & Laura Andreu, 2009. "Performance persistence and its influence on money and investor flows into Spanish pension plans," Review of Quantitative Finance and Accounting, Springer, vol. 32(1), pages 85-100, January.
    49. Carmen-Pilar Mart¨ª-Ballester, 2012. "A Comparative Analysis of the Performance of Collective Investment Institutions," Review of Economics & Finance, Better Advances Press, Canada, vol. 2, pages 43-52, May.
    50. Keith Cuthbertson & Dirk Nitzsche & Niall O' Sullivan, 2004. "UK Mutual Fund Performance: Genuine Stock-Picking Ability or Luck," Money Macro and Finance (MMF) Research Group Conference 2004 55, Money Macro and Finance Research Group.
    51. MacLean, Leonard & Zhao, Yonggan & Ziemba, William, 2006. "Dynamic portfolio selection with process control," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 317-339, February.
    52. Willie Dion Reddic, 2021. "Under pressure: investment behaviour of insurers under different financial and regulatory conditions," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 46(1), pages 1-20, January.
    53. Ammann, Manuel & Fischer, Sebastian & Weigert, Florian, 2020. "Factor exposure variation and mutual fund performance," CFR Working Papers 20-06, University of Cologne, Centre for Financial Research (CFR).
    54. Victor Soucik & David E. Allen, 2006. "Benchmarking Australian fixed interest fund performance: finding the optimal factors," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 46(5), pages 865-898, December.
    55. Bijapur, Mohan & Croci, Manuela & Zaidi, Rida, 2012. "Do Asset Regulations Impede Portfolio Diversification? Evidence from European Life Insurance Funds," MPRA Paper 54265, University Library of Munich, Germany.
    56. Gökçen, Umut & Yalçın, Atakan, 2015. "The case against active pension funds: Evidence from the Turkish Private Pension System," Emerging Markets Review, Elsevier, vol. 23(C), pages 46-67.
    57. Anastasia Petraki & Anna Zalewska, 2013. "Jumping over a low hurdle: Personal pension fund performance," The Centre for Market and Public Organisation 13/305, The Centre for Market and Public Organisation, University of Bristol, UK.
    58. Daniella Acker & Nigel W. Duck, 2006. "A Tournament Model of Fund Management," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 33(9‐10), pages 1460-1483, November.
    59. Maximilian Vermorken & Marc Gendebien & Alphons Vermorken & Thomas Schröder, 2013. "Skilled monkey or unlucky manager?," Journal of Asset Management, Palgrave Macmillan, vol. 14(5), pages 267-277, October.
    60. Christoph Gort & Mei Wang, 2010. "Overconfidence and Active Management," Chapters, in: Brian Bruce (ed.), Handbook of Behavioral Finance, chapter 12, Edward Elgar Publishing.
    61. Gordon L. Clark & Emiko Caerlewy‐Smith & John C. Marshall, 2009. "Solutions to the Asset Allocation Problem by Informed Respondents: The Significance of the Size‐of‐Bet and the 1/N Heuristic," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 12(2), pages 251-271, September.
    62. Brown, Keith C. & Garlappi, Lorenzo & Tiu, Cristian, 2010. "Asset allocation and portfolio performance: Evidence from university endowment funds," Journal of Financial Markets, Elsevier, vol. 13(2), pages 268-294, May.
    63. Dahlquist, Magnus & Odegaard, Bernt Arne, 2018. "A Review of Norges Bank's Active Management of the Government Pension Fund Global," UiS Working Papers in Economics and Finance 2018/1, University of Stavanger.
    64. Banerjee, Rhythm, 2024. "Shifting Tides: the Effect of Institutional Divestments on the Global Market," MPRA Paper 121922, University Library of Munich, Germany, revised 11 Apr 2024.
    65. Annaert, Jan & De Ceuster, Marc J. K. & Van Hyfte, Wim, 2005. "The value of asset allocation advice: Evidence from The Economist's quarterly portfolio poll," Journal of Banking & Finance, Elsevier, vol. 29(3), pages 661-680, March.
    66. David Blake, 2003. "UK pension fund management after Myners: The hunt for correlation begins," Journal of Asset Management, Palgrave Macmillan, vol. 4(1), pages 32-72, June.
    67. Boermans, Martijn A. & Galema, Rients, 2019. "Are pension funds actively decarbonizing their portfolios?," Ecological Economics, Elsevier, vol. 161(C), pages 50-60.
    68. Bange, Mary M. & Khang, Kenneth & Miller Jr., Thomas W., 2008. "Benchmarking the performance of recommended allocations to equities, bonds, and cash by international investment houses," Journal of Empirical Finance, Elsevier, vol. 15(3), pages 363-386, June.
    69. Gregory, Alan & Tonks, Ian, 2004. "Performance of personal pension schemes in the UK," LSE Research Online Documents on Economics 24698, London School of Economics and Political Science, LSE Library.
    70. Mercedes Alda & Luis Ferruz, 2012. "The Role of Fees in Pension Fund Performance. Evidence from Spain," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 62(6), pages 518-535, December.
    71. Isabel Abinzano & Luis Muga & Rafael Santamaria, 2016. "The Role of Investor Type in the Fee Structures of Pension Plans," Journal of Financial Services Research, Springer;Western Finance Association, vol. 50(3), pages 387-417, December.
    72. Dreassi, Alberto & Miani, Stefano & Paltrinieri, Andrea, 2017. "Sovereign pension and social security reserve funds: A portfolio analysis," Global Finance Journal, Elsevier, vol. 34(C), pages 43-53.
    73. Yundan Guo & Li Shen, 2023. "Commercial Retirement FOFs in China: Investment and Persistence Performance Analysis," Sustainability, MDPI, vol. 15(18), pages 1-22, September.
    74. Heaney, Richard & Sriananthakumar, Sivagowry, 2012. "Time-varying correlation between stock market returns and real estate returns," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 583-594.
    75. Valpy Fitzgerald, 2006. "International Risk Tolerance, Capital Market Failure and Capital Flows to Emerging Markets," WIDER Working Paper Series RP2006-35, World Institute for Development Economic Research (UNU-WIDER).
    76. Alda, Mercedes & Andreu, Laura & Sarto, José Luis, 2017. "Learning about individual managers’ performance in UK pension funds: The importance of specialization," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 654-667.
    77. Glassman, Debra A. & Riddick, Leigh A., 2006. "Market timing by global fund managers," Journal of International Money and Finance, Elsevier, vol. 25(7), pages 1029-1050, November.
    78. Jansen, Kristy, 2021. "Essays on institutional investors, portfolio choice, and asset prices," Other publications TiSEM fd998408-d282-4e0f-b542-4, Tilburg University, School of Economics and Management.
    79. Matthew Spiegel & Harry Mamaysky & Hong Zhang, 2005. "Estimating the Dynamics of Mutual Fund Alphas and Betas," Yale School of Management Working Papers ysm353, Yale School of Management, revised 01 Apr 2005.
    80. Berkowitz, Michael K. & Kotowitz, Yehuda, 2000. "Investor risk evaluation in the determination of management incentives in the mutual fund industry," Journal of Financial Markets, Elsevier, vol. 3(4), pages 365-387, November.
    81. Broeders, Dirk W.G.A. & van Oord, Arco & Rijsbergen, David R., 2019. "Does it pay to pay performance fees? Empirical evidence from Dutch pension funds," Journal of International Money and Finance, Elsevier, vol. 93(C), pages 299-312.
    82. Gabriele Zinna, 2014. "Price pressures in the UK index-linked market: an empirical investigation," Temi di discussione (Economic working papers) 968, Bank of Italy, Economic Research and International Relations Area.
    83. David R. Gallagher & Elvis Jarnecic, 2002. "The Performance of Active Australian Bond Funds," Australian Journal of Management, Australian School of Business, vol. 27(2), pages 163-185, December.
    84. Manuel Ammann & Andreas Zingg, 2008. "Investment Performance of Swiss Pension Funds and Investment Foundations," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 144(II), pages 153-195, June.
    85. Yafeh, Yishay & Kandel, Eugene & Hamdani, Assaf & Mugerman, Yevgeny, 2015. "Incentive Fees and Competition in Pension Funds: Evidence from a Regulatory Experiment in Israel," CEPR Discussion Papers 10911, C.E.P.R. Discussion Papers.
    86. Castaneda, Pablo & Rudolph, Heinz P., 2011. "Upgrading investment regulations in second pillar pension systems : a proposal for Colombia," Policy Research Working Paper Series 5775, The World Bank.

  54. Satchell, Steve & Timmermann, Allan, 1995. "On the optimality of adaptive expectations: Muth revisited," International Journal of Forecasting, Elsevier, vol. 11(3), pages 407-416, September.

    Cited by:

    1. Costello, Greg & Fraser, Patricia & Groenewold, Nicolaas, 2011. "House prices, non-fundamental components and interstate spillovers: The Australian experience," Journal of Banking & Finance, Elsevier, vol. 35(3), pages 653-669, March.
    2. Trond Borgersen & Dag Einar Sommervoll & Tom Wennemo, 2006. "Endogenous Housing Market Cycles," Discussion Papers 458, Statistics Norway, Research Department.
    3. Jan G. de Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Tinbergen Institute Discussion Papers 05-068/4, Tinbergen Institute.
    4. Sommervoll, Dag Einar & Borgersen, Trond-Arne & Wennemo, Tom, 2010. "Endogenous housing market cycles," Journal of Banking & Finance, Elsevier, vol. 34(3), pages 557-567, March.
    5. J E Boylan & F R Johnston, 2003. "Optimality and robustness of combinations of moving averages," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(1), pages 109-115, January.
    6. Theodosiou, Marina, 2011. "Forecasting monthly and quarterly time series using STL decomposition," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1178-1195, October.
    7. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    8. Dag Einar Sommervoll, 2007. "Counterintuitive response to tax incentives? Mortgage interest deductions and the demand for debt," Discussion Papers 492, Statistics Norway, Research Department.
    9. Gardner, Everette Jr., 2006. "Exponential smoothing: The state of the art--Part II," International Journal of Forecasting, Elsevier, vol. 22(4), pages 637-666.
    10. Katharina Hampel & Marcus Kunz & Norbert Schanne & Ruediger Wapler & Antje Weyh, 2006. "Regional Unemployment Forecasting Using Structural Component Models With Spatial Autocorrelation," ERSA conference papers ersa06p196, European Regional Science Association.

  55. Pesaran, M Hashem & Timmermann, Allan, 1995. "Predictability of Stock Returns: Robustness and Economic Significance," Journal of Finance, American Finance Association, vol. 50(4), pages 1201-1228, September.

    Cited by:

    1. Döpke, Jörg & Hartmann, Daniel & Pierdzioch, Christian, 2006. "Forecasting stock market volatility with macroeconomic variables in real time," Discussion Paper Series 2: Banking and Financial Studies 2006,01, Deutsche Bundesbank.
    2. Driffill, John & Sola, Martin & Kenc, Turalay & Spagnolo, Fabio, 2004. "On Model Selection and Markov Switching: A Empirical Examination of Term Structure Models with Regime Shifts," CEPR Discussion Papers 4165, C.E.P.R. Discussion Papers.
    3. Leopoldo Catania & Nima Nonejad, 2016. "Density Forecasts and the Leverage Effect: Some Evidence from Observation and Parameter-Driven Volatility Models," Papers 1605.00230, arXiv.org, revised Nov 2016.
    4. Panagiotis Schizas & Dimitrios D. Thomakos, 2015. "Market timing and trading strategies using asset rotation: non-neutral market positioning for exploiting arbitrage opportunities," Quantitative Finance, Taylor & Francis Journals, vol. 15(2), pages 285-298, February.
    5. Barbara Rossi, 2011. "Advances in Forecasting Under Instability," Working Papers 11-20, Duke University, Department of Economics.
    6. M. Hashem Pesaran, 2000. "The Cost Efficiency of UK Debt Management: A Recursive Modelling Approach," CESifo Working Paper Series 346, CESifo.
    7. Lucio Sarno & Giorgio Valente, 2009. "Exchange Rates and Fundamentals: Footloose or Evolving Relationship?," Journal of the European Economic Association, MIT Press, vol. 7(4), pages 786-830, June.
    8. Fernandez, Pablo & Aguirreamalloa, Javier & Liechtenstein, Heinrich, 2009. "The equity premium puzzle: High required equity premium, undervaluation and self fulfilling prophecy," IESE Research Papers D/821, IESE Business School.
    9. Paz-Pardo, Gonzalo, 2021. "Homeownership and portfolio choice over the generations," Working Paper Series 2522, European Central Bank.
    10. Puneet Handa, 2006. "Does Stock Return Predictability Imply Improved Asset Allocation and Performance? Evidence from the U.S. Stock Market (1954–2002)," The Journal of Business, University of Chicago Press, vol. 79(5), pages 2423-2468, September.
    11. Tarek Zaher, 2017. "The Value of Active Investment Strategies," NFI Working Papers 2017-WP-02, Indiana State University, Scott College of Business, Networks Financial Institute.
    12. Massimiliano Kaucic, 2009. "Predicting EU Energy Industry Excess Returns on EU Market Index via a Constrained Genetic Algorithm," Computational Economics, Springer;Society for Computational Economics, vol. 34(2), pages 173-193, September.
    13. Hui Guo, 2003. "On the out-of-sample predictability of stock market returns," Working Papers 2002-008, Federal Reserve Bank of St. Louis.
    14. Aretz, Kevin & Bartram, Söhnke M. & Pope, Peter F., 2011. "Asymmetric Loss Functions and the Rationality of Expected Stock Returns," MPRA Paper 47343, University Library of Munich, Germany.
    15. Rogér Otten & Dennis Bams, 2007. "The Performance of Local versus Foreign Mutual Fund Managers," European Financial Management, European Financial Management Association, vol. 13(4), pages 702-720, September.
    16. Rossi, Barbara & Odendahl, Florens & Sekhposyan, Tatevik, 2020. "Comparing Forecast Performance with State Dependence," CEPR Discussion Papers 15217, C.E.P.R. Discussion Papers.
    17. Vivian, Andrew & Wohar, Mark E., 2013. "The output gap and stock returns: Do cyclical fluctuations predict portfolio returns?," International Review of Financial Analysis, Elsevier, vol. 26(C), pages 40-50.
    18. Francine Gresnigt & Erik Kole & Philip Hans Franses, 2017. "Specification Testing in Hawkes Models," Journal of Financial Econometrics, Oxford University Press, vol. 15(1), pages 139-171.
    19. Pesaran, M. Hashem & Timmermann, Allan, 2002. "Market timing and return prediction under model instability," Journal of Empirical Finance, Elsevier, vol. 9(5), pages 495-510, December.
    20. Maciel, Leandro, 2021. "A new approach to portfolio management in the Brazilian equity market: Does assets efficiency level improve performance?," The Quarterly Review of Economics and Finance, Elsevier, vol. 81(C), pages 38-56.
    21. Thomas D. Tallarini & Harold H. Zhang, 2005. "External habit and the cyclicality of expected stock returns," Finance and Economics Discussion Series 2005-27, Board of Governors of the Federal Reserve System (U.S.).
    22. Hashem Pesaran & Paolo Zaffaroni & Banca d'Italia), 2004. "Model Averaging and Value-at-Risk based Evaluation of Large Multi Asset Volatility Models for Risk Management," Money Macro and Finance (MMF) Research Group Conference 2004 101, Money Macro and Finance Research Group.
    23. Stelios D. Bekiros, 2013. "Irrational fads, short‐term memory emulation, and asset predictability," Review of Financial Economics, John Wiley & Sons, vol. 22(4), pages 213-219, November.
    24. Clark, Todd E. & McCracken, Michael W., 2015. "Nested forecast model comparisons: A new approach to testing equal accuracy," Journal of Econometrics, Elsevier, vol. 186(1), pages 160-177.
    25. Carolina Fugazza & Massimo Guidolin & Giovanna Nicodano, 2009. "Time and Risk Diversification in Real Estate Investments: Assessing the Ex Post Economic Value," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 37(3), pages 341-381, September.
    26. Giovannelli, Alessandro & Massacci, Daniele & Soccorsi, Stefano, 2021. "Forecasting stock returns with large dimensional factor models," Journal of Empirical Finance, Elsevier, vol. 63(C), pages 252-269.
    27. Leite, Paulo & Cortez, Maria Céu, 2014. "Style and performance of international socially responsible funds in Europe," Research in International Business and Finance, Elsevier, vol. 30(C), pages 248-267.
    28. Evangelos Karanikas & George Leledakis & Elias Tzavalis, 2006. "Structural Changes in Expected Stock Returns Relationships: Evidence from ASE," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 33(9‐10), pages 1610-1628, November.
    29. Zolotoy, Leon & Frederickson, James R. & Lyon, John D., 2017. "Aggregate earnings and stock market returns: The good, the bad, and the state-dependent," Journal of Banking & Finance, Elsevier, vol. 77(C), pages 157-175.
    30. Manabu Asai & Massimiliano Caporin & Michael McAleer, 2009. "Block Structure Multivariate Stochastic Volatility Models," CIRJE F-Series CIRJE-F-699, CIRJE, Faculty of Economics, University of Tokyo.
    31. Ryans Bartens & Shakill Hassan, 2009. "Value, Size and Momentum Portfolios in Real Time: The Cross-Section of South African Stocks," Working Papers 154, Economic Research Southern Africa.
    32. Wei, Steven X. & Zhang, Chu, 2003. "Statistical and economic significance of stock return predictability: a mean-variance analysis," Journal of Multinational Financial Management, Elsevier, vol. 13(4-5), pages 443-463, December.
    33. Alizadeh, Amir H. & Nomikos, Nikos K., 2007. "Investment timing and trading strategies in the sale and purchase market for ships," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 126-143, January.
    34. Cujean, Julien & Andrei, Daniel & Fournier, Mathieu, 2019. "The Low-Minus-High Portfolio and the Factor Zoo," CEPR Discussion Papers 14153, C.E.P.R. Discussion Papers.
    35. Truong Ngoc Cuong & Le Ngoc Bao Long & Hwan-Seong Kim & Sam-Sang You, 2023. "Data analytics and throughput forecasting in port management systems against disruptions: a case study of Busan Port," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 25(1), pages 61-89, March.
    36. Favero, Carlo A. & Milani, Fabio, 2005. "Parameter Instability, Model Uncertainty and the Choice of Monetary Policy," CEPR Discussion Papers 4909, C.E.P.R. Discussion Papers.
    37. Yi-Chieh Wen & Bin Li, 2020. "Lagged country returns and international stock return predictability during business cycle recession periods," Applied Economics, Taylor & Francis Journals, vol. 52(46), pages 5005-5019, October.
    38. Cesare Robotti, 2003. "Dynamic strategies, asset pricing models, and the out-of-sample performance of the tangency portfolio," FRB Atlanta Working Paper 2003-6, Federal Reserve Bank of Atlanta.
    39. Yao, Juan & Gao, Jiti & Alles, Lakshman, 2005. "Dynamic investigation into the predictability of Australian industrial stock returns: Using financial and economic information," Pacific-Basin Finance Journal, Elsevier, vol. 13(2), pages 225-245, March.
    40. Florens Odendahl & Barbara Rossi & Tatevik Sekhposyan, 2021. "Evaluating Forecast Performance with State Dependence," Working Papers 1295, Barcelona School of Economics.
    41. Poshakwale, Sunil S. & Chandorkar, Pankaj & Agarwal, Vineet, 2019. "Implied volatility and the cross section of stock returns in the UK," Research in International Business and Finance, Elsevier, vol. 48(C), pages 271-286.
    42. Groenewold, Nicolaas & Kan Tang, Sam Hak & Wu, Yanrui, 2008. "The profitability of regression-based trading rules for the Shanghai stock market," International Review of Financial Analysis, Elsevier, vol. 17(2), pages 411-430.
    43. Nicolas S. Magner & Nicolás Hardy & Tiago Ferreira & Jaime F. Lavin, 2023. "“Agree to Disagree”: Forecasting Stock Market Implied Volatility Using Financial Report Tone Disagreement Analysis," Mathematics, MDPI, vol. 11(7), pages 1-16, March.
    44. Bauer, Rob & Derwall, Jeroen & Molenaar, Roderick, 2004. "The real-time predictability of the size and value premium in Japan," Pacific-Basin Finance Journal, Elsevier, vol. 12(5), pages 503-523, November.
    45. David Newton, 2019. "Are All Forecasts Made Equal? Conditioning Models on Fit to Improve Accuracy," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-32, September.
    46. Hadhri, Sinda, 2021. "The nexus, downside risk and asset allocation between oil and Islamic stock markets: A cross-country analysis," Energy Economics, Elsevier, vol. 101(C).
    47. Guidolin, Massimo & Ono, Sadayuki, 2006. "Are the dynamic linkages between the macroeconomy and asset prices time-varying?," Journal of Economics and Business, Elsevier, vol. 58(5-6), pages 480-518.
    48. Sulaiman, Nadzri & Masih, Mansur, 2017. "Macroeconomic variables and stock markets (domestic and foreign): evidence from Malaysia," MPRA Paper 110154, University Library of Munich, Germany.
    49. Jaehun Chung & Yongmiao Hong, 2007. "Model-free evaluation of directional predictability in foreign exchange markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(5), pages 855-889.
    50. Danilov, D.L. & Magnus, J.R., 2002. "Forecast Accuracy after Pretesting with an Application to the Stock Market," Other publications TiSEM cb9b9b63-40a9-4035-924e-d, Tilburg University, School of Economics and Management.
    51. Gupta, Rangan & Hammoudeh, Shawkat & Modise, Mampho P. & Nguyen, Duc Khuong, 2014. "Can economic uncertainty, financial stress and consumer sentiments predict U.S. equity premium?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 33(C), pages 367-378.
    52. Jia Miao, 2007. "Volatility filter for index tracking and long–short market-neutral strategies," Journal of Asset Management, Palgrave Macmillan, vol. 8(2), pages 101-111, July.
    53. Costas M. Stephanou & Gawie S. du Toit & Marius J. Maritz, 2003. "The Release of Nelson Mandela: Effect on the Johannesburg Securities Exchange," Multinational Finance Journal, Multinational Finance Journal, vol. 7(3-4), pages 153-175, September.
    54. Castro, Andressa Monteiro de & Issler, João Victor, 2016. "Consumption-Wealth Ratio and Expected Stock Returns: Evidence from Panel Data on G7 Countries," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 70(4), December.
    55. Todd E. Clark & Michael W. McCracken, 2009. "In-sample tests of predictive ability: a new approach," Research Working Paper RWP 09-10, Federal Reserve Bank of Kansas City.
    56. Karolyi, G. Andrew & Kho, Bong-Chan, 2004. "Momentum strategies: some bootstrap tests," Journal of Empirical Finance, Elsevier, vol. 11(4), pages 509-536, September.
    57. Subrata Roy, 2016. "Another Look in Conditioning Alphas on Economic Information: Indian Evidence," Global Business Review, International Management Institute, vol. 17(1), pages 191-213, February.
    58. M. Hashem Pesaran, 2010. "Predictability of Asset Returns and the Efficient Market Hypothesis," CESifo Working Paper Series 3116, CESifo.
    59. Asger Lunde & Allan Timmermann, 2000. "Duration Dependence in Stock Prices: An Analysis of Bull and Bear Markets," Econometric Society World Congress 2000 Contributed Papers 1216, Econometric Society.
    60. Awijen, Haithem & Ben Zaied, Younes & Ben Lahouel, Béchir & Khlifi, Foued, 2023. "Machine learning for US cross-industry return predictability under information uncertainty," Research in International Business and Finance, Elsevier, vol. 64(C).
    61. Jianying Xie, 2021. "A New Multivariate Predictive Model for Stock Returns," Papers 2110.01873, arXiv.org.
    62. Pu Shen, 2002. "Market timing strategies that worked," Research Working Paper RWP 02-01, Federal Reserve Bank of Kansas City.
    63. Sousa, João & Sousa, Ricardo M., 2013. "Asset returns under model uncertainty: evidence from the euro area, the U.S. and the U.K," Working Paper Series 1575, European Central Bank.
    64. Phillips, Peter C.B., 2005. "Automated Discovery In Econometrics," Econometric Theory, Cambridge University Press, vol. 21(1), pages 3-20, February.
    65. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
    66. Andrew Detzel & Jack Strauss, 2018. "Combination Return Forecasts and Portfolio Allocation with the Cross-Section of Book-to-Market Ratios [Illiquidity and stock returns: cross-section and time-series effects]," Review of Finance, European Finance Association, vol. 22(5), pages 1949-1973.
    67. Torben G. Andersen & Rasmus T. Varneskov, 2018. "Consistent Inference for Predictive Regressions in Persistent VAR Economies," CREATES Research Papers 2018-09, Department of Economics and Business Economics, Aarhus University.
    68. Pierdzioch, Christian & Risse, Marian & Rohloff, Sebastian, 2014. "The international business cycle and gold-price fluctuations," The Quarterly Review of Economics and Finance, Elsevier, vol. 54(2), pages 292-305.
    69. Ippei Fujiwara & Maiko Koga, 2002. "A Statistical Forecasting Method for Inflation Forecasting," Bank of Japan Working Paper Series Research and Statistics D, Bank of Japan.
    70. Chauvet, Marcelle & Potter, Simon, 2001. "Nonlinear Risk," Macroeconomic Dynamics, Cambridge University Press, vol. 5(4), pages 621-646, September.
    71. Peter F. Christoffersen & Francis X. Diebold, 2006. "Financial Asset Returns, Direction-of-Change Forecasting, and Volatility Dynamics," Management Science, INFORMS, vol. 52(8), pages 1273-1287, August.
    72. O. S. Rozanova & G. S. Kambarbaeva, 2015. "Optimal strategies of investment in a linear stochastic model of market," Papers 1501.07124, arXiv.org.
    73. Wayne E. Ferson & Sergei Sarkissian & Timothy Simin, 2002. "Spurious Regressions in Financial Economics?," NBER Working Papers 9143, National Bureau of Economic Research, Inc.
    74. Nahzat Abbas & Jahanzeb Khan & Rabia Aziz & Zain Sumrani, 2015. "A Study to Check the Applicability of Fama and French, Three-Factor Model on KSE 100-Index from 2004-2014," International Journal of Financial Research, International Journal of Financial Research, Sciedu Press, vol. 6(1), pages 90-100, January.
    75. Jeffrey Jarrett & Eric Kyper, 2006. "Capital market efficiency and the predictability of daily returns," Applied Economics, Taylor & Francis Journals, vol. 38(6), pages 631-636.
    76. Nyberg, Henri & Pönkä, Harri, 2016. "International sign predictability of stock returns: The role of the United States," Economic Modelling, Elsevier, vol. 58(C), pages 323-338.
    77. Massimiliano Marcellino, 2008. "A linear benchmark for forecasting GDP growth and inflation?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(4), pages 305-340.
    78. Wen, Chufu & Zhu, Haoyang & Dai, Zhifeng, 2023. "Forecasting commodity prices returns: The role of partial least squares approach," Energy Economics, Elsevier, vol. 125(C).
    79. Lennart Hoogerheide & Richard Kleijn & Francesco Ravazzolo & Herman K. Van Dijk & Marno Verbeek, 2010. "Forecast accuracy and economic gains from Bayesian model averaging using time-varying weights," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 251-269.
    80. Felix Haase & Matthias Neuenkirch, 2020. "Predictability of Bull and Bear Markets: A New Look at Forecasting Stock Market Regimes (and Returns) in the US," Research Papers in Economics 2020-01, University of Trier, Department of Economics.
    81. Gianluca De Nard & Robert F. Engle & Olivier Ledoit & Michael Wolf, 2020. "Large dynamic covariance matrices: enhancements based on intraday data," ECON - Working Papers 356, Department of Economics - University of Zurich, revised Jan 2022.
    82. Krkoska, Libor & Teksoz, Utku, 2009. "How reliable are forecasts of GDP growth and inflation for countries with limited coverage?," Economic Systems, Elsevier, vol. 33(4), pages 376-388, December.
    83. Cem Cakmakli & Verda Ozturk, 2021. "Economic Value of Modeling the Joint Distribution of Returns and Volatility: Leverage Timing," Koç University-TUSIAD Economic Research Forum Working Papers 2110, Koc University-TUSIAD Economic Research Forum.
    84. Gupta, Rangan & Majumdar, Anandamayee & Pierdzioch, Christian & Wohar, Mark E., 2017. "Do terror attacks predict gold returns? Evidence from a quantile-predictive-regression approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 65(C), pages 276-284.
    85. Flavio Barboza & Geraldo Nunes Silva & José Augusto Fiorucci, 2023. "A review of artificial intelligence quality in forecasting asset prices," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1708-1728, November.
    86. Anindya Banerjee & Massimiliano Marcellino & Igor Masten, 2005. "Leading Indicators for Euro‐area Inflation and GDP Growth," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 785-813, December.
    87. Bossaerts, Peter & Hillion, Pierre, 1999. "Implementing Statistical Criteria to Select Return Forecasting Models: What Do We Learn?," The Review of Financial Studies, Society for Financial Studies, vol. 12(2), pages 405-428.
    88. Geweke, J. & Joel Horowitz & Pesaran, M.H., 2006. "Econometrics: A Bird’s Eye View," Cambridge Working Papers in Economics 0655, Faculty of Economics, University of Cambridge.
    89. Erik Devos & Andrew Spieler & Desmond Tsang, 2014. "Elective Stock Dividends and REITs: Evidence from the Financial Crisis," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 42(1), pages 33-70, March.
    90. Bätje, Fabian & Menkhoff, Lukas, 2016. "Predicting the equity premium via its components," VfS Annual Conference 2016 (Augsburg): Demographic Change 145789, Verein für Socialpolitik / German Economic Association.
    91. Koop, Gary & Korobilis, Dimitris, 2009. "UK Macroeconomic Forecasting with Many Predictors: Which Models Forecast Best and When Do They Do So?," SIRE Discussion Papers 2009-40, Scottish Institute for Research in Economics (SIRE).
    92. Yi, Yongsheng & Ma, Feng & Zhang, Yaojie & Huang, Dengshi, 2019. "Forecasting stock returns with cycle-decomposed predictors," International Review of Financial Analysis, Elsevier, vol. 64(C), pages 250-261.
    93. Chen, Cathy Yi-Hsuan & Després, Roméo & Guo, Li & Renault, Thomas, 2019. "What makes cryptocurrencies special? Investor sentiment and return predictability during the bubble," IRTG 1792 Discussion Papers 2019-016, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    94. Flavin, T. J. & Wickens, M. R., 2003. "Macroeconomic influences on optimal asset allocation," Review of Financial Economics, Elsevier, vol. 12(2), pages 207-231.
    95. Everett, Craig R. & K., John, 2013. "Private Businesses Predict Limited Growth for 2013," MPRA Paper 55528, University Library of Munich, Germany.
    96. Manuela Pedio, 2021. "Option-Implied Network Measures of Tail Contagion and Stock Return Predictability," BAFFI CAREFIN Working Papers 21154, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    97. Nyberg, Henri, 2011. "Forecasting the direction of the US stock market with dynamic binary probit models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 561-578.
    98. Gonzalo, Jesús & Pitarakis, Jean-Yves, 2024. "Out-of-sample predictability in predictive regressions with many predictor candidates," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1166-1178.
    99. Sousa, João & Sousa, Ricardo M., 2017. "Predicting risk premium under changes in the conditional distribution of stock returns," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 50(C), pages 204-218.
    100. Michael Cooper & Huseyin Gulen, 2006. "Is Time-Series-Based Predictability Evident in Real Time?," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1263-1292, May.
    101. Egginton, Donald & Andreas Pick & Shaun P. Vahey, 2002. "Keep It Real!: A Real-time UK Macro Data Set," Royal Economic Society Annual Conference 2002 69, Royal Economic Society.
    102. Shamsi Zamenjani, Azam, 2021. "Do financial variables help predict the conditional distribution of the market portfolio?," Journal of Empirical Finance, Elsevier, vol. 62(C), pages 327-345.
    103. Huber, Florian & Krisztin, Tamás & Piribauer, Philipp, 2014. "Forecasting Global Equity Indices Using Large Bayesian VARs," Department of Economics Working Paper Series 184, WU Vienna University of Economics and Business.
    104. Leland E. Farmer & Lawrence Schmidt & Allan Timmermann, 2023. "Pockets of Predictability," Journal of Finance, American Finance Association, vol. 78(3), pages 1279-1341, June.
    105. Oliveira, Alexandre Silva de & Ceretta, Paulo Sergio & Albrecht, Peter, 2023. "Performance comparison of multifractal techniques and artificial neural networks in the construction of investment portfolios," Finance Research Letters, Elsevier, vol. 55(PA).
    106. McMillan, David G., 2001. "Nonlinear predictability of stock market returns: Evidence from nonparametric and threshold models," International Review of Economics & Finance, Elsevier, vol. 10(4), pages 353-368, December.
    107. Rangan Gupta & Anandamayee Majumdar & Christian Pierdzioch & Onur Polat, 2024. "Climate Risks and Real Gold Returns over 750 Years," Working Papers 202436, University of Pretoria, Department of Economics.
    108. Jimmy Ran & Jan P. Voon & Guangzhong Li, 2010. "How Do Oil Price Shocks Affect A Small Non‐Oil Producing Economy? Evidence From Hong Kong," Pacific Economic Review, Wiley Blackwell, vol. 15(2), pages 263-280, May.
    109. Davis, E. Philip & Madsen, Jakob B., 2008. "Productivity and equity market fundamentals: 80 years of evidence for 11 OECD countries," Journal of International Money and Finance, Elsevier, vol. 27(8), pages 1261-1283, December.
    110. Andrada-Félix Julián & Fernadez-Rodriguez Fernando & Garcia-Artiles Maria-Dolores & Sosvilla-Rivero Simon, 2003. "An Empirical Evaluation of Non-Linear Trading Rules," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 7(3), pages 1-32, October.
    111. Bozos, Konstantinos & Nikolopoulos, Konstantinos, 2011. "Forecasting the value effect of seasoned equity offering announcements," European Journal of Operational Research, Elsevier, vol. 214(2), pages 418-427, October.
    112. Ashok Chanabasangouda Patil & Shailesh Rastogi, 2019. "Time-Varying Price–Volume Relationship and Adaptive Market Efficiency: A Survey of the Empirical Literature," JRFM, MDPI, vol. 12(2), pages 1-18, June.
    113. K. J. Martijn Cremers, 2002. "Stock Return Predictability: A Bayesian Model Selection Perspective," The Review of Financial Studies, Society for Financial Studies, vol. 15(4), pages 1223-1249.
    114. Cem Cakmakli & Dick van Dijk, 2010. "Getting the Most out of Macroeconomic Information for Predicting Stock Returns and Volatility," Tinbergen Institute Discussion Papers 10-115/4, Tinbergen Institute.
    115. Oscar Bajo-Rubio & Simón Sosvilla-Rivero & Fernando Fernández-Rodríguez, "undated". "Non-Linear Forecasting Methods: Some Applications to the Analysis of Financial Series," Working Papers 2002-01, FEDEA.
    116. Christopher R. Stephens & Harald A. Benink & José Luís Gordillo & Juan Pablo Pardo-Guerra, 2021. "A New Measure of Market Inefficiency," JRFM, MDPI, vol. 14(6), pages 1-22, June.
    117. Vance L. Martin & Mardi Dungey, 2007. "Unravelling financial market linkages during crises," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(1), pages 89-119.
    118. Lucas, Andre & van Dijk, Ronald & Kloek, Teun, 2002. "Stock selection, style rotation, and risk," Journal of Empirical Finance, Elsevier, vol. 9(1), pages 1-34, January.
    119. Philip Gray, 2008. "Economic significance of predictability in Australian equities," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 48(5), pages 783-805, December.
    120. Andreas Karathanasopoulos, 2016. "Modelling and trading the English stock market with novelty optimization techniques," Economics and Business Letters, Oviedo University Press, vol. 5(2), pages 50-57.
    121. Hassan, Abul & Antoniou, Antonios & Paudyal, D Krishna, 2005. "Impact Of Ethical Screening On Investment Performance: The Case Of The Dow Jones Islamic Index," Islamic Economic Studies, The Islamic Research and Training Institute (IRTI), vol. 12, pages 68-97.
    122. Medel, Carlos & Camilleri, Gilmour & Hsu, Hsiang-Ling & Kania, Stefan & Touloumtzoglou, Miltiadis, 2015. "Robustness in Foreign Exchange Rate Forecasting Models: Economics-based Modelling After the Financial Crisis," MPRA Paper 65290, University Library of Munich, Germany.
    123. Daniel Mantilla-García & Vijay Vaidyanathan, 2017. "Predicting stock returns in the presence of uncertain structural changes and sample noise," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 31(3), pages 357-391, August.
    124. Tzavalis, Elias & Wickens, Michael, 1998. "A Re-examination of the Rational Expectations Hypothesis of the Term Structure: Reconciling the Evidence from Long-Run and Short-Run Tests," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 3(3), pages 229-239, July.
    125. Guidolin, Massimo & Hyde, Stuart & McMillan, David & Ono, Sadayuki, 2009. "Non-linear predictability in stock and bond returns: When and where is it exploitable?," International Journal of Forecasting, Elsevier, vol. 25(2), pages 373-399.
    126. Neil Kellard & Denise Osborn & Jerry Coakley & Alastair R. Hall & Denise R. Osborn & Nikolaos Sakkas, 2015. "Structural Break Inference Using Information Criteria in Models Estimated by Two-Stage Least Squares," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(5), pages 741-762, September.
    127. Moreno, David & Olmeda, Ignacio, 2007. "Is the predictability of emerging and developed stock markets really exploitable?," European Journal of Operational Research, Elsevier, vol. 182(1), pages 436-454, October.
    128. Georgi Nalbantov & Rob Bauer & Ida Sprinkhuizen-Kuyper, 2006. "Equity style timing using support vector regressions," Applied Financial Economics, Taylor & Francis Journals, vol. 16(15), pages 1095-1111.
    129. Wayne E. Ferson & Campbell R. Harvey, 1999. "Conditioning Variables and the Cross-Section of Stock Returns," NBER Working Papers 7009, National Bureau of Economic Research, Inc.
    130. Liam A. Gallagher & Mark P. Taylor, 2002. "Permanent and Temporary Components of Stock Prices: Evidence from Assessing Macroeconomic Shocks," Southern Economic Journal, John Wiley & Sons, vol. 69(2), pages 345-362, October.
    131. David McMillan, 2004. "Non-linear predictability of UK stock market returns," Money Macro and Finance (MMF) Research Group Conference 2003 63, Money Macro and Finance Research Group.
    132. David G. McMillan, 2017. "Stock return predictability: the role of inflation and threshold dynamics," International Review of Applied Economics, Taylor & Francis Journals, vol. 31(3), pages 357-375, May.
    133. Nima Nonejad, 2021. "An Overview Of Dynamic Model Averaging Techniques In Time‐Series Econometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 566-614, April.
    134. Moretti, Laura & Onorante, Luca & Zakipour Saber, Shayan, 2019. "Phillips curves in the euro area," Working Paper Series 2295, European Central Bank.
    135. Carl Chiarella & Xue-Zhong He & Cars Hommes, 2004. "A Dynamic Analysis of Moving Average Rules," Research Paper Series 133, Quantitative Finance Research Centre, University of Technology, Sydney.
    136. Uppal, Raman & Kogan, Leonid, 2002. "Risk Aversion and Optimal Portfolio Policies in Partial and General Equilibrium Economies," CEPR Discussion Papers 3306, C.E.P.R. Discussion Papers.
    137. Tan, Pei P. & Galagedera, Don U.A. & Maharaj, Elizabeth A., 2012. "A wavelet based investigation of long memory in stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2330-2341.
    138. Andreas Karathanasopoulos, 2017. "Modelling and trading the London, New York and Frankfurt stock exchanges with a new gene expression programming trader tool," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 24(1), pages 3-11, January.
    139. He, Xue-Zhong & Li, Kai, 2012. "Heterogeneous beliefs and adaptive behaviour in a continuous-time asset price model," Journal of Economic Dynamics and Control, Elsevier, vol. 36(7), pages 973-987.
    140. Bielecki, Tomasz R. & Pliska, Stanley R. & Sherris, Michael, 2000. "Risk sensitive asset allocation," Journal of Economic Dynamics and Control, Elsevier, vol. 24(8), pages 1145-1177, July.
    141. Massimo Guidolin & Giovanna Nicodano, 2009. "Small caps in international equity portfolios: the effects of variance risk," Annals of Finance, Springer, vol. 5(1), pages 15-48, January.
    142. Rumi Masih & A. Mansur M. Masih & Kilian Mie, 2010. "Model uncertainty and asset return predictability: an application of Bayesian model averaging," Applied Economics, Taylor & Francis Journals, vol. 42(15), pages 1963-1972.
    143. Christiane Baumeister & Lutz Kilian, 2014. "What Central Bankers Need To Know About Forecasting Oil Prices," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 55(3), pages 869-889, August.
    144. Xu, Yexiao, 2004. "Small levels of predictability and large economic gains," Journal of Empirical Finance, Elsevier, vol. 11(2), pages 247-275, March.
    145. Thomadakis, Apostolos, 2016. "Do Combination Forecasts Outperform the Historical Average? Economic and Statistical Evidence," MPRA Paper 71589, University Library of Munich, Germany.
    146. Stanislav Anatolyev & Nikolay Gospodinov, 2007. "Modeling Financial Return Dynamics by Decomposition," Working Papers w0095, New Economic School (NES).
    147. Khurshid M. Kiani, 2016. "On Modelling and Forecasting Predictable Components in European Stock Markets," Computational Economics, Springer;Society for Computational Economics, vol. 48(3), pages 487-502, October.
    148. Lumengo BONGA-BONGA, 2010. "Modeling Stock Returns in the South African Stock Exchange: a Nonlinear Approach," EcoMod2010 259600034, EcoMod.
    149. Kenneth D. West & Todd Clark, 2006. "Approximately Normal Tests for Equal Predictive Accuracy in Nested Models," NBER Technical Working Papers 0326, National Bureau of Economic Research, Inc.
    150. Korkie, Bob & Sivakumar, Ranjini & Turtle, Harry, 2002. "The dual contributions of information instruments in return models: magnitude and direction predictability," Journal of Empirical Finance, Elsevier, vol. 9(5), pages 511-523, December.
    151. Antonio Marsi, 2023. "Predicting European stock returns using machine learning," SN Business & Economics, Springer, vol. 3(7), pages 1-25, July.
    152. Banerjee, Anindya & Marcellino, Massimiliano, 2006. "Are there any reliable leading indicators for US inflation and GDP growth?," International Journal of Forecasting, Elsevier, vol. 22(1), pages 137-151.
    153. Barnhart, Scott W. & Giannetti, Antoine, 2009. "Negative earnings, positive earnings and stock return predictability: An empirical examination of market timing," Journal of Empirical Finance, Elsevier, vol. 16(1), pages 70-86, January.
    154. Amit Goyal & Ivo Welch, 2003. "Predicting the Equity Premium with Dividend Ratios," Management Science, INFORMS, vol. 49(5), pages 639-654, May.
    155. Narayan, Paresh Kumar & Sharma, Susan Sunila, 2011. "New evidence on oil price and firm returns," Journal of Banking & Finance, Elsevier, vol. 35(12), pages 3253-3262.
    156. Kadilli, Anjeza, 2015. "Predictability of stock returns of financial companies and the role of investor sentiment: A multi-country analysis," Journal of Financial Stability, Elsevier, vol. 21(C), pages 26-45.
    157. Rohloff, Sebastian & Pierdzioch, Christian & Risse, Marian, 2014. "Fluctuations of the Real Exchange Rate, Real Interest Rates, and the Dynamics of the Price of Gold in a Small Open Economy," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100429, Verein für Socialpolitik / German Economic Association.
    158. Stelios Bekiros & Dimitris Georgoutsos, 2008. "Non-linear dynamics in financial asset returns: the predictive power of the CBOE volatility index," The European Journal of Finance, Taylor & Francis Journals, vol. 14(5), pages 397-408.
    159. Rebecca M. Baker & Tahani Coolen-Maturi & Frank P. A. Coolen, 2017. "Nonparametric predictive inference for stock returns," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(8), pages 1333-1349, June.
    160. João Sousa & Ricardo M. Sousa, 2011. "Asset Returns Under Model Uncertainty: Eveidence from the euro area, the U.K and the U.S," NIPE Working Papers 21/2011, NIPE - Universidade do Minho.
    161. Bohumil Stádník & Algita Miečinskienė, 2015. "Complex Model of Market Price Development and its Simulation," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 16(4), pages 786-807, August.
    162. Swinkels, L.A.P. & van der Sluis, P.J. & Verbeek, M.J.C.M., 2003. "Market timing: A decomposition of mutual fund returns," ERIM Report Series Research in Management ERS-2003-074-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    163. Rita De Siano, 2000. "Financial Variables As Leading Indicators: An Application To The G7 Countries," Working Papers 6_2000, D.E.S. (Department of Economic Studies), University of Naples "Parthenope", Italy.
    164. Timmermann, Allan & Granger, Clive, 2002. "Efficient Market Hypothesis and Forecasting," CEPR Discussion Papers 3593, C.E.P.R. Discussion Papers.
    165. Marco Aiolfi & Carlo Ambrogio Favero, "undated". "Model Uncertainty, Thick Modelling and the predictability of Stock Returns," Working Papers 221, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    166. Niehof, Britta & Hayo, Bernd, 2014. "Analysis of Monetary Policy Responses after Financial Market Crises in a Continuous Time New Keynesian Model," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100410, Verein für Socialpolitik / German Economic Association.
    167. Guo, Hui & Savickas, Robert, 2006. "Idiosyncratic Volatility, Stock Market Volatility, and Expected Stock Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 43-56, January.
    168. Bauer, Rob & Otten, Roger & Rad, Alireza Tourani, 2006. "Ethical investing in Australia: Is there a financial penalty?," Pacific-Basin Finance Journal, Elsevier, vol. 14(1), pages 33-48, January.
    169. Peter Christoffersen & Francis X. Diebold, 2002. "Financial Asset Returns, Market Timing, and Volatility Dynamics," CIRANO Working Papers 2002s-02, CIRANO.
    170. Jonathan A. Batten, Cetin Ciner and Brian M. Lucey, 2008. "The Macroeconomic Determinants of Volatility in Precious Metals Markets," The Institute for International Integration Studies Discussion Paper Series iiisdp255, IIIS.
    171. Papachristou, George & Karamanis, Dimitri, 1998. "Investigating efficiency in betting markets: Evidence from the Greek 6/49 Lotto," Journal of Banking & Finance, Elsevier, vol. 22(12), pages 1597-1615, December.
    172. Christian Pierdzioch & Daniel Hartmann, 2013. "Forecasting Eurozone real-estate returns," Applied Financial Economics, Taylor & Francis Journals, vol. 23(14), pages 1185-1196, July.
    173. Daniel Hartmann & Christian Pierdzioch, 2007. "International equity flows and the predictability of US stock returns," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(8), pages 583-599.
    174. Timo Teräsvirta & Marcelo C. Medeiros & Gianluigi Rech, 2006. "Building neural network models for time series: a statistical approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(1), pages 49-75.
    175. Xianfeng Hao & Yudong Wang, 2023. "Forecasting the stock risk premium: A new statistical constraint," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1805-1822, November.
    176. Bonga-Bonga, Lumengo & Mwamba, Muteba, 2015. "A multivariate model for the prediction of stock returns in an emerging market: A comparison of parametric and non-parametric models," MPRA Paper 62028, University Library of Munich, Germany.
    177. Perez-Quiros, Gabriel & Timmermann, Allan, 1999. "Firm size and cyclical variations in stock returns," LSE Research Online Documents on Economics 119113, London School of Economics and Political Science, LSE Library.
    178. Marshall, Ben R. & Cahan, Rochester H. & Cahan, Jared M., 2008. "Does intraday technical analysis in the U.S. equity market have value?," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 199-210, March.
    179. Granger, C.W.J. & Pesaran, M. H., 1999. "Economic and Statistical Measures of Forecast Accuracy," Cambridge Working Papers in Economics 9910, Faculty of Economics, University of Cambridge.
    180. Guidolin, Massimo & Hansen, Erwin & Pedio, Manuela, 2019. "Cross-asset contagion in the financial crisis: A Bayesian time-varying parameter approach," Journal of Financial Markets, Elsevier, vol. 45(C), pages 83-114.
    181. Perez-Quiros, G. & Timmermann, A., 2001. "Business Cycle Asymmetries in Stock Returns: Evidence from Higher Order Moments and Conditional Densities," Papers 58, Quebec a Montreal - Recherche en gestion.
    182. Carlo A. Favero, "undated". "Parameters´ Instability, Model Uncertainty and Optimal Monetary Policy," Working Papers 196, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    183. Branch, William A., 2007. "Sticky information and model uncertainty in survey data on inflation expectations," Journal of Economic Dynamics and Control, Elsevier, vol. 31(1), pages 245-276, January.
    184. Fong, Wai Mun & Yong, Lawrence H. M., 2005. "Chasing trends: recursive moving average trading rules and internet stocks," Journal of Empirical Finance, Elsevier, vol. 12(1), pages 43-76, January.
    185. Nyberg, Henri, 2010. "QR-GARCH-M Model for Risk-Return Tradeoff in U.S. Stock Returns and Business Cycles," MPRA Paper 23724, University Library of Munich, Germany.
    186. Christis Katsouris, 2023. "Predictability Tests Robust against Parameter Instability," Papers 2307.15151, arXiv.org.
    187. Potì, Valerio & Levich, Richard M. & Pattitoni, Pierpaolo & Cucurachi, Paolo, 2014. "Predictability, trading rule profitability and learning in currency markets," International Review of Financial Analysis, Elsevier, vol. 33(C), pages 117-129.
    188. Stanislav Anatolyev, 2006. "Nonparametric retrospection and monitoring of predictability of financial returns," Working Papers w0071, Center for Economic and Financial Research (CEFIR).
    189. M. Hashem Pesaran & Paolo Zaffaroni, 2008. "Optimal Asset Allocation with Factor Models for Large Portfolios," CESifo Working Paper Series 2326, CESifo.
    190. Massimo Guidolin & Carrie Fangzhou Na, 2007. "The economic and statistical value of forecast combinations under regime switching: an application to predictable U.S. returns," Working Papers 2006-059, Federal Reserve Bank of St. Louis.
    191. Muteba Mwamba, John Weirstrass & Webb, Daniel, 2014. "The predictability of asset returns in the BRICS countries: a nonparametric approach," MPRA Paper 72880, University Library of Munich, Germany, revised 15 Nov 2014.
    192. Francesco Chincoli & Massimo Guidolin, 2017. "Linear and nonlinear predictability in investment style factors: multivariate evidence," Journal of Asset Management, Palgrave Macmillan, vol. 18(6), pages 476-509, October.
    193. Christis Katsouris, 2023. "Estimation and Inference in Threshold Predictive Regression Models with Locally Explosive Regressors," Papers 2305.00860, arXiv.org, revised May 2023.
    194. He, Xue-Zhong & Zheng, Min, 2010. "Dynamics of moving average rules in a continuous-time financial market model," Journal of Economic Behavior & Organization, Elsevier, vol. 76(3), pages 615-634, December.
    195. Bertrand Candelon & Jameel Ahmed & Stefan Straetmans, 2014. "Predicting and Capitalizing on Stock Market Bears in the U.S," Working Papers 2014-409, Department of Research, Ipag Business School.
    196. Behrens, Christoph, 2019. "Evaluating the Joint Efficiency of German Trade Forecasts. A nonparametric multivariate approach," Working Papers 9, German Research Foundation's Priority Programme 1859 "Experience and Expectation. Historical Foundations of Economic Behaviour", Humboldt University Berlin.
    197. Sudarshan Kumar & Sobhesh Kumar Agarwalla & Jayanth R. Varma & Vineet Virmani, 2023. "Harvesting the volatility smile in a large emerging market: A Dynamic Nelson–Siegel approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(11), pages 1615-1644, November.
    198. Dangl, Thomas & Halling, Michael, 2012. "Predictive regressions with time-varying coefficients," Journal of Financial Economics, Elsevier, vol. 106(1), pages 157-181.
    199. Hassan, M. Kabir & Girard, Eric, 2010. "Faith-Based Ethical Investing: The Case Of Dow Jones Islamic Indexes," Islamic Economic Studies, The Islamic Research and Training Institute (IRTI), vol. 17, pages 1-31.
    200. Giulia Dal Pra & Massimo Guidolin & Manuela Pedio & Fabiola Vasile, 2016. "Do Regimes in Excess Stock Return Predictability Create Economic Value? An Out-of-Sample Portfolio Analysis," BAFFI CAREFIN Working Papers 1637, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    201. Bart Diris & Franz Palm & Peter Schotman, 2015. "Long-Term Strategic Asset Allocation: An Out-of-Sample Evaluation," Management Science, INFORMS, vol. 61(9), pages 2185-2202, September.
    202. Maria Kasch & Massimiliano Caporin, 2008. "Volatility Threshold Dynamic Conditional Correlations: An International Analysis," "Marco Fanno" Working Papers 0065, Dipartimento di Scienze Economiche "Marco Fanno".
    203. Michael Rockinger & Eric Jondeau, 2001. "Portfolio allocation in transition economies," Working Papers hal-00601482, HAL.
    204. Neil Kellard & John Nankervis & Fotis Papadimitriou, 2007. "Predicting the UK Equity Premium with Dividend Ratios: An Out-Of-Sample Recursive Residuals Graphical Approach," Money Macro and Finance (MMF) Research Group Conference 2006 129, Money Macro and Finance Research Group.
    205. Ahoniemi, Katja & Lanne, Markku, 2009. "Joint modeling of call and put implied volatility," International Journal of Forecasting, Elsevier, vol. 25(2), pages 239-258.
    206. McKenzie, Michael & Satchell, Stephen & Wongwachara, Warapong, 2012. "Nonlinearity and smoothing in venture capital performance data," Journal of Empirical Finance, Elsevier, vol. 19(5), pages 782-795.
    207. Gencay, Ramazan, 1998. "Optimization of technical trading strategies and the profitability in security markets," Economics Letters, Elsevier, vol. 59(2), pages 249-254, May.
    208. Andrew Detzel & Hong Liu & Jack Strauss & Guofu Zhou & Yingzi Zhu, 2021. "Learning and predictability via technical analysis: Evidence from bitcoin and stocks with hard‐to‐value fundamentals," Financial Management, Financial Management Association International, vol. 50(1), pages 107-137, March.
    209. Pettenuzzo, Davide & Timmermann, Allan, 2011. "Predictability of stock returns and asset allocation under structural breaks," Journal of Econometrics, Elsevier, vol. 164(1), pages 60-78, September.
    210. Rob Bauer & Jeroen Derwall & Rogér Otten, 2007. "The Ethical Mutual Fund Performance Debate: New Evidence from Canada," Journal of Business Ethics, Springer, vol. 70(2), pages 111-124, January.
    211. Rodríguez Arnulfo & Rodríguez Pedro N., 2007. "Recursive Thick Modeling and the Choice of Monetary Policy in Mexico," Working Papers 2007-04, Banco de México.
    212. Jamie Alcock & Philip Gray, 2005. "Forecasting Stock Returns Using Model‐Selection Criteria," The Economic Record, The Economic Society of Australia, vol. 81(253), pages 135-151, June.
    213. Naser, Hanan & Alaali, Fatema, 2015. "Can Oil Prices Help Predict US Stock Market Returns: An Evidence Using a DMA Approach," MPRA Paper 65295, University Library of Munich, Germany, revised 25 Jun 2015.
    214. George Papachristou, 1999. "Stochastic behaviour of the Athens Stock Exchange: a case of institutional nonsynchronous trading," Applied Financial Economics, Taylor & Francis Journals, vol. 9(3), pages 239-250.
    215. Funk, Christoph, 2018. "Forecasting the real price of oil - Time-variation and forecast combination," Energy Economics, Elsevier, vol. 76(C), pages 288-302.
    216. Christoph Behrens, 2019. "A Nonparametric Evaluation of the Optimality of German Export and Import Growth Forecasts under Flexible Loss," Economies, MDPI, vol. 7(3), pages 1-23, September.
    217. Manuel Ammann & Christian Zenkner, 2003. "Tactical Asset Allocation mit Genetischen Algorithmen," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 139(I), pages 1-40, March.
    218. Angela J. Black & David G. McMillan, 2004. "Non‐linear Predictability of Value and Growth Stocks and Economic Activity," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 31(3‐4), pages 439-474, April.
    219. Jonathan Iworiso & Spyridon Vrontos, 2020. "On the directional predictability of equity premium using machine learning techniques," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(3), pages 449-469, April.
    220. Maasoumi, Esfandiar & Racine, Jeff, 2002. "Entropy and predictability of stock market returns," Journal of Econometrics, Elsevier, vol. 107(1-2), pages 291-312, March.
    221. Eduard Baitinger & Christian Fieberg & Thorsten Poddig & Armin Varmaz, 2015. "Liquidity-driven approach to dynamic asset allocation: evidence from the German stock market," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 29(4), pages 365-379, November.
    222. Ergun, Lerby & Molchanov, Alexander & Stork, Philip, 2023. "Technical trading rules, loss avoidance, and the business cycle," Pacific-Basin Finance Journal, Elsevier, vol. 82(C).
    223. Chang, Kuang-Liang, 2009. "Do macroeconomic variables have regime-dependent effects on stock return dynamics? Evidence from the Markov regime switching model," Economic Modelling, Elsevier, vol. 26(6), pages 1283-1299, November.
    224. Mai Shibata, 2014. "The Influence of Japan’s Unsecured Overnight Call Rate on Bull and Bear Markets and Market Turns," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 21(4), pages 331-349, November.
    225. Yin, Libo & Yang, Qingyuan, 2016. "Predicting the oil prices: Do technical indicators help?," Energy Economics, Elsevier, vol. 56(C), pages 338-350.
    226. Arnulfo Rodriguez & Pedro N. Rodriguez, 2006. "Recursive Thick Modeling and the Choice of Monetary Policy in Mexico," Computing in Economics and Finance 2006 30, Society for Computational Economics.
    227. Harald A. Benink & Jose Luis Gordillo & Juan Pablo Pardo & Christopher R. Stephens, 2004. "A Study of Neo-Austrian Economics using an Artificial Stock Market," Finance 0411038, University Library of Munich, Germany.
    228. K.C. Chen & Guangzhong Li & Lifan Wu, 2010. "Price Discovery for Segmented US‐Listed Chinese Stocks: Location or Market Quality?," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 37(1‐2), pages 242-269, January.
    229. Aatola, Piia & Ollikka, Kimmo & Ollikainen, Markku, 2012. "Informational Efficiency of the EU ETS market – a study of price predictability and profitable trading," Working Papers 28, VATT Institute for Economic Research.
    230. Kim, Young Min & Lee, Seojin, 2020. "Exchange rate predictability: A variable selection perspective," International Review of Economics & Finance, Elsevier, vol. 70(C), pages 117-134.
    231. Plakandaras, Vasilios & Ji, Qiang, 2022. "Intrinsic decompositions in gold forecasting," Journal of Commodity Markets, Elsevier, vol. 28(C).
    232. Gene Birz & Erik Devos & Sandip Dutta & Khoa Nguyen & Desmond Tsang, 2022. "Ex-ante performance of REIT portfolios," Review of Quantitative Finance and Accounting, Springer, vol. 59(3), pages 995-1018, October.
    233. Pesaran, M.H. & Timmermann, A., 2004. "‘Real Time Econometrics’," Cambridge Working Papers in Economics 0432, Faculty of Economics, University of Cambridge.
    234. Korobilis, Dimitris, 2018. "Machine Learning Macroeconometrics A Primer," Essex Finance Centre Working Papers 22666, University of Essex, Essex Business School.
    235. Naser, Hanan, 2016. "Estimating and forecasting the real prices of crude oil: A data rich model using a dynamic model averaging (DMA) approach," Energy Economics, Elsevier, vol. 56(C), pages 75-87.
    236. Cooper, Michael J. & Gubellini, Stefano, 2011. "The critical role of conditioning information in determining if value is really riskier than growth," Journal of Empirical Finance, Elsevier, vol. 18(2), pages 289-305, March.
    237. Focker, Fulvia & Triacca, Umberto, 2006. "Interpreting the concept of joint unpredictability of asset returns: A distance approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 369(2), pages 765-770.
    238. Hanan Naser & Fatema Alaali, 2018. "Can oil prices help predict US stock market returns? Evidence using a dynamic model averaging (DMA) approach," Empirical Economics, Springer, vol. 55(4), pages 1757-1777, December.
    239. Boudoukh, Jacob & Israel, Ronen & Richardson, Matthew, 2022. "Biases in long-horizon predictive regressions," Journal of Financial Economics, Elsevier, vol. 145(3), pages 937-969.
    240. Rebecca Stuart, 2022. "Stock Return Predictability before the First World War," IRENE Working Papers 22-02, IRENE Institute of Economic Research.
    241. Cunha, Ronan & Pereira, Pedro L. Valls, 2015. "Automatic model selection for forecasting Brazilian stock returns," Textos para discussão 398, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
    242. Wessel Marquering, 2006. "Do consumption-based asset pricing models explain return predictability?," Applied Financial Economics, Taylor & Francis Journals, vol. 16(14), pages 1019-1027.
    243. David Hirshleifer, 2001. "Investor Psychology and Asset Pricing," Journal of Finance, American Finance Association, vol. 56(4), pages 1533-1597, August.
    244. Dorra Zouari & Achraf Ghorbel & Sonia Ghorbel-Zouari & Younes Boujelbène, 2014. "Volatility spillovers and dynamic correlation between liquidity risk factors in Tunisian banks," International Journal of Managerial and Financial Accounting, Inderscience Enterprises Ltd, vol. 6(1), pages 1-26.
    245. Shailesh Rana & William H. Bommer & G. Michael Phillips, 2020. "Predicting Returns for Growth and Value Stocks: A Forecast Assessment Approach Using Global Asset Pricing Models," International Journal of Economics and Financial Issues, Econjournals, vol. 10(4), pages 88-106.
    246. Timmermann, Allan, 2008. "Elusive return predictability," International Journal of Forecasting, Elsevier, vol. 24(1), pages 1-18.
    247. Torben G. Andersen & Rasmus T. Varneskov, 2021. "Consistent Inference for Predictive Regressions in Persistent Economic Systems," NBER Working Papers 28568, National Bureau of Economic Research, Inc.
    248. Nick Taylor, 2017. "Risk Control: Who Cares?," European Financial Management, European Financial Management Association, vol. 23(1), pages 153-179, January.
    249. Yufeng Han, 2010. "On the Economic Value of Return Predictability," Annals of Economics and Finance, Society for AEF, vol. 11(1), pages 1-33, May.
    250. McCracken,M.W. & West,K.D., 2001. "Inference about predictive ability," Working papers 14, Wisconsin Madison - Social Systems.
    251. Andreia Dionisio & Rui Menezes & Diana A. Mendes & Jacinto Vidigal da Silva, 2004. "Linear and nonlinear models for the analysis of the relationship between stock market prices and macroeconomic and financial factors," Econometrics 0411018, University Library of Munich, Germany.
    252. Mika Vaihekoski, 1998. "Short-term returns and the predictability of Finnish stock returns," Finnish Economic Papers, Finnish Economic Association, vol. 11(1), pages 19-36, Spring.
    253. McMillan, David G., 2007. "Non-linear forecasting of stock returns: Does volume help?," International Journal of Forecasting, Elsevier, vol. 23(1), pages 115-126.
    254. Tzu-Wen Kuo & Shu-Heng Chen,, 2003. "Genetic Programming and International Short-Term Capital Flow," Computing in Economics and Finance 2003 74, Society for Computational Economics.
    255. Mazhar Hallak Kantakji, 2019. "The Impact of Macroeconomic Factors on US Islamic and Conventional Equity تأثير العوامل الاقتصادية الكلية على الأسهم الإسلامية والتقليدية الأمريكية," Journal of King Abdulaziz University: Islamic Economics, King Abdulaziz University, Islamic Economics Institute., vol. 32(2), pages 43-58, January.
    256. Guidolin, Massimo & Hyde, Stuart, 2012. "Simple VARs cannot approximate Markov switching asset allocation decisions: An out-of-sample assessment," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3546-3566.
    257. Liu, Jiadong & Papailias, Fotis & Quinn, Barry, 2021. "Direction-of-change forecasting in commodity futures markets," International Review of Financial Analysis, Elsevier, vol. 74(C).
    258. Andrea Monticini & Francesco Ravazzolo, 2014. "Forecasting the intraday market price of money," DISCE - Working Papers del Dipartimento di Economia e Finanza def010, Università Cattolica del Sacro Cuore, Dipartimenti e Istituti di Scienze Economiche (DISCE).
    259. Pedro N. Rodríguez, & Simón Sosvilla-Rivero, 2006. "Forecasting Stock Price Changes: Is it Possible?," Working Papers 2006-22, FEDEA.
    260. Doron Avramov, "undated". "Stock-Return Predictability and Model Uncertainty," Rodney L. White Center for Financial Research Working Papers 12-00, Wharton School Rodney L. White Center for Financial Research.
    261. Coakley, Jerry & Fuertes, Ana-Maria, 2006. "Valuation ratios and price deviations from fundamentals," Journal of Banking & Finance, Elsevier, vol. 30(8), pages 2325-2346, August.
    262. Döpke, Jörg & Hartmann, Daniel & Pierdzioch, Christian, 2008. "Real-time macroeconomic data and ex ante stock return predictability," International Review of Financial Analysis, Elsevier, vol. 17(2), pages 274-290.
    263. Grilli, Luca & Santoro, Domenico, 2020. "How Boltzmann Entropy Improves Prediction with LSTM," MPRA Paper 100578, University Library of Munich, Germany.
    264. Klein, B. D. & Rossin, D. F., 1999. "Data quality in neural network models: effect of error rate and magnitude of error on predictive accuracy," Omega, Elsevier, vol. 27(5), pages 569-582, October.
    265. Park, Jin Suk & Newaz, Mohammad Khaleq, 2021. "Liquidity and short-run predictability: Evidence from international stock markets," Global Finance Journal, Elsevier, vol. 50(C).
    266. Seema Narayan & Russell Smyth, 2015. "The Financial Econometrics of Price Discovery and Predictability," Monash Economics Working Papers 06-15, Monash University, Department of Economics.
    267. John Powell & Jing Shi & Tom Smith & Robert Whaley, 2009. "Common Divisors, Payout Persistence, and Return Predictability," International Review of Finance, International Review of Finance Ltd., vol. 9(4), pages 335-357, December.
    268. Christiane Baumeister & Lutz Kilian, 2011. "Real-Time Forecasts of the Real Price of Oil," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(2), pages 326-336, September.
    269. Çakmaklı, Cem & van Dijk, Dick, 2016. "Getting the most out of macroeconomic information for predicting excess stock returns," International Journal of Forecasting, Elsevier, vol. 32(3), pages 650-668.
    270. Chauvet, Marcelle & Potter, Simon, 2000. "Coincident and leading indicators of the stock market," Journal of Empirical Finance, Elsevier, vol. 7(1), pages 87-111, May.
    271. Lanne, Markku & Ahoniemi, Katja, 2008. "Implied Volatility with Time-Varying Regime Probabilities," MPRA Paper 23721, University Library of Munich, Germany.
    272. Davide Pettenuzzo & Allan Timmermann & Rossen Valkanov, 2013. "Forecasting Stock Returns under Economic Constraints," Working Papers 57, Brandeis University, Department of Economics and International Business School.
    273. Sarantis, Nicholas, 2006. "On the short-term predictability of exchange rates: A BVAR time-varying parameters approach," Journal of Banking & Finance, Elsevier, vol. 30(8), pages 2257-2279, August.
    274. Richard M. Levich & Valerio Poti, 2008. "Predictability and 'Good Deals' in Currency Markets," NBER Working Papers 14597, National Bureau of Economic Research, Inc.
    275. Li, GuangJie, 2009. "The Horizon Effect of Stock Return Predictability and Model Uncertainty on Portfolio Choice: UK Evidence," Cardiff Economics Working Papers E2009/4, Cardiff University, Cardiff Business School, Economics Section, revised Aug 2009.
    276. Coe, P.J. & Pesaran, M.H. & Vahey, S.P., 2003. "Scope for Cost Minimization in Public Debt Management: the Case of the UK," Cambridge Working Papers in Economics 0338, Faculty of Economics, University of Cambridge.
    277. Wang, Yunqi & Zhou, Ti, 2023. "Out-of-sample equity premium prediction: The role of option-implied constraints," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 199-226.
    278. Piergiorgio Alessandri & Donald Robertson & Stephen Wright, 2008. "Miller and Modigliani, Predictive Return Regressions and Cointegration," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 70(2), pages 181-207, April.
    279. Lee, Hsiu-Chuan & Lee, Yun-Huan & Lu, Yang-Cheng & Wang, Yu-Chun, 2020. "States of psychological anchors and price behavior of Japanese yen futures," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    280. Pyun, Sungjune, 2019. "Variance risk in aggregate stock returns and time-varying return predictability," Journal of Financial Economics, Elsevier, vol. 132(1), pages 150-174.
    281. Mykola Babiak & Jozef Barunik, 2020. "Deep Learning, Predictability, and Optimal Portfolio Returns," CERGE-EI Working Papers wp677, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    282. Christian Pedersen & Stephen Satchell, 2003. "Can NN-algorithms and macroeconomic data improve OLS industry returns forecasts?," The European Journal of Finance, Taylor & Francis Journals, vol. 9(3), pages 273-289.
    283. Massimo Guidolin & Alexei G. Orlov & Manuela Pedio, 2018. "How good can heuristic-based forecasts be? A comparative performance of econometric and heuristic models for UK and US asset returns," Quantitative Finance, Taylor & Francis Journals, vol. 18(1), pages 139-169, January.
    284. Blaskowitz, Oliver J. & Herwartz, Helmut, 2009. "On economic evaluation of directional forecasts," SFB 649 Discussion Papers 2009-052, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    285. Baur, Dirk G. & Dichtl, Hubert & Drobetz, Wolfgang & Wendt, Viktoria-Sophie, 2020. "Investing in gold – Market timing or buy-and-hold?," International Review of Financial Analysis, Elsevier, vol. 71(C).
    286. Batten, Jonathan A. & Lucey, Brian M. & McGroarty, Frank & Peat, Maurice & Urquhart, Andrew, 2018. "Does intraday technical trading have predictive power in precious metal markets?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 52(C), pages 102-113.
    287. Steven Y. K. Wong & Jennifer S. K. Chan & Lamiae Azizi & Richard Y. D. Xu, 2022. "Time‐varying neural network for stock return prediction," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 29(1), pages 3-18, January.
    288. Donald Robertson & Stephen Wright, 2006. "Dividends, Total Cash Flow to Shareholders, and Predictive Return Regressions," The Review of Economics and Statistics, MIT Press, vol. 88(1), pages 91-99, February.
    289. Conlon, Thomas & Cotter, John & Eyiah-Donkor, Emmanuel, 2024. "Forecasting the price of oil: A cautionary note," Journal of Commodity Markets, Elsevier, vol. 33(C).
    290. Nektarios Aslanidis, 2002. "Smooth Transition Regression Models in UK Stock Returns," Working Papers 0201, University of Crete, Department of Economics.
    291. George Bagdatoglou & Alexandros Kontonikas & Mark E. Wohar, 2016. "Forecasting Us Inflation Using Dynamic General-To-Specific Model Selection," Bulletin of Economic Research, Wiley Blackwell, vol. 68(2), pages 151-167, April.
    292. M. Hashem Pesaran & Paolo Zaffaroni, 2009. "Optimality and Diversifiability of Mean Variance and Arbitrage Pricing Portfolios," CESifo Working Paper Series 2857, CESifo.
    293. Caporin, Massimiliano, 2013. "Equity and CDS sector indices: Dynamic models and risk hedging," The North American Journal of Economics and Finance, Elsevier, vol. 25(C), pages 261-275.
    294. Hai Lin & Daniel Quill & Henk Berkman, 2016. "Information diffusion and the predictability of New Zealand stock market returns," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 56(3), pages 749-785, September.
    295. Anindya Biswas, 2014. "The output gap and expected security returns," Review of Financial Economics, John Wiley & Sons, vol. 23(3), pages 131-140, September.
    296. Dragon Yongjun Tang, 2014. "Potential losses from incorporating return predictability into portfolio allocation," Australian Journal of Management, Australian School of Business, vol. 39(1), pages 35-45, February.
    297. Chen, Long, 2009. "On the reversal of return and dividend growth predictability: A tale of two periods," Journal of Financial Economics, Elsevier, vol. 92(1), pages 128-151, April.
    298. Biswas, Anindya, 2014. "The output gap and expected security returns," Review of Financial Economics, Elsevier, vol. 23(3), pages 131-140.
    299. Lei, Heng & Xue, Minggao & Liu, Huiling, 2022. "Probability distribution forecasting of carbon allowance prices: A hybrid model considering multiple influencing factors," Energy Economics, Elsevier, vol. 113(C).
    300. Cooper, Michael J. & McConnell, John J. & Ovtchinnikov, Alexei V., 2006. "The other January effect," Journal of Financial Economics, Elsevier, vol. 82(2), pages 315-341, November.
    301. Hsiao, Cheng & Wan, Shui Ki, 2011. "Comparison of forecasting methods with an application to predicting excess equity premium," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(7), pages 1235-1246.
    302. Phillips, Peter C.B. & Lee, Ji Hyung, 2013. "Predictive regression under various degrees of persistence and robust long-horizon regression," Journal of Econometrics, Elsevier, vol. 177(2), pages 250-264.
    303. Hartmann, Daniel & Pierdzioch, Christian, 2006. "Nonlinear Links between Stock Returns and Exchange Rate Movements," MPRA Paper 558, University Library of Munich, Germany.
    304. Hartvig, Áron Dénes & Pap, Áron & Pálos, Péter, 2023. "EU Climate Change News Index: Forecasting EU ETS prices with online news," Finance Research Letters, Elsevier, vol. 54(C).
    305. Liu, Li & Bu, Ruijun & Pan, Zhiyuan & Xu, Yuhua, 2019. "Are financial returns really predictable out-of-sample?: Evidence from a new bootstrap test," Economic Modelling, Elsevier, vol. 81(C), pages 124-135.
    306. Hong, Hui & Chen, Naiwei & O’Brien, Fergal & Ryan, James, 2018. "Stock return predictability and model instability: Evidence from mainland China and Hong Kong," The Quarterly Review of Economics and Finance, Elsevier, vol. 68(C), pages 132-142.
    307. Mordecai Kurz & Hehui Jin & Maurizio Motolese, 2005. "Determinants of stock market volatility and risk premia," Annals of Finance, Springer, vol. 1(2), pages 109-147, July.
    308. Christos Avdoulas & Stelios Bekiros & Sabri Boubaker, 2018. "Evolutionary-based return forecasting with nonlinear STAR models: evidence from the Eurozone peripheral stock markets," Annals of Operations Research, Springer, vol. 262(2), pages 307-333, March.
    309. Jurdi, Doureige J., 2022. "Predicting the Australian equity risk premium," Pacific-Basin Finance Journal, Elsevier, vol. 71(C).
    310. Alois Weigand, 2019. "Machine learning in empirical asset pricing," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 33(1), pages 93-104, March.
    311. James Yae & Yang Luo, 2023. "Robust monitoring machine: a machine learning solution for out-of-sample R $$^2$$ 2 -hacking in return predictability monitoring," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-28, December.
    312. Aslanidis, Nektarios & Osborn, Denise R. & Sensier, Marianne, 2008. "Co-movements between US and UK stock prices: the roles of macroeconomic information and time-series varying conditional correlations," Working Papers 2072/8950, Universitat Rovira i Virgili, Department of Economics.
    313. Chronopoulos, Dimitris K. & Papadimitriou, Fotios I. & Vlastakis, Nikolaos, 2018. "Information demand and stock return predictability," Journal of International Money and Finance, Elsevier, vol. 80(C), pages 59-74.
    314. Koki, Constandina & Leonardos, Stefanos & Piliouras, Georgios, 2022. "Exploring the predictability of cryptocurrencies via Bayesian hidden Markov models," Research in International Business and Finance, Elsevier, vol. 59(C).
    315. Kai Li, 2014. "Asset Price Dynamics with Heterogeneous Beliefs and Time Delays," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2014, January-A.
    316. Cenesizoglu, Tolga & Timmermann, Allan, 2012. "Do return prediction models add economic value?," Journal of Banking & Finance, Elsevier, vol. 36(11), pages 2974-2987.
    317. Eduard Baitinger, 2021. "Forecasting asset returns with network‐based metrics: A statistical and economic analysis," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1342-1375, November.
    318. Ping Cheng & Stephen E. Roulac, 2007. "REIT Characteristics and Predictability," International Real Estate Review, Global Social Science Institute, vol. 10(2), pages 23-41.
    319. Li, Wei & Lam, Kin, 2002. "Optimal market timing strategies under transaction costs," Omega, Elsevier, vol. 30(2), pages 97-108, April.
    320. Rapach, David E. & Wohar, Mark E. & Rangvid, Jesper, 2005. "Macro variables and international stock return predictability," International Journal of Forecasting, Elsevier, vol. 21(1), pages 137-166.
    321. Kosowski, Robert & Timmermann, Allan & Wermers, Russ & White, Hal, 2005. "Can mutual fund stars really pick stocks? New evidence from a bootstrap analysis," CFR Working Papers 05-14, University of Cologne, Centre for Financial Research (CFR).
    322. Chen, Hsiu-Lang & De Bondt, Werner, 2004. "Style momentum within the S&P-500 index," Journal of Empirical Finance, Elsevier, vol. 11(4), pages 483-507, September.
    323. Riza Erdugan & Nada Kulendran & Riccardo Natoli, 2019. "Incorporating financial market volatility to improve forecasts of directional changes in Australian share market returns," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 33(4), pages 417-445, December.
    324. Afees A. Salisu & Abdulsalam Abidemi Sikiru & Philip C. Omoke, 2023. "COVID-19 pandemic and financial innovations," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(4), pages 3885-3904, August.
    325. Ali Habibnia & Esfandiar Maasoumi, 2021. "Forecasting in Big Data Environments: An Adaptable and Automated Shrinkage Estimation of Neural Networks (AAShNet)," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 363-381, December.
    326. Pierdzioch, Christian & Risse, Marian & Rohloff, Sebastian, 2016. "A boosting approach to forecasting the volatility of gold-price fluctuations under flexible loss," Resources Policy, Elsevier, vol. 47(C), pages 95-107.
    327. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    328. Wongbangpo, Praphan & Sharma, Subhash C., 2002. "Stock market and macroeconomic fundamental dynamic interactions: ASEAN-5 countries," Journal of Asian Economics, Elsevier, vol. 13(1), pages 27-51.
    329. Benard Kiptoo Rono & Lewis Wakoli Wachilonga & Robert Silikhe Simiyu, 2014. "Assessment of the Relationship between Interest Rate Spread and Performance of Commercial Banks Listed In Nairobi Securities Exchange," International Journal of Financial Economics, Research Academy of Social Sciences, vol. 3(2), pages 98-112.
    330. Simon C. Smith, 2020. "Equity premium prediction and structural breaks," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 25(3), pages 412-429, July.
    331. Nyberg, Henri, 2013. "Predicting bear and bull stock markets with dynamic binary time series models," Journal of Banking & Finance, Elsevier, vol. 37(9), pages 3351-3363.
    332. Chiu, Yen-Chen & Chuang, I-Yuan, 2016. "The performance of the switching forecast model of value-at-risk in the Asian stock markets," Finance Research Letters, Elsevier, vol. 18(C), pages 43-51.
    333. Daniele Bianchi & Massimo Guidolin, 2014. "Can Linear Predictability Models Time Bull and Bear Real Estate Markets? Out-of-Sample Evidence from REIT Portfolios," The Journal of Real Estate Finance and Economics, Springer, vol. 49(1), pages 116-164, July.
    334. Ben Jacobsen & Ben R. Marshall & Nuttawat Visaltanachoti, 2019. "Stock Market Predictability and Industrial Metal Returns," Management Science, INFORMS, vol. 65(7), pages 3026-3042, July.
    335. Chen, Nan-Kuang & Chen, Shiu-Sheng & Chou, Yu-Hsi, 2013. "Further evidence on bear market predictability: The role of the external finance premium," MPRA Paper 49093, University Library of Munich, Germany.
    336. Glenn Boyle & Sanghyun Hong, 2020. "Systematic Liquidity Risk Premia," Working Papers in Economics 20/15, University of Canterbury, Department of Economics and Finance.
    337. Liu, Jingzhen & Kemp, Alexander, 2019. "Forecasting the sign of U.S. oil and gas industry stock index excess returns employing macroeconomic variables," Energy Economics, Elsevier, vol. 81(C), pages 672-686.
    338. Anne Vila Wetherilt & Simon Wells, 2004. "Long-horizon equity return predictability: some new evidence for the United Kingdom," Bank of England working papers 244, Bank of England.
    339. Patrick J. Coe & M. Hashem Pesaran & Shaun P. Vahey, 2005. "The Cost Effectiveness of the UK's Sovereign Debt Portfolio," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(4), pages 467-495, August.
    340. Ran, Jimmy & Voon, Jan P. & Li, Guangzhong, 2008. "Effects of foreign currency component in monetary aggregates on money neutrality," Economics Letters, Elsevier, vol. 99(3), pages 435-438, June.
    341. Rob Bauer & Rogér Otten & Alireza Tourani Rad, 2006. "New Zealand mutual funds: measuring performance and persistence in performance," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 46(3), pages 347-363, September.
    342. Risse, Marian & Ohl, Ludwig, 2017. "Using dynamic model averaging in state space representation with dynamic Occam’s window and applications to the stock and gold market," Journal of Empirical Finance, Elsevier, vol. 44(C), pages 158-176.
    343. David G. McMillan, 2003. "Non‐linear Predictability of UK Stock Market Returns," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(5), pages 557-573, December.
    344. Massimo Guidolin & Giovanna Nicodano, 2010. "Ex Post Portfolio Performance with Predictable Skewness and Kurtosis," Carlo Alberto Notebooks 191, Collegio Carlo Alberto.
    345. Connie Becker & Wayne Ferson & David Myers & Michael Schill, 1998. "Conditional Market Timing with Benchmark Investors," NBER Working Papers 6434, National Bureau of Economic Research, Inc.
    346. Jaideep Singh & Matloob Khushi, 2021. "Feature Learning for Stock Price Prediction Shows a Significant Role of Analyst Rating," Papers 2103.09106, arXiv.org.
    347. N Aslanidis & D R Osborn & M Sensier, 2003. "Explaining Movements in UK Stock Prices: How Important is the US Market?," Economics Discussion Paper Series 0305, Economics, The University of Manchester.
    348. Hubert Dichtl, 2020. "Investing in the S&P 500 index: Can anything beat the buy‐and‐hold strategy?," Review of Financial Economics, John Wiley & Sons, vol. 38(2), pages 352-378, April.
    349. Dichtl, Hubert, 2020. "Forecasting excess returns of the gold market: Can we learn from stock market predictions?," Journal of Commodity Markets, Elsevier, vol. 19(C).
    350. Chua, Choong Tze & Lai, Sandy & Wu, Yangru, 2008. "Effective fair pricing of international mutual funds," Journal of Banking & Finance, Elsevier, vol. 32(11), pages 2307-2324, November.
    351. Hui Zeng & Ben R Marshall & Nhut H Nguyen & Nuttawat Visaltanachoti, 2022. "Are individual stock returns predictable?," Australian Journal of Management, Australian School of Business, vol. 47(1), pages 135-162, February.
    352. Arshad, Shaista & Rizvi, Syed Aun R. & Ghani, Gairuzazmi Mat & Duasa, Jarita, 2016. "Investigating stock market efficiency: A look at OIC member countries," Research in International Business and Finance, Elsevier, vol. 36(C), pages 402-413.
    353. McMillan, David G., 2019. "Stock return predictability: Using the cyclical component of the price ratio," Research in International Business and Finance, Elsevier, vol. 48(C), pages 228-242.
    354. Michael Steiner, 2009. "Predicting premiums for the market, size, value, and momentum factors," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 23(2), pages 137-155, June.
    355. Marquering, Wessel & Verbeek, Marno, 2004. "A multivariate nonparametric test for return and volatility timing," Finance Research Letters, Elsevier, vol. 1(4), pages 250-260, December.
    356. Stanislav Anatolyev & Jozef Barunik, 2017. "Forecasting dynamic return distributions based on ordered binary choice," Papers 1711.05681, arXiv.org, revised Jan 2019.
    357. Elliott, Graham & Gargano, Antonio & Timmermann, Allan, 2013. "Complete subset regressions," Journal of Econometrics, Elsevier, vol. 177(2), pages 357-373.
    358. Stefano Gubellini, 2014. "Conditioning information and cross-sectional anomalies," Review of Quantitative Finance and Accounting, Springer, vol. 43(3), pages 529-569, October.
    359. Majumder, Debasish, 2013. "Towards an efficient stock market: Empirical evidence from the Indian market," Journal of Policy Modeling, Elsevier, vol. 35(4), pages 572-587.
    360. Oguzhan Cepni & Rangan Gupta & I. Ethem Guney & M. Hasan Yilmaz, 2019. "Forecasting Local Currency Bond Risk Premia of Emerging Markets: The Role of Cross-Country Macro-Financial Linkages," Working Papers 201957, University of Pretoria, Department of Economics.
    361. Cajueiro, Daniel O. & Tabak, Benjamin M., 2006. "Testing for predictability in equity returns for European transition markets," Economic Systems, Elsevier, vol. 30(1), pages 56-78, March.
    362. Hangoma, Peter & Hachhethu, Kusum & Passeri, Silvia & Norheim, Ole Frithjof & Rivers, Johnathan & Mæstad, Ottar, 2024. "Short- and long-term food insecurity and policy responses in pandemics: Panel data evidence from COVID-19 in low- and middle-income countries," World Development, Elsevier, vol. 175(C).
    363. Rapach, David E. & Wohar, Mark E., 2006. "In-sample vs. out-of-sample tests of stock return predictability in the context of data mining," Journal of Empirical Finance, Elsevier, vol. 13(2), pages 231-247, March.
    364. Bange, Mary M. & Khang, Kenneth & Miller Jr., Thomas W., 2008. "Benchmarking the performance of recommended allocations to equities, bonds, and cash by international investment houses," Journal of Empirical Finance, Elsevier, vol. 15(3), pages 363-386, June.
    365. Victor Troster & José Penalva & Abderrahim Taamouti & Dominik Wied, 2021. "Cointegration, information transmission, and the lead‐lag effect between industry portfolios and the stock market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1291-1309, November.
    366. Wiliam Branch & George W. Evans, 2005. "A Simple Recursive Forecasting Model," University of Oregon Economics Department Working Papers 2005-3, University of Oregon Economics Department, revised 01 Feb 2005.
    367. David McMillan & Mark Wohar, 2011. "Sum of the parts stock return forecasting: international evidence," Applied Financial Economics, Taylor & Francis Journals, vol. 21(12), pages 837-845.
    368. Jennie Bai, 2010. "Equity premium predictions with adaptive macro indexes," Staff Reports 475, Federal Reserve Bank of New York.
    369. David McMillan, 2005. "Time variation in the cointegrating relationship between stock prices and economic activity," International Review of Applied Economics, Taylor & Francis Journals, vol. 19(3), pages 359-368.
    370. Julián Andrada Félix & Fernando Fernández Rodríguez & María Dolores García Artiles, 2004. "Non-linear trading rules in the New York Stock Exchange," Documentos de trabajo conjunto ULL-ULPGC 2004-05, Facultad de Ciencias Económicas de la ULPGC.
    371. Hartmann, Daniel & Kempa, Bernd & Pierdzioch, Christian, 2006. "Economic and Financial Crises and the Predictability of U.S. Stock Returns," MPRA Paper 561, University Library of Munich, Germany.
    372. Doug Rolph & Pu Shen, 1999. "Do the spreads between the E/P ratio and interest rates contain information on future equity market movements?," Research Working Paper 99-03, Federal Reserve Bank of Kansas City.
    373. Nektarios Aslanidis & Denise R. Osborn & Marianne Sensier, 2008. "Comovements between US and UK stock prices: the roles of macroeconomic information and timevarying conditional correlations," Economics Discussion Paper Series 0805, Economics, The University of Manchester.
    374. Döpke, Jörg & Müller, Karsten & Tegtmeier, Lars, 2018. "The economic value of business cycle forecasts for potential investors – Evidence from Germany," Research in International Business and Finance, Elsevier, vol. 46(C), pages 445-461.
    375. Steven Y. K. Wong & Jennifer S. K. Chan & Lamiae Azizi, 2024. "Quantifying neural network uncertainty under volatility clustering," Papers 2402.14476, arXiv.org, revised Sep 2024.
    376. Barras, Laurent, 2007. "International conditional asset allocation under specification uncertainty," Journal of Empirical Finance, Elsevier, vol. 14(4), pages 443-464, September.
    377. Nektarios Aslanidis & Denise Osborn & Marianne Sensier, 2003. "Explaining movements in UK stock prices:," Working Papers 0302, University of Crete, Department of Economics.
    378. Brad S. Trinkle, 2005. "Forecasting annual excess stock returns via an adaptive network‐based fuzzy inference system," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 13(3), pages 165-177, July.
    379. Dichtl, Hubert & Drobetz, Wolfgang & Neuhierl, Andreas & Wendt, Viktoria-Sophie, 2021. "Data snooping in equity premium prediction," International Journal of Forecasting, Elsevier, vol. 37(1), pages 72-94.
    380. Garratt, Anthony & Lee, Kevin, 2010. "Investing under model uncertainty: Decision based evaluation of exchange rate forecasts in the US, UK and Japan," Journal of International Money and Finance, Elsevier, vol. 29(3), pages 403-422, April.
    381. Reschreiter, Andreas, 2008. "Lower borrowing costs with inflation-indexed bonds: A trading rule based assessment," Economics Letters, Elsevier, vol. 99(2), pages 272-274, May.
    382. Hongwei Zhang & Qiang He & Ben Jacobsen & Fuwei Jiang, 2020. "Forecasting stock returns with model uncertainty and parameter instability," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(5), pages 629-644, August.
    383. Jia Miao & Jason Laws, 2016. "Profitability Of A Simple Pairs Trading Strategy: Recent Evidences From A Global Context," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(04), pages 1-18, June.
    384. Najeeb, Faiq & Masih, Mansur, 2016. "Macroeconomic variables and stock returns: evidence from Singapore," MPRA Paper 98778, University Library of Munich, Germany.
    385. Athambawa Jahfer & Abdul Hameed Mulafara, 2016. "Dividend policy and share price volatility: evidence from Colombo stock market," International Journal of Managerial and Financial Accounting, Inderscience Enterprises Ltd, vol. 8(2), pages 97-108.
    386. Costa, Filipe & Fortuna, Natércia & Lobão, Júlio, 2024. "Herding states and stock market returns," Research in International Business and Finance, Elsevier, vol. 68(C).
    387. Dewandaru, Ginanjar & Rizvi, Syed Aun & Sarkar, Kabir & Bacha, Obiyathulla & Masih, Mansur, 2014. "How do Macroeconomic Changes Impact Islamic and Conventional Equity Prices? Evidence from Developed and Emerging Countries," MPRA Paper 59587, University Library of Munich, Germany.
    388. Robert Sollis, 2005. "Predicting returns and volatility with macroeconomic variables: evidence from tests of encompassing," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(3), pages 221-231.
    389. Balvers, Ronald J. & Wu, Yangru, 2006. "Momentum and mean reversion across national equity markets," Journal of Empirical Finance, Elsevier, vol. 13(1), pages 24-48, January.
    390. Bekiros, S. & Georgoutsos, D., 2006. "Direction-of-Change Forecasting using a Volatility- Based Recurrent Neural Network," CeNDEF Working Papers 06-16, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    391. Pierdzioch, Christian & Schertler, Andrea, 2005. "Investing in European Stock Markets for High-Technology Firms," Kiel Working Papers 1265, Kiel Institute for the World Economy (IfW Kiel).
    392. Chevapatrakul, Thanaset, 2013. "Return sign forecasts based on conditional risk: Evidence from the UK stock market index," Journal of Banking & Finance, Elsevier, vol. 37(7), pages 2342-2353.
    393. Benink, Harald A. & Gordillo, José Luis & Pardo, Juan Pablo & Stephens, Christopher R., 2010. "Market efficiency and learning in an artificial stock market: A perspective from Neo-Austrian economics," Journal of Empirical Finance, Elsevier, vol. 17(4), pages 668-688, September.
    394. dos Santos Maciel, Leandro, 2023. "Brazilian stock-market efficiency before and after COVID-19: The roles of fractality and predictability," Global Finance Journal, Elsevier, vol. 58(C).
    395. Bhandari, Avishek, 2020. "Long memory and fractality among global equity markets: A multivariate wavelet approach," MPRA Paper 99653, University Library of Munich, Germany.
    396. Yvon Fauvel & Alain Paquet & Christian Zimmermann, 1999. "A Survey on Interest Rate Forecasting," Cahiers de recherche CREFE / CREFE Working Papers 87, CREFE, Université du Québec à Montréal.
    397. Steven Y. K. Wong & Jennifer Chan & Lamiae Azizi & Richard Y. D. Xu, 2020. "Time-varying neural network for stock return prediction," Papers 2003.02515, arXiv.org, revised Jan 2021.
    398. Paye, Bradley S. & Timmermann, Allan, 2006. "Instability of return prediction models," Journal of Empirical Finance, Elsevier, vol. 13(3), pages 274-315, June.
    399. Driffill John & Kenc Turalay & Sola Martin & Spagnolo Fabio, 2009. "The Effects of Different Parameterizations of Markov-Switching in a CIR Model of Bond Pricing," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(1), pages 1-24, March.
    400. Christos Avdoulas & Stelios Bekiros, 2018. "Nonlinear Forecasting of Euro Area Industrial Production Using Evolutionary Approaches," Computational Economics, Springer;Society for Computational Economics, vol. 52(2), pages 521-530, August.
    401. Nyberg, Henri, 2011. "Forecasting the direction of the US stock market with dynamic binary probit models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 561-578, April.
    402. Schnaubelt, Matthias & Seifert, Oleg, 2020. "Valuation ratios, surprises, uncertainty or sentiment: How does financial machine learning predict returns from earnings announcements?," FAU Discussion Papers in Economics 04/2020, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    403. Shangkun Deng & Kazuki Yoshiyama & Takashi Mitsubuchi & Akito Sakurai, 2015. "Hybrid Method of Multiple Kernel Learning and Genetic Algorithm for Forecasting Short-Term Foreign Exchange Rates," Computational Economics, Springer;Society for Computational Economics, vol. 45(1), pages 49-89, January.
    404. Giannetti, A., 2007. "The short term predictive ability of earnings-price ratios: The recent evidence (1994-2003)," The Quarterly Review of Economics and Finance, Elsevier, vol. 47(1), pages 26-39, March.
    405. Cooper, Michael J. & Jackson, William III & Patterson, Gary A., 2003. "Evidence of predictability in the cross-section of bank stock returns," Journal of Banking & Finance, Elsevier, vol. 27(5), pages 817-850, May.
    406. Snudden, Stephen, 2018. "Targeted growth rates for long-horizon crude oil price forecasts," International Journal of Forecasting, Elsevier, vol. 34(1), pages 1-16.
    407. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    408. Liam Gallagher, 1999. "A multi-country analysis of the temporary and permanent components of stock prices," Applied Financial Economics, Taylor & Francis Journals, vol. 9(2), pages 129-142.
    409. Anthony Garratt & Kevin Lee, 2006. "Investing Under Model Uncertainty: Decision Based Evaluation of Exchange Rate and Interest Rate Forecasts in the US, UK and Japan," Birkbeck Working Papers in Economics and Finance 0616, Birkbeck, Department of Economics, Mathematics & Statistics.
    410. David R Gallagher & Peter A Gardner & Camille H Schmidt, 2015. "Style factor timing: An application to the portfolio holdings of US fund managers," Australian Journal of Management, Australian School of Business, vol. 40(2), pages 318-350, May.
    411. Shamsuddin, Abul F. M. & Hillier, John R., 2004. "Fundamental determinants of the Australian price-earnings multiple," Pacific-Basin Finance Journal, Elsevier, vol. 12(5), pages 565-576, November.
    412. Hartmann, Daniel & Pierdzioch, Christian, 2007. "Exchange rates, interventions, and the predictability of stock returns in Japan," Journal of Multinational Financial Management, Elsevier, vol. 17(2), pages 155-172, April.

  56. Timmermann, Allan, 1995. "Cointegration Tests of Present Value Models with a Time-Varying Discount Factor," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(1), pages 17-31, Jan.-Marc.

    Cited by:

    1. Yen-Hsiao Chen & Lianfeng Quan, 2013. "Rational speculative bubbles in the Asian stock markets: Tests on deterministic explosive bubbles and stochastic explosive root bubbles," Journal of Asset Management, Palgrave Macmillan, vol. 14(3), pages 195-208, June.
    2. Bohl, Martin T. & Siklos, Pierre L., 2004. "The present value model of U.S. stock prices redux: a new testing strategy and some evidence," The Quarterly Review of Economics and Finance, Elsevier, vol. 44(2), pages 208-223, May.
    3. Nélson Leitão Paes & Cássio Da Nóbrega Besarria & Marcelo Eduardo Alves Da Silva, 2018. "Bubbles In The Prices Of Housing? Evidence To Brazil?S Economy," Anais do XLIV Encontro Nacional de Economia [Proceedings of the 44th Brazilian Economics Meeting] 118, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    4. Engsted, Tom & Hviid, Simon J. & Pedersen, Thomas Q., 2016. "Explosive bubbles in house prices? Evidence from the OECD countries," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 40(C), pages 14-25.
    5. A. Durre & P. Giot, 2007. "An International Analysis of Earnings, Stock Prices and Bond Yields," Post-Print hal-00171145, HAL.
    6. Ky-Hyang Yuhn & Sang Bong Kim & Joo Ha Nam, 2015. "Bubbles and the Weibull distribution: was there an explosive bubble in US stock prices before the global economic crisis?," Applied Economics, Taylor & Francis Journals, vol. 47(3), pages 255-271, January.
    7. Ye, Yonggang & Chang, Tsangyao & Hung, Ken & Lu, Yang-Cheng, 2011. "Revisiting rational bubbles in the G-7 stock markets using the Fourier unit root test and the nonparametric rank test for cointegration," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(2), pages 346-357.
    8. Gallagher, Liam A & Taylor, Mark P, 2001. "Risky Arbitrage, Limits of Arbitrage, and Nonlinear Adjustment in the Dividend-Price Ratio," Economic Inquiry, Western Economic Association International, vol. 39(4), pages 524-536, October.
    9. Edward Bernard Bastiaan de Rivera y Rivera & Diógenes Manoel Leiva Martin & Emerson Fernandes Marçal & Leonardo Fernando Cruz Basso, 2012. "Present value model between prices and dividends with constant and time-varying expected returns: enterprise-level Brazilian stock market evidence from non-stationary panels," Brazilian Business Review, Fucape Business School, vol. 9(4), pages 51-86, October.
    10. Ripamonti, Alexandre, 2016. "Corwin-Schultz bid-ask spread estimator in the Brazilian stock market," MPRA Paper 79459, University Library of Munich, Germany.
    11. Priestley, Richard, 2001. "Time-varying persistence in expected returns," Journal of Banking & Finance, Elsevier, vol. 25(7), pages 1271-1286, July.
    12. Wang, Peijie & Brand, Steven, 2015. "A new approach to estimating value–income ratios with income growth and time-varying yields," European Journal of Operational Research, Elsevier, vol. 242(1), pages 182-187.
    13. Tsangyao Chang & Wen-Chi Liu, 2008. "Rational Bubbles in the Korea Stock Market? Further Evidence based on Nonlinear and Nonparametric Cointegration Tests," Economics Bulletin, AccessEcon, vol. 3(34), pages 1-12.
    14. Onour, Ibrahim, 2009. "Rational bubbles and volatility persistence in India stock market," MPRA Paper 18545, University Library of Munich, Germany.
    15. Ripamonti, Alexandre, 2013. "Rational Valuation Formula (RVF) and Time Variability in Asset Rates of Return," MPRA Paper 79460, University Library of Munich, Germany.
    16. GIOT, Pierre & PETITJEAN, Mikael, 2006. "The information content of the Bond-Equity Yield Ratio: better than a random walk?," LIDAM Discussion Papers CORE 2006089, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    17. Bohl, Martin T., 2003. "Periodically collapsing bubbles in the US stock market?," International Review of Economics & Finance, Elsevier, vol. 12(3), pages 385-397.
    18. Binswanger, Mathias, 2004. "Stock returns and real activity in the G-7 countries: did the relationship change during the 1980s?," The Quarterly Review of Economics and Finance, Elsevier, vol. 44(2), pages 237-252, May.
    19. Ullah, Irfan & Ahmed, Mumtaz, 2021. "Identifying Phases of Ebullience in EFTA Stock Markets," MPRA Paper 109633, University Library of Munich, Germany.
    20. Vyacheslav Mikhed & Petr Zemcik, 2007. "Do House Prices Reflect Fundamentals? Aggregate and Panel Data Evidence," CERGE-EI Working Papers wp337, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    21. J. Cunado & L. A. Gil-Alana & F. Perez de Gracia, 2007. "Testing for stock market bubbles using nonlinear models and fractional integration," Applied Financial Economics, Taylor & Francis Journals, vol. 17(16), pages 1313-1321.
    22. Ripamonti, Alexandre, 2020. "Financial institutions, asymmetric information and capital structure adjustments," The Quarterly Review of Economics and Finance, Elsevier, vol. 77(C), pages 75-83.
    23. Engsted, Tom, 2006. "Explosive bubbles in the cointegrated VAR model," Finance Research Letters, Elsevier, vol. 3(2), pages 154-162, June.
    24. Cunado, J. & Gil-Alana, L.A. & de Gracia, F. Perez, 2005. "A test for rational bubbles in the NASDAQ stock index: A fractionally integrated approach," Journal of Banking & Finance, Elsevier, vol. 29(10), pages 2633-2654, October.
    25. Christophe Boucher, 2003. "Stock Market Valuation : the Role of the Macroeconomic Risk Premium," Finance 0305011, University Library of Munich, Germany.
    26. Glen Donaldson & Mark Kamstra & Lisa Kramer, 2003. "Stare down the barrel and center the crosshairs: Targeting the ex ante equity premium," FRB Atlanta Working Paper 2003-4, Federal Reserve Bank of Atlanta.
    27. Alexandre Ripamonti & Raphael Videira & Denis Ichimura, 2020. "Asymmetric information and daily stock prices in Brazil," Estudios Gerenciales, Universidad Icesi, vol. 36(157), pages 465-472, December.
    28. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
    29. Nasseh, Alireza & Strauss, Jack, 2000. "Stock prices and domestic and international macroeconomic activity: a cointegration approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 40(2), pages 229-245.
    30. John Goddard & David Mcmillan & John Wilson, 2008. "Dividends, prices and the present value model: firm-level evidence," The European Journal of Finance, Taylor & Francis Journals, vol. 14(3), pages 195-210.
    31. Kanas, Angelos, 2005. "Nonlinearity in the stock price-dividend relation," Journal of International Money and Finance, Elsevier, vol. 24(4), pages 583-606, June.
    32. Fanelli, Luca, 2002. "A new approach for estimating and testing the linear quadratic adjustment cost model under rational expectations and I(1) variables," Journal of Economic Dynamics and Control, Elsevier, vol. 26(1), pages 117-139, January.
    33. Nasseh, Alireza & Strauss, Jack, 2004. "Stock prices and the dividend discount model: did their relation break down in the 1990s?," The Quarterly Review of Economics and Finance, Elsevier, vol. 44(2), pages 191-207, May.

  57. Timmermann, Allan, 1994. "Present value models with feedback : Solutions, stability, bubbles, and some empirical evidence," Journal of Economic Dynamics and Control, Elsevier, vol. 18(6), pages 1093-1119, November.

    Cited by:

    1. Roman Frydman & Michael Goldberg & Nicholas Mangee, 2015. "New Evidence for the Present-Value Model of Stock Prices: Why the REH Version Failed Empirically," Working Papers Series 2, Institute for New Economic Thinking.
    2. William R. Parke & George A. Waters, 2011. "On the Evolutionary Stability of Rational Expectations," Working Paper Series 20111002, Illinois State University, Department of Economics.
    3. Dimitris Georgoutsos & Georgios Kouretas, 2004. "A Multivariate I(2) cointegration analysis of German hyperinflation," Applied Financial Economics, Taylor & Francis Journals, vol. 14(1), pages 29-41.
    4. Boyan Jovanovic, 2007. "Bubbles in Prices of Exhaustible Resources," NBER Working Papers 13320, National Bureau of Economic Research, Inc.
    5. Parke, William R. & Waters, George A., 2007. "An evolutionary game theory explanation of ARCH effects," Journal of Economic Dynamics and Control, Elsevier, vol. 31(7), pages 2234-2262, July.
    6. Fanelli, Luca, 2006. "Multi-equational linear quadratic adjustment cost models with rational expectations and cointegration," Journal of Economic Dynamics and Control, Elsevier, vol. 30(3), pages 445-456, March.
    7. Burda, Michael C., 2021. "Valuing cryptocurrencies: Three easy pieces," IRTG 1792 Discussion Papers 2021-011, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    8. Brandt, M.W.Michael W. & Zeng, Qi & Zhang, Lu, 2004. "Equilibrium stock return dynamics under alternative rules of learning about hidden states," Journal of Economic Dynamics and Control, Elsevier, vol. 28(10), pages 1925-1954, September.
    9. Fanelli, Luca, 2007. "Present Value Relations, Granger Noncausality, And Var Stability," Econometric Theory, Cambridge University Press, vol. 23(6), pages 1254-1260, December.
    10. Krishnamoorthy Charith & Andrey Davydenko, 2021. "Informational Value of Dividend Initiations: Impact of Cash Dividends on Share Prices of Manufacturing Companies in Sri Lanka," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 13(3), pages 1-13, March.
    11. Andrey Davydenko & Krishnamoorthy Charith, 2021. "Informationswert von Dividendenausschüttungen: Einfluss von Bardividenden auf die Aktienkurse von produzierenden Unternehmen in Sri Lanka [Informational value of dividend initiations: Impact of cas," Post-Print hal-03359177, HAL.
    12. Sirnes, Espen, 1997. "Theories and Tests for Bubbles," MPRA Paper 53464, University Library of Munich, Germany, revised 1997.
    13. Fanelli, Luca, 2002. "A new approach for estimating and testing the linear quadratic adjustment cost model under rational expectations and I(1) variables," Journal of Economic Dynamics and Control, Elsevier, vol. 26(1), pages 117-139, January.

  58. Pesaran, M. Hashem & Timmermann, Allan G., 1994. "A generalization of the non-parametric Henriksson-Merton test of market timing," Economics Letters, Elsevier, vol. 44(1-2), pages 1-7.
    See citations under working paper version above.
  59. Timmermann, Allan, 1994. "Why do dividend yields forecast stock returns?," Economics Letters, Elsevier, vol. 46(2), pages 149-158, October.

    Cited by:

    1. Fredj Jawadi, 2009. "Essay in dividend modelling and forecasting: does nonlinearity help?," Applied Financial Economics, Taylor & Francis Journals, vol. 19(16), pages 1329-1343.

  60. Timmermann, Allan, 1994. "Can Agents Learn to Form Rational Expectations? Some Results on Convergence and Stability of Learning in the UK Stock Market," Economic Journal, Royal Economic Society, vol. 104(425), pages 777-797, July.

    Cited by:

    1. George W. Evans, 2011. "Comment on "Natural Expectations, Macroeconomic Dynamics, and Asset Pricing"," NBER Chapters, in: NBER Macroeconomics Annual 2011, Volume 26, pages 61-71, National Bureau of Economic Research, Inc.
    2. Kapetanios, George & Mitchell, James & Shin, Yongcheol, 2014. "A nonlinear panel data model of cross-sectional dependence," Journal of Econometrics, Elsevier, vol. 179(2), pages 134-157.
    3. Barucci, Emilio & Landi, Leonardo, 1996. "Speculative dynamics with bounded rationality learning," European Journal of Operational Research, Elsevier, vol. 91(2), pages 284-300, June.
    4. Sampson, Michael, 2003. "New Eras and Stock Market Bubbles," Structural Change and Economic Dynamics, Elsevier, vol. 14(3), pages 297-315, September.
    5. George W. Evans, 2012. "Comment," NBER Macroeconomics Annual, University of Chicago Press, vol. 26(1), pages 61-71.
    6. Rotheli, Tobias F., 2001. "Acquisition of costly information: an experimental study," Journal of Economic Behavior & Organization, Elsevier, vol. 46(2), pages 193-208, October.
    7. Basdevant, Olivier, 2005. "Learning process and rational expectations: An analysis using a small macro-economic model for New Zealand," Economic Modelling, Elsevier, vol. 22(6), pages 1074-1089, December.
    8. Shively, Philip A., 2007. "Asymmetric temporary and permanent stock-price innovations," Journal of Empirical Finance, Elsevier, vol. 14(1), pages 120-130, January.
    9. Massimo Guidolin, 2013. "Markov switching models in asset pricing research," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 1, pages 3-44, Edward Elgar Publishing.
    10. Branch, William A. & Evans, George W., 2010. "Learning about Risk and Return: A Simple Model of Bubbles and Crashes," SIRE Discussion Papers 2010-33, Scottish Institute for Research in Economics (SIRE).

  61. Pesaran, M Hashem & Timmermann, Allan, 1992. "A Simple Nonparametric Test of Predictive Performance," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 561-565, October.
    See citations under working paper version above.

Chapters

  1. Timmermann, Allan, 2006. "Forecast Combinations," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 4, pages 135-196, Elsevier.
    See citations under working paper version above.Sorry, no citations of chapters recorded.

Books

  1. G. Elliott & C. Granger & A. Timmermann (ed.), 2006. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 1, number 1.

    Cited by:

    1. Maurin, Laurent & Drechsel, Katja, 2008. "Flow of conjunctural information and forecast of euro area economic activity," Working Paper Series 925, European Central Bank.
    2. Bergemann, Dirk & Ottaviani, Marco, 2021. "Information Markets and Nonmarkets," CEPR Discussion Papers 16459, C.E.P.R. Discussion Papers.
    3. von der Gracht, Heiko A. & Hommel, Ulrich & Prokesch, Tobias & Wohlenberg, Holger, 2016. "Testing weighting approaches for forecasting in a Group Wisdom Support System environment," Journal of Business Research, Elsevier, vol. 69(10), pages 4081-4094.
    4. Wang, Yudong & Hao, Xianfeng, 2023. "Forecasting the real prices of crude oil: What is the role of parameter instability?," Energy Economics, Elsevier, vol. 117(C).
    5. Kakuho Furukawa & Ryohei Hisano & Yukio Minoura & Tomoyuki Yagi, 2022. "A Nowcasting Model of Industrial Production using Alternative Data and Machine Learning Approaches," Bank of Japan Working Paper Series 22-E-16, Bank of Japan.
    6. Li, Li & Kang, Yanfei & Li, Feng, 2023. "Bayesian forecast combination using time-varying features," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1287-1302.
    7. Marine Carrasco & Barbara Rossi, 2016. "In-sample inference and forecasting in misspecified factor models," Economics Working Papers 1530, Department of Economics and Business, Universitat Pompeu Fabra.
    8. Stylianos Asimakopoulos & Joan Paredes & Thomas Warmedinger, 2020. "Real‐Time Fiscal Forecasting Using Mixed‐Frequency Data," Scandinavian Journal of Economics, Wiley Blackwell, vol. 122(1), pages 369-390, January.
    9. Clements, Michael P., 2008. "Explanations of the inconsistencies in survey respondents'forecasts," The Warwick Economics Research Paper Series (TWERPS) 870, University of Warwick, Department of Economics.
    10. Kajal Lahiri & Huaming Peng & Xuguang Simon Sheng, 2021. "Measuring Uncertainty of a Combined Forecast and Some Tests for Forecaster Heterogeneity," Working Papers 2021-005, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    11. Chakraborty, Chiranjit & Joseph, Andreas, 2017. "Machine learning at central banks," Bank of England working papers 674, Bank of England.
    12. Carlo Altavilla & Matteo Ciccarelli, 2006. "Inflation Forecasts, Monetary Policy and Unemployment Dynamics: Evidence from the US and the Euro Area," Discussion Papers 7_2006, D.E.S. (Department of Economic Studies), University of Naples "Parthenope", Italy.
    13. Yannick Viossat & Andriy Zapechelnyuk, 2013. "No-regret Dynamics and Fictitious Play," Post-Print hal-00713871, HAL.
    14. Lee, Kevin & Olekalns, Nils & Shields, Kalvinder, 2009. "Nowcasting, Business Cycle Dating and the Interpretation of New Information when Real-Time Data are Available," CEPR Discussion Papers 7426, C.E.P.R. Discussion Papers.
    15. Carlo Altavilla & Matteo Ciccarelli, 2011. "Monetary Policy Analysis in Real-Time. Vintage Combination from a Real-Time Dataset," CESifo Working Paper Series 3372, CESifo.
    16. Tu, Yundong & Yi, Yanping, 2017. "Forecasting cointegrated nonstationary time series with time-varying variance," Journal of Econometrics, Elsevier, vol. 196(1), pages 83-98.
    17. Yin, Anwen, 2015. "Forecasting and model averaging with structural breaks," ISU General Staff Papers 201501010800005727, Iowa State University, Department of Economics.
    18. Robert Lehmann, 2016. "Economic Growth and Business Cycle Forecasting at the Regional Level," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 65.
    19. Michael D. Bordo & Pierre Siklos, 2019. "The Transformation and Performance of Emerging Market Economies Across the Great Divide of the Global Financial Crisis," NBER Working Papers 26342, National Bureau of Economic Research, Inc.
    20. Michael Clements, 2016. "Are Macroeconomic Density Forecasts Informative?," ICMA Centre Discussion Papers in Finance icma-dp2016-02, Henley Business School, University of Reading.
    21. Narayan Kundan Kishor, 2021. "Forecasting real‐time economic activity using house prices and credit conditions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(2), pages 213-227, March.
    22. Menkhoff, Lukas & Sakha, Sahra, 2017. "Estimating risky behavior with multiple-item risk measures," Journal of Economic Psychology, Elsevier, vol. 59(C), pages 59-86.
    23. Barbara Annicchiarico & Fabio Di Dio & Francesca Diluiso, 2022. "Climate Actions, Market Beliefs and Monetary Policy," CEIS Research Paper 535, Tor Vergata University, CEIS, revised 25 Mar 2022.
    24. Pauwels, Laurent & Radchenko, Peter & Vasnev, Andrey, 2019. "Higher Moment Constraints for Predictive Density Combinations," Working Papers BAWP-2019-01, University of Sydney Business School, Discipline of Business Analytics.
    25. Wieland, Volker & Wolters, Maik, 2013. "Forecasting and Policy Making," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 239-325, Elsevier.
    26. Ghysels, Eric & Ozkan, Nazire, 2015. "Real-time forecasting of the US federal government budget: A simple mixed frequency data regression approach," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1009-1020.
    27. Krüger Fabian & Pohlmeier Winfried & Mokinski Frieder, 2011. "Combining Survey Forecasts and Time Series Models: The Case of the Euribor," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(1), pages 63-81, February.
    28. Degiannakis, Stavros & Filis, George, 2017. "Forecasting oil price realized volatility using information channels from other asset classes," MPRA Paper 96276, University Library of Munich, Germany.
    29. Christiane Baumeister & Pierre Guérin, 2020. "A Comparison of Monthly Global Indicators for Forecasting Growth," CESifo Working Paper Series 8656, CESifo.
    30. Rossi, Barbara, 2013. "Exchange Rate Predictability," CEPR Discussion Papers 9575, C.E.P.R. Discussion Papers.
    31. Andrea Carriero & Todd E. Clark & Marcellino Massimiliano, 2020. "Nowcasting Tail Risks to Economic Activity with Many Indicators," Working Papers 20-13R2, Federal Reserve Bank of Cleveland, revised 22 Sep 2020.
    32. Matteo Manera & Massimiliano Serati & Michele Plotegher, 2008. "Modeling Electricity Prices: From the State of the Art to a Draft of a New Proposal," Working Papers 2008.9, Fondazione Eni Enrico Mattei.
    33. Eric Hillebrand & Huiyu Huang & Tae-Hwy Lee & Canlin Li, 2018. "Using the Entire Yield Curve in Forecasting Output and Inflation," Econometrics, MDPI, vol. 6(3), pages 1-27, August.
    34. Bjørnland, Hilde C. & Ravazzolo, Francesco & Thorsrud, Leif Anders, 2017. "Forecasting GDP with global components: This time is different," International Journal of Forecasting, Elsevier, vol. 33(1), pages 153-173.
    35. Wilson, Kevin J., 2017. "An investigation of dependence in expert judgement studies with multiple experts," International Journal of Forecasting, Elsevier, vol. 33(1), pages 325-336.
    36. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
    37. Henzel, Steffen R. & Mayr, Johannes, 2013. "The mechanics of VAR forecast pooling—A DSGE model based Monte Carlo study," The North American Journal of Economics and Finance, Elsevier, vol. 24(C), pages 1-24.
    38. Winkelried, Diego, 2012. "Predicting quarterly aggregates with monthly indicators," Working Papers 2012-023, Banco Central de Reserva del Perú.
    39. Mehmet Pinar & Thanasis Stengos & M. Ege Yazgan, 2018. "Quantile forecast combination using stochastic dominance," Empirical Economics, Springer, vol. 55(4), pages 1717-1755, December.
    40. Jiahan Li & Ilias Tsiakas, 2016. "Equity Premium Prediction: The Role of Economic and Statistical Constraints," Working Paper series 16-25, Rimini Centre for Economic Analysis.
    41. Luis Fernando Melo & Rubén Albeiro Loaiza Maya, 2012. "Bayesian Forecast Combination for Inflation Using Rolling Windows: An Emerging Country Case," Borradores de Economia 9511, Banco de la Republica.
    42. Jennifer Castle & David Hendry & Michael P. Clements, 2014. "Robust Approaches to Forecasting," Economics Series Working Papers 697, University of Oxford, Department of Economics.
    43. Florian Eckert & Rob J Hyndman & Anastasios Panagiotelis, 2019. "Forecasting Swiss Exports Using Bayesian Forecast Reconciliation," Monash Econometrics and Business Statistics Working Papers 14/19, Monash University, Department of Econometrics and Business Statistics.
    44. Peter Christoffersen & Jeremy Berkowitz & Denis Pelletier, 2008. "Evaluating Value-at-Risk Models with Desk-Level Data," CREATES Research Papers 2009-35, Department of Economics and Business Economics, Aarhus University.
    45. Clements, Michael P., 2010. "Why are survey forecasts superior to model forecasts?," The Warwick Economics Research Paper Series (TWERPS) 954, University of Warwick, Department of Economics.
    46. Schrimpf, Andreas, 2008. "International Stock Return Predictability Under Model Uncertainty," ZEW Discussion Papers 08-048, ZEW - Leibniz Centre for European Economic Research.
    47. WAN, Shui-Ki & WANG, Shin-Huei & WOO, Chi-Keung, 2012. "Total tourist arrival forecast: aggregation vs. disaggregation," LIDAM Discussion Papers CORE 2012039, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    48. Benavides, Guillermo & Capistrán, Carlos, 2012. "Forecasting exchange rate volatility: The superior performance of conditional combinations of time series and option implied forecasts," Journal of Empirical Finance, Elsevier, vol. 19(5), pages 627-639.
    49. Fantazzini, Dean, 2020. "Short-term forecasting of the COVID-19 pandemic using Google Trends data: Evidence from 158 countries," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 59, pages 33-54.
    50. In-Koo Cho & Kenneth Kasa, 2016. "Gresham’S Law Of Model Averaging," Discussion Papers dp16-06, Department of Economics, Simon Fraser University.
    51. Faria, Gonçalo & Verona, Fabio, 2023. "Forecast combination in the frequency domain," Bank of Finland Research Discussion Papers 1/2023, Bank of Finland.
    52. Dan Zhu & Qingwei Wang & John Goddard, 2022. "A new hedging hypothesis regarding prediction interval formation in stock price forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(4), pages 697-717, July.
    53. Nowotarski, Jakub & Raviv, Eran & Trück, Stefan & Weron, Rafał, 2014. "An empirical comparison of alternative schemes for combining electricity spot price forecasts," Energy Economics, Elsevier, vol. 46(C), pages 395-412.
    54. Luci Alessi & Eric Ghysels & Luca Onorante & Richard Peach & Simon M. Potter, 2014. "Central bank macroeconomic forecasting during the global financial crisis: the European Central Bank and Federal Reserve Bank of New York experiences," Staff Reports 680, Federal Reserve Bank of New York.
    55. Knut Are Aastveit & Anne Sofie Jore & Francesco Ravazzolo, 2014. "Forecasting recessions in real time," Working Paper 2014/02, Norges Bank.
    56. Hahn, Elke & Zekaite, Zivile & de Bondt, Gabe, 2018. "ALICE: A new inflation monitoring tool," Working Paper Series 2175, European Central Bank.
    57. Wolters, Maik Hendrik, 2012. "Evaluating point and density forecasts of DSGE models," MPRA Paper 36147, University Library of Munich, Germany.
    58. Özer Karagedikli & Murat Özbilgin, 2019. "Mixed in New Zealand: Nowcasting Labour Markets with MIDAS," Reserve Bank of New Zealand Analytical Notes series AN2019/04, Reserve Bank of New Zealand.
    59. Tian, Jing & Anderson, Heather M., 2014. "Forecast combinations under structural break uncertainty," International Journal of Forecasting, Elsevier, vol. 30(1), pages 161-175.
    60. Hansen, Bruce E., 2010. "Averaging estimators for autoregressions with a near unit root," Journal of Econometrics, Elsevier, vol. 158(1), pages 142-155, September.
    61. Herwartz, Helmut, 2017. "Stock return prediction under GARCH — An empirical assessment," International Journal of Forecasting, Elsevier, vol. 33(3), pages 569-580.
    62. Johannes Müller-Trede & Shoham Choshen-Hillel & Meir Barneron & Ilan Yaniv, 2017. "The Wisdom of Crowds in Matters of Taste," Discussion Paper Series dp709, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    63. Gaglianone, Wagner Piazza & Dutra Areosa, Waldyr, 2017. "Financial Conditions Indicator for Brazil," IDB Publications (Working Papers) 8488, Inter-American Development Bank.
    64. Hovick Shahnazarian & Martin Solberger & Erik Spånberg, 2017. "Forecasting and Analysing Corporate Tax Revenues in Sweden Using Bayesian VAR Models," Finnish Economic Papers, Finnish Economic Association, vol. 28(1), pages 50-74, Autumn.
    65. Davide Pettenuzzo & Francesco Ravazzolo, 2014. "Optimal portfolio choice under decision-based model combinations," Working Paper 2014/15, Norges Bank.
    66. Konstantin Kholodilin, 2014. "Business confidence and forecasting of housing prices and rents in large German cities," ERSA conference papers ersa14p9, European Regional Science Association.
    67. Francesco Ravazzolo & Shaun P. Vahey, 2010. "Forecast densities for economic aggregates from disaggregate ensembles," Working Paper 2010/02, Norges Bank.
    68. Fernandez-Perez, Adrian & Fuertes, Ana-Maria & Miffre, Joëlle, 2019. "A comprehensive appraisal of style-integration methods," Journal of Banking & Finance, Elsevier, vol. 105(C), pages 134-150.
    69. Tony Chernis & Niko Hauzenberger & Florian Huber & Gary Koop & James Mitchell, 2023. "Predictive Density Combination Using a Tree-Based Synthesis Function," Working Papers 23-30, Federal Reserve Bank of Cleveland.
    70. Francesco Giancaterini & Alain Hecq & Claudio Morana, 2022. "Is climate change time reversible?," Papers 2205.07579, arXiv.org, revised Nov 2022.
    71. Karlsson, Sune, 2012. "Forecasting with Bayesian Vector Autoregressions," Working Papers 2012:12, Örebro University, School of Business.
    72. Cecilia Frale & Libero Monteforte, "undated". "FaMIDAS: A Mixed Frequency Factor Model with MIDAS structure," Working Papers 3, Department of the Treasury, Ministry of the Economy and of Finance.
    73. Nicholas Taylor, 2014. "The Economic Value of Volatility Forecasts: A Conditional Approach," Journal of Financial Econometrics, Oxford University Press, vol. 12(3), pages 433-478.
    74. Inske Pirschel & Maik H. Wolters, 2018. "Forecasting with large datasets: compressing information before, during or after the estimation?," Empirical Economics, Springer, vol. 55(2), pages 573-596, September.
    75. Barrow, Devon K. & Kourentzes, Nikolaos, 2016. "Distributions of forecasting errors of forecast combinations: Implications for inventory management," International Journal of Production Economics, Elsevier, vol. 177(C), pages 24-33.
    76. Richard K. Crump & Miro Everaert & Domenico Giannone & Sean Hundtofte, 2018. "Changing Risk-Return Profiles," Staff Reports 850, Federal Reserve Bank of New York.
    77. Pedersen, Michael, 2019. "Anomalies in macroeconomic prediction errors–evidence from Chilean private forecasters," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1100-1107.
    78. Salinas, David & Flunkert, Valentin & Gasthaus, Jan & Januschowski, Tim, 2020. "DeepAR: Probabilistic forecasting with autoregressive recurrent networks," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1181-1191.
    79. M. Hashem Pesaran & Til Schuermann & L. Vanessa Smith, 2008. "Forecasting economic and financial variables with global VARs," Staff Reports 317, Federal Reserve Bank of New York.
    80. Christiane Baumeister & Dimitris Korobilis & Thomas K. Lee, 2022. "Energy Markets and Global Economic Conditions," The Review of Economics and Statistics, MIT Press, vol. 104(4), pages 828-844, October.
    81. Yu-chin Chen & Kwok Ping Tsang & Wen Jen Tsay, 2010. "Home Bias in Currency Forecasts," Working Papers 272010, Hong Kong Institute for Monetary Research.
    82. Jan Prüser, 2019. "Adaptive learning from model space," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(1), pages 29-38, January.
    83. , 2019. "The Contribution of Jump Signs and Activity to Forecasting Stock Price Volatility," Working Papers 1902, Federal Reserve Bank of Dallas, revised 17 Dec 2022.
    84. Michael P. Clements & David I. Harvey, 2010. "Forecast encompassing tests and probability forecasts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(6), pages 1028-1062.
    85. Conrad, Christian & Lahiri, Kajal, 2023. "Heterogeneous expectations among professional forecasters," ZEW Discussion Papers 23-062, ZEW - Leibniz Centre for European Economic Research.
    86. Čapek, Jan & Crespo Cuaresma, Jesús & Hauzenberger, Niko & Reichel, Vlastimil, 2023. "Macroeconomic forecasting in the euro area using predictive combinations of DSGE models," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1820-1838.
    87. Girardi, Alessandro & Ventura, Marco & Margani, Patrizia, 2018. "An Indicator of Credit Crunch using Italian Business Surveys," MPRA Paper 88839, University Library of Munich, Germany.
    88. Roy Cerqueti & Raffaella Coppier & Alessandro Girardi & Marco Ventura, 2022. "The sooner the better: lives saved by the lockdown during the COVID-19 outbreak. The case of Italy," The Econometrics Journal, Royal Economic Society, vol. 25(1), pages 46-70.
    89. John Geweke & Gianni Amisano, 2008. "Optimal Prediction Pools," Working Paper series 22_08, Rimini Centre for Economic Analysis.
    90. Marcellino, Massimiliano & Foroni, Claudia & Stevanovic, Dalibor, 2020. "Forecasting the Covid-19 recession and recovery: Lessons from the financial crisis," CEPR Discussion Papers 15114, C.E.P.R. Discussion Papers.
    91. Francesco Ravazzolo & Tommy Sveen & Sepideh K. Zahiri, 2016. "Commodity Futures and Forecasting Commodity Currencies," Working Papers No 7/2016, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    92. Kilian, Lutz & Baumeister, Christiane & Lee, Thomas K, 2014. "Are there Gains from Pooling Real-Time Oil Price Forecasts?," CEPR Discussion Papers 10075, C.E.P.R. Discussion Papers.
    93. Barbara Rossi & Tatevik Sekhposyan, 2013. "Evaluating predictive densities of U.S. output growth and inflation in a large macroeconomic data set," Economics Working Papers 1370, Department of Economics and Business, Universitat Pompeu Fabra.
    94. Sarah Drought & Chris McDonald, 2011. "Forecasting house price inflation: a model combination approach," Reserve Bank of New Zealand Discussion Paper Series DP2011/07, Reserve Bank of New Zealand.
    95. Robert Lehmann & Klaus Wohlrabe, 2013. "Forecasting gross value-added at the regional level: Are sectoral disaggregated predictions superior to direct ones?," ifo Working Paper Series 171, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    96. Scott A. Brave & Charles S. Gascon & William Kluender & Thomas Walstrum, 2019. "Predicting Benchmarked US State Employment Data in Real Time," Working Papers 2019-037, Federal Reserve Bank of St. Louis, revised 11 Mar 2021.
    97. Marina Diakonova & Luis Molina & Hannes Mueller & Javier J. Pérez & Cristopher Rauh, 2022. "The information content of conflict, social unrest and policy uncertainty measures for macroeconomic forecasting," Working Papers 2232, Banco de España.
    98. Raffaele Mattera & Philipp Otto, 2023. "Network log-ARCH models for forecasting stock market volatility," Papers 2303.11064, arXiv.org.
    99. Paulo Mauricio Sánchez Beltrán & Luis Fernando Melo Velandia, 2013. "Combinación de brechas del producto colombiano," Borradores de Economia 10973, Banco de la Republica.
    100. João F. Caldeira & Guilherme V. Moura & Francisco J. Nogales & André A. P. Santos, 2017. "Combining Multivariate Volatility Forecasts: An Economic-Based Approach," Journal of Financial Econometrics, Oxford University Press, vol. 15(2), pages 247-285.
    101. Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018. "Bayesian vector autoregressions," LSE Research Online Documents on Economics 87393, London School of Economics and Political Science, LSE Library.
    102. Bec, Frédérique & Mogliani, Matteo, 2015. "Nowcasting French GDP in real-time with surveys and “blocked” regressions: Combining forecasts or pooling information?," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1021-1042.
    103. Fuertes, Ana-Maria & Olmo, Jose, 2013. "Optimally harnessing inter-day and intra-day information for daily value-at-risk prediction," International Journal of Forecasting, Elsevier, vol. 29(1), pages 28-42.
    104. Wagner Piazza Gaglianone & Luiz Renato Lima, 2014. "Constructing Optimal Density Forecasts From Point Forecast Combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(5), pages 736-757, August.
    105. Distaso, Walter & Roccazzella, Francesco & Vrins, Frédéric, 2023. "Business cycle and realized losses in the consumer credit industry," LIDAM Discussion Papers LFIN 2023007, Université catholique de Louvain, Louvain Finance (LFIN).
    106. Oleg Rytchkov & Xun Zhong, 2020. "Information Aggregation and P-Hacking," Management Science, INFORMS, vol. 66(4), pages 1605-1626, April.
    107. Michiel De Pooter & Francesco Ravazzolo & Dick van Dijk, 2010. "Term structure forecasting using macro factors and forecast combination," International Finance Discussion Papers 993, Board of Governors of the Federal Reserve System (U.S.).
    108. Verena Monschang & Bernd Wilfling, 2022. "A procedure for upgrading linear-convex combination forecasts with an application to volatility prediction," CQE Working Papers 9722, Center for Quantitative Economics (CQE), University of Muenster.
    109. Ravazzolo, Francesco & Vespignani, Joaquin, 2015. "A new monthly indicator of global real economic activity," Working Papers 2015-07, University of Tasmania, Tasmanian School of Business and Economics.
    110. Helmut Herwartz, 2011. "Forecast accuracy and uncertainty in applied econometrics: a recommendation of specific-to-general predictor selection," Empirical Economics, Springer, vol. 41(2), pages 487-510, October.
    111. Dufour, Jean-Marie & Jouini, Tarek, 2014. "Asymptotic distributions for quasi-efficient estimators in echelon VARMA models," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 69-86.
    112. Bastianin, Andrea & Galeotti, Marzio & Manera, Matteo, 2017. "Statistical and Economic Evaluation of Time Series Models for Forecasting Arrivals at Call Centers," ETA: Economic Theory and Applications 253725, Fondazione Eni Enrico Mattei (FEEM).
    113. Christopher Krauss & Xuan Anh Do & Nicolas Huck, 2017. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," Post-Print hal-01515120, HAL.
    114. Yose Rizal Damuri & Prabaning Tyas & Haryo Aswicahyono & Lionel Priyadi & Stella Kusumawardhani & Ega Kurnia Yazid, 2021. "Tracking the Ups and Downs in Indonesia’s Economic Activity During COVID-19 Using Mobility Index: Evidence from Provinces in Java and Bali," Working Papers DP-2021-18, Economic Research Institute for ASEAN and East Asia (ERIA).
    115. Kenneth Rogoff & Barbara Rossi & Yu-chin Chen, 2008. "Can Exchange Rates Forecast Commodity Prices?," 2008 Meeting Papers 540, Society for Economic Dynamics.
    116. Luis F. Melo Velandia & Rubén A. Loaiza Maya & Mauricio Villamizar-Villegas, 2014. "Bayesian Combination for Inflation Forecasts: The Effects of a Prior Based on Central Banks’ Estimates," Borradores de Economia 853, Banco de la Republica de Colombia.
    117. Cristina Conflitti & Christine De Mol & Domenico Giannone, 2012. "Optimal Combination of Survey Forecasts," Working Papers ECARES ECARES 2012-023, ULB -- Universite Libre de Bruxelles.
    118. Wang, Ju-Jie & Wang, Jian-Zhou & Zhang, Zhe-George & Guo, Shu-Po, 2012. "Stock index forecasting based on a hybrid model," Omega, Elsevier, vol. 40(6), pages 758-766.
    119. Laura Carabotta & Peter Claeys, 2015. "Combine to compete: improving fiscal forecast accuracy over time," UB School of Economics Working Papers 2015/320, University of Barcelona School of Economics.
    120. Carlos Capistrán & Allan Timmermann, 2008. "Forecast Combination With Entry and Exit of Experts," CREATES Research Papers 2008-55, Department of Economics and Business Economics, Aarhus University.
    121. Fotios Petropoulos & Enno Siemsen, 2023. "Forecast Selection and Representativeness," Management Science, INFORMS, vol. 69(5), pages 2672-2690, May.
    122. Michael S. O’Doherty & N. E. Savin & Ashish Tiwari, 2016. "Evaluating Hedge Funds with Pooled Benchmarks," Management Science, INFORMS, vol. 62(1), pages 69-89, January.
    123. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    124. Tae-Hwy Lee & Ekaterina Seregina, 2020. "Learning from Forecast Errors: A New Approach to Forecast Combinations," Papers 2011.02077, arXiv.org, revised May 2021.
    125. Franses, Ph.H.B.F., 2006. "Formalizing judgemental adjustment of model-based forecasts," Econometric Institute Research Papers EI 2006-19, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    126. Fernando M. Duarte & Carlo Rosa, 2015. "The equity risk premium: a review of models," Economic Policy Review, Federal Reserve Bank of New York, issue 2, pages 39-57.
    127. Robin C. Sickles & Jiaqi Hao & Chenjun Shang, 2014. "Panel data and productivity measurement: an analysis of Asian productivity trends," Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 12(3), pages 211-231, August.
    128. Costantini, Mauro & Gunter, Ulrich & Kunst, Robert M., 2012. "Forecast Combination Based on Multiple Encompassing Tests in a Macroeconomic DSGE-VAR System," Economics Series 292, Institute for Advanced Studies.
    129. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
    130. Guofu Zhou, 2018. "Measuring Investor Sentiment," Annual Review of Financial Economics, Annual Reviews, vol. 10(1), pages 239-259, November.
    131. Andrew Detzel & Jack Strauss, 2018. "Combination Return Forecasts and Portfolio Allocation with the Cross-Section of Book-to-Market Ratios [Illiquidity and stock returns: cross-section and time-series effects]," Review of Finance, European Finance Association, vol. 22(5), pages 1949-1973.
    132. Katja Heinisch & Rolf Scheufele, 2019. "Should Forecasters Use Real‐Time Data to Evaluate Leading Indicator Models for GDP Prediction? German Evidence," German Economic Review, Verein für Socialpolitik, vol. 20(4), pages 170-200, November.
    133. Victor Olkhov, 2022. "Market-Based Price Autocorrelation," Papers 2202.09323, arXiv.org, revised Feb 2024.
    134. Andrea Bastianin & Marzio Galeotti & Matteo Manera, 2011. "Forecast Evaluation in Call Centers: Combined Forecasts, Flexible Loss Functions and Economic Criteria," UNIMI - Research Papers in Economics, Business, and Statistics unimi-1109, Universitá degli Studi di Milano.
    135. Hannes Mueller & Christopher Rauh, 2019. "The hard problem of prediction for conflict prevention," Cahiers de recherche 2019-02, Universite de Montreal, Departement de sciences economiques.
    136. Sickles, Robin C. & Hao, Jiaqi & Shang, Chenjun, 2015. "Panel Data and Productivity Measurement," Working Papers 15-018, Rice University, Department of Economics.
    137. Guérin, Pierre & Leiva-Leon, Danilo, 2017. "Model averaging in Markov-switching models: Predicting national recessions with regional data," Economics Letters, Elsevier, vol. 157(C), pages 45-49.
    138. Andrzej Kociecki & Marcin Kolasa & Michal Rubaszek, 2011. "Predictivistic Bayesian Forecasting System," NBP Working Papers 87, Narodowy Bank Polski.
    139. Dean Fantazzini & Julia Pushchelenko & Alexey Mironenkov & Alexey Kurbatskii, 2021. "Forecasting Internal Migration in Russia Using Google Trends: Evidence from Moscow and Saint Petersburg," Forecasting, MDPI, vol. 3(4), pages 1-30, October.
    140. Pinkwart, Nicolas, 2018. "Short-term forecasting economic activity in Germany: A supply and demand side system of bridge equations," Discussion Papers 36/2018, Deutsche Bundesbank.
    141. Buchen, Teresa & Wohlrabe, Klaus, 2011. "Forecasting with many predictors: Is boosting a viable alternative?," Economics Letters, Elsevier, vol. 113(1), pages 16-18, October.
    142. Sophie DABO-NIANG & Christian FRANCQ & Jean-Michel ZAKOIAN, 2009. "Combining Nonparametric and Optimal Linear Time Series Predictions," Working Papers 2009-18, Center for Research in Economics and Statistics.
    143. Emily Howerton & Lucie Contamin & Luke C. Mullany & Michelle Qin & Nicholas G. Reich & Samantha Bents & Rebecca K. Borchering & Sung-mok Jung & Sara L. Loo & Claire P. Smith & John Levander & Jessica , 2023. "Evaluation of the US COVID-19 Scenario Modeling Hub for informing pandemic response under uncertainty," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    144. Andrawis, Robert R. & Atiya, Amir F. & El-Shishiny, Hisham, 2011. "Forecast combinations of computational intelligence and linear models for the NN5 time series forecasting competition," International Journal of Forecasting, Elsevier, vol. 27(3), pages 672-688, July.
    145. Charlotte Christiansen & Maik Schmeling & Andreas Schrimpf, 2012. "A Comprehensive Look at Financial Volatility Prediction by Economic Variables," BIS Working Papers 374, Bank for International Settlements.
    146. Roccazzella, Francesco & Gambetti, Paolo & Vrins, Frédéric, 2021. "Optimal and robust combination of forecasts via constrained optimization and shrinkage," LIDAM Reprints LFIN 2021014, Université catholique de Louvain, Louvain Finance (LFIN).
    147. Jari Hännikäinen, 2016. "Selection of an Estimation Window in the Presence of Data Revisions and Recent Structural Breaks," Working Papers 1692, Tampere University, Faculty of Management and Business, Economics.
    148. Michael P. Clements & Ana Beatriz Galvão, 2011. "Improving Real-time Estimates of Output Gaps and Inflation Trends with Multiple-vintage Models," Working Papers 678, Queen Mary University of London, School of Economics and Finance.
    149. Lennart Hoogerheide & Richard Kleijn & Francesco Ravazzolo & Herman K. Van Dijk & Marno Verbeek, 2010. "Forecast accuracy and economic gains from Bayesian model averaging using time-varying weights," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 251-269.
    150. Felix Haase & Matthias Neuenkirch, 2020. "Predictability of Bull and Bear Markets: A New Look at Forecasting Stock Market Regimes (and Returns) in the US," Research Papers in Economics 2020-01, University of Trier, Department of Economics.
    151. Monica Billio & Roberto Casarin & Francesco Ravazzolo & Herman K. van Dijk, 2011. "Combining Predictive Densities using Bayesian Filtering with Applications to US Economics Data," Tinbergen Institute Discussion Papers 11-003/4, Tinbergen Institute.
    152. Bakalli, Gaetan & Guerrier, Stéphane & Scaillet, Olivier, 2023. "A penalized two-pass regression to predict stock returns with time-varying risk premia," Journal of Econometrics, Elsevier, vol. 237(2).
    153. Christiane Baumeister & Lutz Kilian & Thomas K. Lee, 2016. "Inside the Crystal Ball: New Approaches to Predicting the Gasoline Price at the Pump," CESifo Working Paper Series 5759, CESifo.
    154. Warmedinger, Thomas & Paredes, Joan & Asimakopoulos, Stylianos, 2013. "Forecasting fiscal time series using mixed frequency data," Working Paper Series 1550, European Central Bank.
    155. Hanxiong Zhang & Robert Hudson & Hugh Metcalf & Viktor Manahov, 2017. "Investigation of institutional changes in the UK housing market using structural break tests and time-varying parameter models," Empirical Economics, Springer, vol. 53(2), pages 617-640, September.
    156. Theobald, Thomas, 2013. "Markov Switching with Endogenous Number of Regimes and Leading Indicators in a Real-Time Business Cycle Forecast," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79911, Verein für Socialpolitik / German Economic Association.
    157. B Aytac & S D Wu, 2011. "Modelling high-tech product life cycles with short-term demand information: a case study," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(3), pages 425-432, March.
    158. Takashi Nakazawa, 2022. "Constructing GDP Nowcasting Models Using Alternative Data," Bank of Japan Working Paper Series 22-E-9, Bank of Japan.
    159. Knüppel, Malte & Krüger, Fabian, 2017. "Forecast Uncertainty, Disagreement, and Linear Pools of Density Forecasts," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168294, Verein für Socialpolitik / German Economic Association.
    160. Rodrigues, Bruno Dore & Stevenson, Maxwell J., 2013. "Takeover prediction using forecast combinations," International Journal of Forecasting, Elsevier, vol. 29(4), pages 628-641.
    161. Matilla-García, Mariano & Marín, Manuel Ruiz, 2010. "A new test for chaos and determinism based on symbolic dynamics," Journal of Economic Behavior & Organization, Elsevier, vol. 76(3), pages 600-614, December.
    162. Pierre L. Siklos, 2018. "What has publishing inflation forecasts accomplished? Central banks and their competitors," CAMA Working Papers 2018-07, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    163. Andrade, P. & Fourel, V. & Ghysels, E. & Idier, I., 2013. "The financial content of inflation risks in the euro area," Working papers 437, Banque de France.
    164. Bartosz Uniejewski & Katarzyna Maciejowska, 2022. "LASSO Principal Component Averaging -- a fully automated approach for point forecast pooling," Papers 2207.04794, arXiv.org.
    165. Cheng, Xu & Hansen, Bruce E., 2015. "Forecasting with factor-augmented regression: A frequentist model averaging approach," Journal of Econometrics, Elsevier, vol. 186(2), pages 280-293.
    166. Ma, Feng & Lu, Fei & Tao, Ying, 2022. "Geopolitical risk and excess stock returns predictability: New evidence from a century of data," Finance Research Letters, Elsevier, vol. 50(C).
    167. Bätje, Fabian & Menkhoff, Lukas, 2016. "Predicting the equity premium via its components," VfS Annual Conference 2016 (Augsburg): Demographic Change 145789, Verein für Socialpolitik / German Economic Association.
    168. Knut Are Aastveit & André K. Anundsen & Eyo I. Herstad, 2017. "Residential investment and recession predictability," Working Paper 2017/24, Norges Bank.
    169. Goulet Coulombe, Philippe & Leroux, Maxime & Stevanovic, Dalibor & Surprenant, Stéphane, 2021. "Macroeconomic data transformations matter," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1338-1354.
    170. Qian Chen & Xiang Gao & Shan Xie & Li Sun & Shuairu Tian & Shigeyuki Hamori, 2021. "On the Predictability of China Macro Indicator with Carbon Emissions Trading," Energies, MDPI, vol. 14(5), pages 1-24, February.
    171. Camille Cornand & Cheick Kader M'Baye, 2016. "Band or Point Inflation Targeting? An Experimental Approach," Working Papers halshs-01313095, HAL.
    172. Lycheva, Maria & Mironenkov, Alexey & Kurbatskii, Alexey & Fantazzini, Dean, 2022. "Forecasting oil prices with penalized regressions, variance risk premia and Google data," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 68, pages 28-49.
    173. Yi, Yongsheng & Ma, Feng & Zhang, Yaojie & Huang, Dengshi, 2019. "Forecasting stock returns with cycle-decomposed predictors," International Review of Financial Analysis, Elsevier, vol. 64(C), pages 250-261.
    174. Philip Hans Franses & Michael McAleer & Rianne Legerstee, 2010. "Evaluating Macroeconomic Forecasts: A Review of Some Recent Developments," CIRJE F-Series CIRJE-F-729, CIRJE, Faculty of Economics, University of Tokyo.
    175. Neil R. Ericsson, 2021. "Dynamic Econometrics in Action: A Biography of David F. Hendry," International Finance Discussion Papers 1311, Board of Governors of the Federal Reserve System (U.S.).
    176. Timmermann, Allan, 2018. "Forecasting Methods in Finance," CEPR Discussion Papers 12692, C.E.P.R. Discussion Papers.
    177. Jun Il Kim, 2014. "Comments on James Morley's paper," BIS Papers chapters, in: Bank for International Settlements (ed.), Globalisation, inflation and monetary policy in Asia and the Pacific, volume 77, pages 51-54, Bank for International Settlements.
    178. Kyosuke Chikamatsu, Naohisa Hirakata, Yosuke Kido, Kazuki Otaka, 2018. "Nowcasting Japanese GDPs," Bank of Japan Working Paper Series 18-E-18, Bank of Japan.
    179. Clements, Michael P. & Galvão, Ana Beatriz & Kim, Jae H., 2006. "Quantile Forecasts of Daily Exchange Rate Returns from Forecasts of Realized Volatility," The Warwick Economics Research Paper Series (TWERPS) 777, University of Warwick, Department of Economics.
    180. Lars Lien Ankile & Kjartan Krange, 2022. "Deep Learning and Linear Programming for Automated Ensemble Forecasting and Interpretation," Papers 2201.00426, arXiv.org, revised Nov 2022.
    181. Clements, Michael P. & Galvão, Ana Beatriz, 2010. "Real-time Forecasting of Inflation and Output Growth in the Presence of Data Revisions," The Warwick Economics Research Paper Series (TWERPS) 953, University of Warwick, Department of Economics.
    182. Pascal Bührig & Klaus Wohlrabe, 2016. "Forecasting revisions of German industrial production," Applied Economics Letters, Taylor & Francis Journals, vol. 23(15), pages 1062-1064, October.
    183. Cameron Fen & Samir Undavia, 2022. "Improving Macroeconomic Model Validity and Forecasting Performance with Pooled Country Data using Structural, Reduced Form, and Neural Network Model," Papers 2203.06540, arXiv.org.
    184. Eran Raviv & Kees E. Bouwman & Dick van Dijk, 2013. "Forecasting Day-Ahead Electricity Prices: Utilizing Hourly Prices," Tinbergen Institute Discussion Papers 13-068/III, Tinbergen Institute.
    185. Diebold, Francis X. & Shin, Minchul, 2019. "Machine learning for regularized survey forecast combination: Partially-egalitarian LASSO and its derivatives," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1679-1691.
    186. Berrin Aytac & S. Wu, 2013. "Characterization of demand for short life-cycle technology products," Annals of Operations Research, Springer, vol. 203(1), pages 255-277, March.
    187. Götz, T.B. & Hecq, A.W. & Urbain, J.R.Y.J., 2014. "Combining distributions of real-time forecasts: An application to U.S. growth," Research Memorandum 027, Maastricht University, Graduate School of Business and Economics (GSBE).
    188. Rui Liu, 2019. "Forecasting Bond Risk Premia with Unspanned Macroeconomic Information," Quarterly Journal of Finance (QJF), World Scientific Publishing Co. Pte. Ltd., vol. 9(01), pages 1-62, March.
    189. Laurent Ferrara & Clément Marsilli & Juan-Pablo Ortega, 2013. "Forecasting US growth during the Great Recession: Is the financial volatility the missing ingredient?," Working Papers hal-04141198, HAL.
    190. Knut Are Aastveit & Jamie Cross & Herman K. van Dijk, 2021. "Quantifying time-varying forecast uncertainty and risk for the real price of oil," Tinbergen Institute Discussion Papers 21-053/III, Tinbergen Institute.
    191. Andrés M. Alonso & Guadalupe Bastos & Carolina García-Martos, 2016. "Electricity Price Forecasting by Averaging Dynamic Factor Models," Energies, MDPI, vol. 9(8), pages 1-21, July.
    192. Francesco Ravazzolo & Joaquin Vespignani, 2017. "World steel production: A new monthly indicator of global real economic activity," CAMA Working Papers 2017-42, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    193. Georgios Papadopoulos & Dionysios Chionis & Nikolaos P. Rachaniotis, 2018. "Macro-financial linkages during tranquil and crisis periods: evidence from stressed economies," Risk Management, Palgrave Macmillan, vol. 20(2), pages 142-166, May.
    194. Cobb, Marcus P A, 2018. "Improving Underlying Scenarios for Aggregate Forecasts: A Multi-level Combination Approach," MPRA Paper 88593, University Library of Munich, Germany.
    195. Todd E. Clark & Michael W. McCracken, 2010. "Averaging forecasts from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 5-29.
    196. Jon Ellingsen & Vegard H. Larsen & Leif Anders Thorsrud, 2020. "News media vs. FRED-MD for macroeconomic forecasting," Working Papers No 08/2020, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    197. Schrimpf, Andreas & Wang, Qingwei, 2010. "A reappraisal of the leading indicator properties of the yield curve under structural instability," International Journal of Forecasting, Elsevier, vol. 26(4), pages 836-857, October.
    198. Roberto S. Mariano & Suleyman Ozmucur, 2021. "Predictive Performance of Mixed-Frequency Nowcasting and Forecasting Models (with Application to Philippine Inflation and GDP Growth)," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 383-400, December.
    199. Kock Anders Bredahl, 2011. "Forecasting with Universal Approximators and a Learning Algorithm," Journal of Time Series Econometrics, De Gruyter, vol. 3(3), pages 1-32, October.
    200. Antonio Bassanetti & Michele Caivano & Alberto Locarno, 2013. "Modelling italian potential output and the output gap," Working Papers 7, Department of the Treasury, Ministry of the Economy and of Finance.
    201. James Mitchell & Richard J. Smith & Martin R. Weale, 2013. "Efficient Aggregation Of Panel Qualitative Survey Data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(4), pages 580-603, June.
    202. Tao Lin & Yiling Chen, 2022. "Sample Complexity of Forecast Aggregation," Papers 2207.13126, arXiv.org, revised Oct 2023.
    203. Raffaella Giacomini & Barbara Rossi, 2014. "Forecasting in Nonstationary Environments: What Works and What Doesn't in Reduced-Form and Structural Models," Working Papers 819, Barcelona School of Economics.
    204. Coroneo, Laura & Iacone, Fabrizio & Paccagnini, Alessia & Santos Monteiro, Paulo, 2023. "Testing the predictive accuracy of COVID-19 forecasts," International Journal of Forecasting, Elsevier, vol. 39(2), pages 606-622.
    205. Pesaran, M.H. & Assenmacher-Wesche, K., 2007. "Assessing forecast uncertainties in a VECX* model for Switzerland: an exercise in forecast combination across models and observation windows," Cambridge Working Papers in Economics 0746, Faculty of Economics, University of Cambridge.
    206. Leland E. Farmer & Lawrence Schmidt & Allan Timmermann, 2023. "Pockets of Predictability," Journal of Finance, American Finance Association, vol. 78(3), pages 1279-1341, June.
    207. Foroni, Claudia & Marcellino, Massimiliano, 2014. "A comparison of mixed frequency approaches for nowcasting Euro area macroeconomic aggregates," International Journal of Forecasting, Elsevier, vol. 30(3), pages 554-568.
    208. Zhang, Yue-Jun & Wang, Jin-Li, 2019. "Do high-frequency stock market data help forecast crude oil prices? Evidence from the MIDAS models," Energy Economics, Elsevier, vol. 78(C), pages 192-201.
    209. John Cotter & Emmanuel Eyiah-Donkor & Valerio Potì, 2023. "Commodity futures return predictability and intertemporal asset pricing," Post-Print hal-04192933, HAL.
    210. Emilio Zanetti Chini, 2013. "Generalizing smooth transition autoregressions," CEIS Research Paper 294, Tor Vergata University, CEIS, revised 25 Sep 2014.
    211. Johanna Posch & Fabio Rumler, 2015. "Semi‐Structural Forecasting of UK Inflation Based on the Hybrid New Keynesian Phillips Curve," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(2), pages 145-162, March.
    212. Laurent L. Pauwels & Andrey L. Vasnev, 2017. "Forecast combination for discrete choice models: predicting FOMC monetary policy decisions," Empirical Economics, Springer, vol. 52(1), pages 229-254, February.
    213. Clements, Michael P & Galvão, Ana Beatriz, 2006. "Macroeconomic Forecasting with Mixed Frequency Data : Forecasting US output growth and inflation," The Warwick Economics Research Paper Series (TWERPS) 773, University of Warwick, Department of Economics.
    214. Kam Fong Chan & Philip Gray, 2017. "Do Scheduled Macroeconomic Announcements Influence Energy Price Jumps?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 37(1), pages 71-89, January.
    215. Silvija Vlah Jerić & Mihovil Anđelinović, 2019. "Evaluating Croatian stock index forecasts," Empirical Economics, Springer, vol. 56(4), pages 1325-1339, April.
    216. Huck, Nicolas, 2010. "Pairs trading and outranking: The multi-step-ahead forecasting case," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1702-1716, December.
    217. Degiannakis, Stavros & Filis, George & Hassani, Hossein, 2015. "Forecasting implied volatility indices worldwide: A new approach," MPRA Paper 72084, University Library of Munich, Germany.
    218. Emilio Zanetti Chini, 2018. "Forecasting dynamically asymmetric fluctuations of the U.S. business cycle," CREATES Research Papers 2018-13, Department of Economics and Business Economics, Aarhus University.
    219. Anthony Garratt & Timo Henckel & Shaun P. Vahey, 2019. "Empirically-transformed linear opinion pools," CAMA Working Papers 2019-47, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    220. Gang Cheng & Sicong Wang & Yuhong Yang, 2015. "Forecast Combination under Heavy-Tailed Errors," Econometrics, MDPI, vol. 3(4), pages 1-28, November.
    221. Hendriock, Mario, 2020. "Implied cost of capital and mutual fund performance," CFR Working Papers 20-11, University of Cologne, Centre for Financial Research (CFR).
    222. Sainan Jin & Valentina Corradi & Norman Swanson, 2015. "Robust Forecast Comparison," Departmental Working Papers 201502, Rutgers University, Department of Economics.
    223. Christian Grimme & Robert Lehmann & Marvin Noeller, 2019. "Forecasting Imports with Information from Abroad," ifo Working Paper Series 294, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    224. Han Hong & Bruce Preston, 2008. "Bayesian Averaging, Prediction and Nonnested Model Selection," NBER Working Papers 14284, National Bureau of Economic Research, Inc.
    225. Di Bu & Simone Kelly & Yin Liao & Qing Zhou, 2018. "A hybrid information approach to predict corporate credit risk," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(9), pages 1062-1078, September.
    226. Douglas G. Santos & Flavio A. Ziegelmann, 2014. "Volatility Forecasting via MIDAS, HAR and their Combination: An Empirical Comparative Study for IBOVESPA," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(4), pages 284-299, July.
    227. Esteban Gómez & Andrés Murcia Pabón & Nancy Zamudio Gómez, 2011. "Financial Conditions Index: Early and Leading Indicator for Colombia?," Temas de Estabilidad Financiera 055, Banco de la Republica de Colombia.
    228. Roman S. Leukhin, 2019. "Short-Term Fiscal Projections Using Forecast Combination Approach," Finansovyj žhurnal — Financial Journal, Financial Research Institute, Moscow 125375, Russia, issue 3, pages 9-21, June.
    229. Fouliard, Jeremy & Howell, Michael & Rey, Hélène & Stavrakeva, Vania, 2022. "Answering the Queen: Machine Learning and Financial Crises," CEPR Discussion Papers 15618, C.E.P.R. Discussion Papers.
    230. Klaus Wohlrabe, 2011. "Konstruktion von Indikatoren zur Analyse der wirtschaftlichen Aktivität in den Dienstleistungsbereichen," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 55.
    231. Kolasa, Marcin & Rubaszek, Michał, 2014. "Forecasting with DSGE models with financial frictions," Dynare Working Papers 40, CEPREMAP.
    232. Michael S. O’Doherty & N. E. Savin & Ashish Tiwari, 2017. "Hedge Fund Replication: A Model Combination Approach," Review of Finance, European Finance Association, vol. 21(4), pages 1767-1804.
    233. Antoine Mandel & Amir Sani, 2016. "Learning Time-Varying Forecast Combinations," Documents de travail du Centre d'Economie de la Sorbonne 16036, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    234. Alfarano Simone & Milakovic Mishael, 2012. "Identification of Interaction Effects in Survey Expectations: A Cautionary Note," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(4), pages 1-23, October.
    235. Anders Bredahl Kock & Timo Teräsvirta, 2010. "Forecasting with nonlinear time series models," CREATES Research Papers 2010-01, Department of Economics and Business Economics, Aarhus University.
    236. Tim Bollerslev & Benjamin Hood & John Huss & Lasse Heje Pedersen, 2018. "Risk Everywhere: Modeling and Managing Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 31(7), pages 2729-2773.
    237. Francis X. Diebold & Minchul Shin & Boyuan Zhang, 2021. "On the Aggregation of Probability Assessments: Regularized Mixtures of Predictive Densities for Eurozone Inflation and Real Interest Rates," Working Papers 21-06, Federal Reserve Bank of Philadelphia.
    238. Giovanni De Luca & Giampiero M. Gallo & Danilo Carità, 2017. "Evaluating Combined Forecasts for Realized Volatility Using Asymmetric Loss Functions," Econometric Research in Finance, SGH Warsaw School of Economics, Collegium of Economic Analysis, vol. 2(2), pages 99-111, December.
    239. Sancetta, Alessio, 2013. "Weak conditions for shrinking multivariate nonparametric density estimators," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 285-300.
    240. Lavancier, F. & Rochet, P., 2016. "A general procedure to combine estimators," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 175-192.
    241. Zijun Wang, 2010. "Directed graphs, information structure and forecast combinations: an empirical examination of US unemployment rates," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(4), pages 353-366.
    242. Heiner Mikosch & Laura Solanko, 2019. "Forecasting Quarterly Russian GDP Growth with Mixed-Frequency Data," Russian Journal of Money and Finance, Bank of Russia, vol. 78(1), pages 19-35, March.
    243. Wei, Xiaoqiao & Yang, Yuhong, 2012. "Robust forecast combinations," Journal of Econometrics, Elsevier, vol. 166(2), pages 224-236.
    244. Claudia FORONI & Massimiliano MARCELLINO, 2012. "A Comparison of Mixed Frequency Approaches for Modelling Euro Area Macroeconomic Variables," Economics Working Papers ECO2012/07, European University Institute.
    245. Antoine Mandel & Amir Sani, 2017. "A Machine Learning Approach to the Forecast Combination Puzzle," Working Papers halshs-01317974, HAL.
    246. Bhaghoe, Sailesh & Ooft, Gavin, 2021. "Nowcasting Quarterly GDP Growth in Suriname with Factor-MIDAS and Mixed-Frequency VAR Models," Studies in Applied Economics 176, The Johns Hopkins Institute for Applied Economics, Global Health, and the Study of Business Enterprise.
    247. Ant?nio Cl¨¦cio de Brito & Elano Ferreira Arruda & Ivan Castelar & Nicolino Trompieri Neto & Cristiano Santos, 2019. "Core Inflation, Expectations and Inflation Dynamics in Brazil," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 11(6), pages 1-1, June.
    248. Adriano Koshiyama & Nick Firoozye & Philip Treleaven, 2021. "Generative adversarial networks for financial trading strategies fine-tuning and combination," Quantitative Finance, Taylor & Francis Journals, vol. 21(5), pages 797-813, May.
    249. Sander Barendse & Erik Kole & Dick van Dijk, 2019. "Backtesting Value-at-Risk and Expected Shortfall in the Presence of Estimation Error," Tinbergen Institute Discussion Papers 19-058/III, Tinbergen Institute.
    250. Rafael R. Rebitzky, 2010. "The Influence Of Fundamentals On Exchange Rates: Findings From Analyses Of News Effects," Journal of Economic Surveys, Wiley Blackwell, vol. 24(4), pages 680-704, September.
    251. Michael P. Clements, 2014. "US Inflation Expectations and Heterogeneous Loss Functions, 1968–2010," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(1), pages 1-14, January.
    252. Anne Sofie Jore & James Mitchell & Shaun Vahey, 2008. "Combining Forecast Densities from VARs with Uncertain Instabilities," Reserve Bank of New Zealand Discussion Paper Series DP2008/18, Reserve Bank of New Zealand.
    253. Koo, Bonsoo & Anderson, Heather M. & Seo, Myung Hwan & Yao, Wenying, 2020. "High-dimensional predictive regression in the presence of cointegration," Journal of Econometrics, Elsevier, vol. 219(2), pages 456-477.
    254. Agnieszka P. Markiewicz & Ralph C. Verhoeks & Willem F. C. Verschoor & Remco C. J. Zwinkels, 2023. "Inattentive Search for Currency Fundamentals," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 71(4), pages 907-952, December.
    255. Zhu, Min & Chen, Rui & Du, Ke & Wang, You-Gan, 2018. "Dividend growth and equity premium predictability," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 125-137.
    256. Heijmans, Roweno J.R.K. & Gerlagh, Reyer, 2019. "Regulating Global Externalities," Other publications TiSEM 9a0a6f7a-f8d0-4495-8aed-4, Tilburg University, School of Economics and Management.
    257. Sánchez, Ismael, 2008. "Adaptive combination of forecasts with application to wind energy," International Journal of Forecasting, Elsevier, vol. 24(4), pages 679-693.
    258. Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    259. Michael P. Clements & Ana Beatriz Galvão, 2009. "Forecasting US output growth using leading indicators: an appraisal using MIDAS models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(7), pages 1187-1206, November.
    260. Norman R. Swanson & Weiqi Xiong, 2018. "Big data analytics in economics: What have we learned so far, and where should we go from here?," Canadian Journal of Economics, Canadian Economics Association, vol. 51(3), pages 695-746, August.
    261. David Bolder & Yuliya Romanyuk, 2008. "Combining Canadian Interest-Rate Forecasts," Staff Working Papers 08-34, Bank of Canada.
    262. Andrada-Félix, Julián & Fernández-Rodríguez, Fernando & Fuertes, Ana-Maria, 2016. "Combining nearest neighbor predictions and model-based predictions of realized variance: Does it pay?," International Journal of Forecasting, Elsevier, vol. 32(3), pages 695-715.
    263. Oliver J. Rutz & Michael Trusov & Randolph E. Bucklin, 2011. "Modeling Indirect Effects of Paid Search Advertising: Which Keywords Lead to More Future Visits?," Marketing Science, INFORMS, vol. 30(4), pages 646-665, July.
    264. Andrea Giusto & Jeremy Piger, 2013. "Nowcasting U.S. Business Cycle Turning Points with Vector Quantization," Working Papers daleconwp2013-02, Dalhousie University, Department of Economics.
    265. Pablo Montero-Manso & George Athanasopoulos & Rob J Hyndman & Thiyanga S Talagala, 2018. "FFORMA: Feature-based forecast model averaging," Monash Econometrics and Business Statistics Working Papers 19/18, Monash University, Department of Econometrics and Business Statistics.
    266. Bastos, João A., 2019. "Forecasting the capacity of mobile networks," MPRA Paper 92727, University Library of Munich, Germany.
    267. Aiolfi Marco & Capistrán Carlos & Timmermann Allan, 2010. "Forecast Combinations," Working Papers 2010-04, Banco de México.
    268. Pesaran, M. H. & Pick, A. & Timmermann, A., 2022. "Forecasting with panel data: estimation uncertainty versus parameter heterogeneity," Cambridge Working Papers in Economics 2219, Faculty of Economics, University of Cambridge.
    269. Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
    270. Constantin Burgi, 2015. "Can A Subset Of Forecasters Beat The Simple Average In The Spf?," Working Papers 2015-001, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    271. Massimo Guidolin, 2011. "Markov Switching Models in Empirical Finance," Working Papers 415, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    272. Davide De Gaetano, 2016. "Forecast Combinations For Realized Volatility In Presence Of Structural Breaks," Departmental Working Papers of Economics - University 'Roma Tre' 0208, Department of Economics - University Roma Tre.
    273. Knut Are Aastveit & Karsten R. Gerdrup & Anne Sofie Jore & Leif Anders Thorsrud, 2011. "Nowcasting GDP in real-time: A density combination approach," Working Paper 2011/11, Norges Bank.
    274. Alexandra Bozhechkova & Urmat Dzhunkeev, 2024. "CLARA and CARLSON: Combination of Ensemble and Neural Network Machine Learning Methods for GDP Forecasting," Russian Journal of Money and Finance, Bank of Russia, vol. 83(3), pages 45-69, September.
    275. Amisano, Gianni & Geweke, John, 2008. "Comparing and evaluating Bayesian predictive distributions of assets returns," Working Paper Series 969, European Central Bank.
    276. Cobb, Marcus P A, 2017. "Joint Forecast Combination of Macroeconomic Aggregates and Their Components," MPRA Paper 76556, University Library of Munich, Germany.
    277. Garratt, Anthony & Mitchell, James & Vahey, Shaun P., 2014. "Measuring output gap nowcast uncertainty," International Journal of Forecasting, Elsevier, vol. 30(2), pages 268-279.
    278. Zhu, Min, 2013. "Return distribution predictability and its implications for portfolio selection," International Review of Economics & Finance, Elsevier, vol. 27(C), pages 209-223.
    279. Schreiber, Sven, 2013. "Forecasting business-cycle turning points with (relatively large) linear systems in real time," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79709, Verein für Socialpolitik / German Economic Association.
    280. Emmanuel Paroissien, 2020. "Forecasting bulk prices of Bordeaux wines using leading indicators," Post-Print hal-02408202, HAL.
    281. Chuanhua Wei & Chenping Du & Nana Zheng, 2020. "A Changing Weights Spatial Forecast Combination Approach with an Application to Housing Price Prediction," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 12(4), pages 1-11, April.
    282. Jakob Fiedler & Josef Ruzicka & Thomas Theobald, 2019. "The Real-Time Information Content of Financial Stress and Bank Lending on European Business Cycles," IMK Working Paper 198-2019, IMK at the Hans Boeckler Foundation, Macroeconomic Policy Institute.
    283. Neil R. Ericsson, 2016. "Economic Forecasting in Theory and Practice : An Interview with David F. Hendry," International Finance Discussion Papers 1184, Board of Governors of the Federal Reserve System (U.S.).
    284. Markiewicz, Agnieszka & Pick, Andreas, 2014. "Adaptive learning and survey data," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PB), pages 685-707.
    285. Lyócsa, Štefan & Molnár, Peter & Todorova, Neda, 2017. "Volatility forecasting of non-ferrous metal futures: Covariances, covariates or combinations?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 51(C), pages 228-247.
    286. Gergely Akos Ganics, 2017. "Optimal density forecast combinations," Working Papers 1751, Banco de España.
    287. Jakub Nowotarski & Rafal Weron, 2016. "To combine or not to combine? Recent trends in electricity price forecasting," HSC Research Reports HSC/16/01, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    288. Bennedsen, Mikkel & Hillebrand, Eric & Koopman, Siem Jan, 2021. "Modeling, forecasting, and nowcasting U.S. CO2 emissions using many macroeconomic predictors," Energy Economics, Elsevier, vol. 96(C).
    289. Lv, Wendai & Qi, Jipeng, 2022. "Stock market return predictability: A combination forecast perspective," International Review of Financial Analysis, Elsevier, vol. 84(C).
    290. Andrew Hodge & Tim Robinson & Robyn Stuart, 2008. "A Small BVAR-DSGE Model for Forecasting the Australian Economy," RBA Research Discussion Papers rdp2008-04, Reserve Bank of Australia.
    291. Yin, Anwen, 2020. "Equity premium prediction and optimal portfolio decision with Bagging," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    292. Yasutomo Murasawa, 2020. "Measuring public inflation perceptions and expectations in the UK," Empirical Economics, Springer, vol. 59(1), pages 315-344, July.
    293. Andrew B. Martinez & Jennifer L. Castle & David F. Hendry, 2021. "Smooth Robust Multi-Horizon Forecasts," Economics Papers 2021-W01, Economics Group, Nuffield College, University of Oxford.
    294. Baumann, Ursel & Darracq Pariès, Matthieu & Westermann, Thomas & Riggi, Marianna & Bobeica, Elena & Meyler, Aidan & Böninghausen, Benjamin & Fritzer, Friedrich & Trezzi, Riccardo & Jonckheere, Jana & , 2021. "Inflation expectations and their role in Eurosystem forecasting," Occasional Paper Series 264, European Central Bank.
    295. Wei Qian & Craig A. Rolling & Gang Cheng & Yuhong Yang, 2015. "On the Forecast Combination Puzzle," Papers 1505.00475, arXiv.org.
    296. Groen, Jan J.J. & Kapetanios, George, 2016. "Revisiting useful approaches to data-rich macroeconomic forecasting," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 221-239.
    297. Raffaella Giacomini & Barbara Rossi, 2013. "Forecasting in macroeconomics," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 17, pages 381-408, Edward Elgar Publishing.
    298. Katarzyna Maciejowska & Bartosz Uniejewski & Tomasz Serafin, 2020. "PCA Forecast Averaging—Predicting Day-Ahead and Intraday Electricity Prices," Energies, MDPI, vol. 13(14), pages 1-19, July.
    299. Clements Michael P. & Hendry David F., 2008. "Economic Forecasting in a Changing World," Capitalism and Society, De Gruyter, vol. 3(2), pages 1-20, October.
    300. Colino, Evelyn V. & Irwin, Scott H. & Garcia, Philip, 2008. "How Much Can Outlook Forecasts be Improved? An Application to the U.S. Hog Market," 2008 Conference, April 21-22, 2008, St. Louis, Missouri 37620, NCCC-134 Conference on Applied Commodity Price Analysis, Forecasting, and Market Risk Management.
    301. an de Meulen, Philipp, 2015. "Das RWI-Kurzfristprognosemodell," RWI Konjunkturberichte, RWI - Leibniz-Institut für Wirtschaftsforschung, vol. 66(2), pages 25-46.
    302. Lessmann, Stefan & Sung, Ming-Chien & Johnson, Johnnie E.V. & Ma, Tiejun, 2012. "A new methodology for generating and combining statistical forecasting models to enhance competitive event prediction," European Journal of Operational Research, Elsevier, vol. 218(1), pages 163-174.
    303. Manner Hans, 2016. "Modeling and forecasting the outcomes of NBA basketball games," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 12(1), pages 31-41, March.
    304. Xue Gong & Weiguo Zhang & Weijun Xu & Zhe Li, 2022. "Uncertainty index and stock volatility prediction: evidence from international markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-44, December.
    305. Alexopoulos, Thomas A., 2017. "The growing importance of natural gas as a predictor for retail electricity prices in US," Energy, Elsevier, vol. 137(C), pages 219-233.
    306. Mihaela SIMIONESCU, 2014. "Improving The Inflation Rate Forecasts Of Romanian Experts Using A Fixed-Effects Models Approach," Review of Economic and Business Studies, Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, issue 13, pages 87-102, June.
    307. Radchenko, Peter & Vasnev, Andrey L. & Wang, Wendun, 2023. "Too similar to combine? On negative weights in forecast combination," International Journal of Forecasting, Elsevier, vol. 39(1), pages 18-38.
    308. Afees A. Salisu & Ibrahim D. Raheem & Umar B. Ndako, 2017. "A sectoral analysis of asymmetric nexus between oil and stock," Working Papers 033, Centre for Econometric and Allied Research, University of Ibadan.
    309. Pincheira, Pablo & Jarsun, Nabil, 2020. "Summary of the Paper Entitled: Forecasting Fuel Prices with the Chilean Exchange Rate," MPRA Paper 105056, University Library of Munich, Germany.
    310. Jennifer Castle & David Hendry, 2012. "Forecasting by factors, by variables, or both?," Economics Series Working Papers 600, University of Oxford, Department of Economics.
    311. Daniel Borup & David E. Rapach & Erik Christian Montes Schütte, 2021. "Now- and Backcasting Initial Claims with High-Dimensional Daily Internet Search-Volume Data," CREATES Research Papers 2021-02, Department of Economics and Business Economics, Aarhus University.
    312. Cheng, Gang & Yang, Yuhong, 2015. "Forecast combination with outlier protection," International Journal of Forecasting, Elsevier, vol. 31(2), pages 223-237.
    313. Ulrich Gunter, 2021. "Improving Hotel Room Demand Forecasts for Vienna across Hotel Classes and Forecast Horizons: Single Models and Combination Techniques Based on Encompassing Tests," Forecasting, MDPI, vol. 3(4), pages 1-36, November.
    314. Patton, Andrew J. & Sheppard, Kevin, 2009. "Optimal combinations of realised volatility estimators," International Journal of Forecasting, Elsevier, vol. 25(2), pages 218-238.
    315. Degiannakis, Stavros & Kiohos, Apostolos, 2014. "Multivariate modelling of 10-day-ahead VaR and dynamic correlation for worldwide real estate and stock indices," MPRA Paper 80438, University Library of Munich, Germany.
    316. Povilas Lastauskas & Julius Stakénas, 2019. "Does It Matter When Labor Market Reforms Are Implemented? The Role of the Monetary Policy Environment," CESifo Working Paper Series 7844, CESifo.
    317. Gianni Amisano & Andreas Beyer & Michele Lenza, 2010. "Enhancing monetary analysis," Research Bulletin, European Central Bank, vol. 11, pages 2-6.
    318. KOMINE Takao & BAN Kanemi & KAWAGOE Masaaki & YOSHIDA Hiroshi, 2009. "What Have We Learned from a Survey of Japanese Professional Forecasters? Taking Stock of Four Years of ESP Forecast Experience," ESRI Discussion paper series 214, Economic and Social Research Institute (ESRI).
    319. George Athanasopoulos & Rob J Hyndman & Nikolaos Kourentzes & Fotios Petropoulos, 2015. "Forecasting with Temporal Hierarchies," Monash Econometrics and Business Statistics Working Papers 16/15, Monash University, Department of Econometrics and Business Statistics.
    320. Samuels, Jon D. & Sekkel, Rodrigo M., 2017. "Model Confidence Sets and forecast combination," International Journal of Forecasting, Elsevier, vol. 33(1), pages 48-60.
    321. Davide De Gaetano, 2018. "Forecast Combinations in the Presence of Structural Breaks: Evidence from U.S. Equity Markets," Mathematics, MDPI, vol. 6(3), pages 1-19, March.
    322. Nystrup, Peter & Lindström, Erik & Møller, Jan K. & Madsen, Henrik, 2021. "Dimensionality reduction in forecasting with temporal hierarchies," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1127-1146.
    323. Lucchetti, Riccardo & Venetis, Ioannis A., 2020. "A replication of "A quasi-maximum likelihood approach for large, approximate dynamic factor models" (Review of Economics and Statistics, 2012)," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 14, pages 1-14.
    324. Li, Jiahan & Chen, Weiye, 2014. "Forecasting macroeconomic time series: LASSO-based approaches and their forecast combinations with dynamic factor models," International Journal of Forecasting, Elsevier, vol. 30(4), pages 996-1015.
    325. Chauvet, Marcelle & Potter, Simon, 2013. "Forecasting Output," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 141-194, Elsevier.
    326. Ghysels, Eric & Ball, Ryan & Zhou, Huan, 2014. "Can we Automate Earnings Forecasts and Beat Analysts?," CEPR Discussion Papers 10186, C.E.P.R. Discussion Papers.
    327. Roberto Casarin & Giulia Mantoan & Francesco Ravazzolo, 2016. "Bayesian Calibration of Generalized Pools of Predictive Distributions," Econometrics, MDPI, vol. 4(1), pages 1-24, March.
    328. Clements, Michael P., 2012. "Subjective and Ex Post Forecast Uncertainty: US Inflation and Output Growth," Economic Research Papers 270629, University of Warwick - Department of Economics.
    329. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    330. Caldeira, João F. & Moura, Guilherme V. & Santos, André A.P., 2016. "Predicting the yield curve using forecast combinations," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 79-98.
    331. Bayer, Sebastian, 2018. "Combining Value-at-Risk forecasts using penalized quantile regressions," Econometrics and Statistics, Elsevier, vol. 8(C), pages 56-77.
    332. Marcos Bujosa & Antonio García‐Ferrer & Aránzazu de Juan & Antonio Martín‐Arroyo, 2020. "Evaluating early warning and coincident indicators of business cycles using smooth trends," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(1), pages 1-17, January.
    333. Onur Ince & Tanya Molodtsova, 2013. "Real-Time Out-of-Sample Exchange Rate Predictability," Working Papers 13-03, Department of Economics, Appalachian State University.
    334. Gibbs, Christopher G. & Vasnev, Andrey L., 2024. "Conditionally optimal weights and forward-looking approaches to combining forecasts," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1734-1751.
    335. Tony Chernis & Rodrigo Sekkel, 2018. "Nowcasting Canadian Economic Activity in an Uncertain Environment," Discussion Papers 18-9, Bank of Canada.
    336. M. Hashem Pesaran & Andreas Pick, 2008. "Forecasting Random Walks Under Drift Instability," CESifo Working Paper Series 2293, CESifo.
    337. Kim, Hyun Hak & Swanson, Norman R., 2014. "Forecasting financial and macroeconomic variables using data reduction methods: New empirical evidence," Journal of Econometrics, Elsevier, vol. 178(P2), pages 352-367.
    338. Luis J. Álvarez & Isabel Sánchez, 2017. "A suite of inflation forecasting models," Occasional Papers 1703, Banco de España.
    339. Magnus, Jan & Vasnev, Andrey, 2021. "On the uncertainty of a combined forecast: The critical role of correlation," Working Papers BAWP-2022-01, University of Sydney Business School, Discipline of Business Analytics.
    340. Julia S. Mehlitz & Benjamin R. Auer, 2021. "Time‐varying dynamics of expected shortfall in commodity futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(6), pages 895-925, June.
    341. Souhaib Ben Taieb & James W. Taylor & Rob J. Hyndman, 2017. "Coherent Probabilistic Forecasts for Hierarchical Time Series," Monash Econometrics and Business Statistics Working Papers 3/17, Monash University, Department of Econometrics and Business Statistics.
    342. Moral-Benito, Enrique, 2010. "Model averaging in economics," MPRA Paper 26047, University Library of Munich, Germany.
    343. Kihwan Kim & Hyun Hak Kim & Norman R. Swanson, 2023. "Mixing mixed frequency and diffusion indices in good times and in bad: an assessment based on historical data around the great recession of 2008," Empirical Economics, Springer, vol. 64(3), pages 1421-1469, March.
    344. In Choi & Seong Jin Hwang, 2012. "Forecasting Korean inflation," Working Papers 1202, Nam Duck-Woo Economic Research Institute, Sogang University (Former Research Institute for Market Economy).
    345. Valeri Voev, 2009. "On the Economic Evaluation of Volatility Forecasts," CREATES Research Papers 2009-56, Department of Economics and Business Economics, Aarhus University.
    346. Pierre L. Siklos, 2016. "Forecast Disagreement and the Inflation Outlook: New International Evidence," IMES Discussion Paper Series 16-E-03, Institute for Monetary and Economic Studies, Bank of Japan.
    347. Degiannakis, Stavros & Filis, George, 2016. "Forecasting oil price realized volatility: A new approach," MPRA Paper 69105, University Library of Munich, Germany.
    348. George Kapetanios & Fotis Papailias, 2018. "Big Data & Macroeconomic Nowcasting: Methodological Review," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2018-12, Economic Statistics Centre of Excellence (ESCoE).
    349. Constantin Bürgi & Tara M. Sinclair, 2015. "A Nonparametric Approach to Identifying a Subset of Forecasters that Outperforms the Simple Average," Working Papers 2015-006, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    350. Yu-chin Chen & Kenneth Rogoff, 2006. "Are the Commodity Currencies an Exception to the Rule?," Working Papers UWEC-2006-28, University of Washington, Department of Economics, revised Mar 2012.
    351. Conrad, Christian, 2017. "When does information on forecast variance improve the performance of a combined forecast?," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168200, Verein für Socialpolitik / German Economic Association.
    352. J. Lara‐Rubio & A. Blanco‐Oliver & R. Pino‐Mejías, 2017. "Promoting Entrepreneurship at the Base of the Social Pyramid via Pricing Systems: A case Study," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 24(1), pages 12-28, January.
    353. Costantini, Mauro & Gunter, Ulrich & Kunst, Robert M., 2014. "Forecast combinations in a DSGE-VAR lab," Economics Series 309, Institute for Advanced Studies.
    354. Bin Chen & Kenwin Maung, 2020. "Time-varying Forecast Combination for High-Dimensional Data," Papers 2010.10435, arXiv.org.
    355. Raul Ibarra & Luis M. Gomez-Zamudio, 2017. "Are Daily Financial Data Useful for Forecasting GDP? Evidence from Mexico," Economía Journal, The Latin American and Caribbean Economic Association - LACEA, vol. 0(Spring 20), pages 173-203, April.
    356. Weronika Nitka & Rafał Weron, 2023. "Combining predictive distributions of electricity prices. Does minimizing the CRPS lead to optimal decisions in day-ahead bidding?," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 33(3), pages 105-118.
    357. Lehmann Robert & Wohlrabe Klaus, 2015. "Forecasting GDP at the Regional Level with Many Predictors," German Economic Review, De Gruyter, vol. 16(2), pages 226-254, May.
    358. Tao Hong & Katarzyna Maciejowska & Jakub Nowotarski & Rafal Weron, 2014. "Probabilistic load forecasting via Quantile Regression Averaging of independent expert forecasts," HSC Research Reports HSC/14/10, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    359. Andreini, Paolo & Hasenzagl, Thomas & Reichlin, Lucrezia & Senftleben-König, Charlotte & Strohsal, Till, 2023. "Nowcasting German GDP: Foreign factors, financial markets, and model averaging," International Journal of Forecasting, Elsevier, vol. 39(1), pages 298-313.
    360. Kuang, P. & Schröder, M. & Wang, Q., 2014. "Illusory profitability of technical analysis in emerging foreign exchange markets," International Journal of Forecasting, Elsevier, vol. 30(2), pages 192-205.
    361. Jing Zeng, 2015. "Combining Country-Specific Forecasts when Forecasting Euro Area Macroeconomic Aggregates," Working Paper Series of the Department of Economics, University of Konstanz 2015-11, Department of Economics, University of Konstanz.
    362. Clements, Adam & Vasnev, Andrey, 2021. "Forecast combination puzzle in the HAR model," Working Papers BAWP-2021-01, University of Sydney Business School, Discipline of Business Analytics.
    363. Schreiber, Sven & Soldatenkova, Natalia, 2016. "Anticipating business-cycle turning points in real time using density forecasts from a VAR," Journal of Macroeconomics, Elsevier, vol. 47(PB), pages 166-187.
    364. Zhao, Xin & Han, Meng & Ding, Lili & Kang, Wanglin, 2018. "Usefulness of economic and energy data at different frequencies for carbon price forecasting in the EU ETS," Applied Energy, Elsevier, vol. 216(C), pages 132-141.
    365. Fuentes, Julieta & Poncela, Pilar & Rodríguez, Julio, 2014. "Selecting and combining experts from survey forecasts," DES - Working Papers. Statistics and Econometrics. WS ws140905, Universidad Carlos III de Madrid. Departamento de Estadística.
    366. Fabian Krüger, 2017. "Survey-based forecast distributions for Euro Area growth and inflation: ensembles versus histograms," Empirical Economics, Springer, vol. 53(1), pages 235-246, August.
    367. Kei Kawakami, 2008. "Forecast Selection by Conditional Predictive Ability Tests: An Application to the Yen/Dollar Exchange Rate," Bank of Japan Working Paper Series 08-E-1, Bank of Japan.
    368. Chan, Felix & Pauwels, Laurent L., 2018. "Some theoretical results on forecast combinations," International Journal of Forecasting, Elsevier, vol. 34(1), pages 64-74.
    369. Lu, Xinjie & Ma, Feng & Xu, Jin & Zhang, Zehui, 2022. "Oil futures volatility predictability: New evidence based on machine learning models11All the authors contribute to the paper equally," International Review of Financial Analysis, Elsevier, vol. 83(C).
    370. Macias, Paweł & Stelmasiak, Damian & Szafranek, Karol, 2023. "Nowcasting food inflation with a massive amount of online prices," International Journal of Forecasting, Elsevier, vol. 39(2), pages 809-826.
    371. Andrew Detzel & Hong Liu & Jack Strauss & Guofu Zhou & Yingzi Zhu, 2021. "Learning and predictability via technical analysis: Evidence from bitcoin and stocks with hard‐to‐value fundamentals," Financial Management, Financial Management Association International, vol. 50(1), pages 107-137, March.
    372. Pablo Guerróon‐Quintana & Molin Zhong, 2023. "Macroeconomic forecasting in times of crises," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(3), pages 295-320, April.
    373. Clements, Michael P. & Galvão, Ana Beatriz, 2009. "First Announcements and Real Economic Activity," The Warwick Economics Research Paper Series (TWERPS) 885, University of Warwick, Department of Economics.
    374. Mehmet Pinar & Thanasis Stengos & M. Ege Yazgan, 2012. "Is there an Optimal Forecast Combination? A Stochastic Dominance Approach to Forecast Combination Puzzle," Working Paper series 17_12, Rimini Centre for Economic Analysis.
    375. Funk, Christoph, 2018. "Forecasting the real price of oil - Time-variation and forecast combination," Energy Economics, Elsevier, vol. 76(C), pages 288-302.
    376. Hollstein, Fabian & Prokopczuk, Marcel & Wese Simen, Chardin, 2017. "How to Estimate Beta?," Hannover Economic Papers (HEP) dp-617, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    377. Peter Christoffersen & Kris Jacobs & Bo Young Chang, 2011. "Forecasting with Option Implied Information," CREATES Research Papers 2011-46, Department of Economics and Business Economics, Aarhus University.
    378. Filipa Fernandes & Charalampos Stasinakis & Zivile Zekaite, 2019. "Forecasting government bond spreads with heuristic models: evidence from the Eurozone periphery," Annals of Operations Research, Springer, vol. 282(1), pages 87-118, November.
    379. Graham Elliott, 2017. "Forecast combination when outcomes are difficult to predict," Empirical Economics, Springer, vol. 53(1), pages 7-20, August.
    380. Laleh Parviz & Kabir Rasouli & Ali Torabi Haghighi, 2023. "Improving Hybrid Models for Precipitation Forecasting by Combining Nonlinear Machine Learning Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(10), pages 3833-3855, August.
    381. Timo Dimitriadis & Julie Schnaitmann, 2019. "Forecast Encompassing Tests for the Expected Shortfall," Papers 1908.04569, arXiv.org, revised Aug 2020.
    382. Ma, Feng & Wahab, M.I.M. & Zhang, Yaojie, 2019. "Forecasting the U.S. stock volatility: An aligned jump index from G7 stock markets," Pacific-Basin Finance Journal, Elsevier, vol. 54(C), pages 132-146.
    383. Oscar Claveria & Enric Monte & Salvador Torra, 2019. "Empirical modelling of survey-based expectations for the design of economic indicators in five European regions," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 46(2), pages 205-227, May.
    384. Wan, Runqing & Fulop, Andras & Li, Junye, 2022. "Real-time Bayesian learning and bond return predictability," Journal of Econometrics, Elsevier, vol. 230(1), pages 114-130.
    385. S. David Wu & Karl G. Kempf & Mehmet O. Atan & Berrin Aytac & Shamin A. Shirodkar & Asima Mishra, 2010. "Improving New-Product Forecasting at Intel Corporation," Interfaces, INFORMS, vol. 40(5), pages 385-396, October.
    386. Lima, Luiz Renato Regis de Oliveira & Issler, João Victor, 2007. "A panel data approach to economic forecasting: the bias-corrected average forecast," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 650, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    387. Leif Anders Thorsrud, 2016. "Nowcasting using news topics. Big Data versus big bank," Working Paper 2016/20, Norges Bank.
    388. Jiang, Fuwei & Lee, Joshua & Martin, Xiumin & Zhou, Guofu, 2019. "Manager sentiment and stock returns," Journal of Financial Economics, Elsevier, vol. 132(1), pages 126-149.
    389. Knut Are Aastveit & Francesco Ravazzolo & Herman K. van Dijk, 2018. "Combined Density Nowcasting in an Uncertain Economic Environment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 131-145, January.
    390. Xu Cheng & Bruce E. Hansen, 2012. "Forecasting with Factor-Augmented Regression: A Frequentist Model Averaging Approach, Second Version," PIER Working Paper Archive 13-061, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 03 Sep 2013.
    391. Davide De Gaetano, 2017. "Forecasting With Garch Models Under Structural Breaks: An Approach Based On Combinations Across Estimation Windows," Departmental Working Papers of Economics - University 'Roma Tre' 0219, Department of Economics - University Roma Tre.
    392. David Happersberger & Harald Lohre & Ingmar Nolte, 2020. "Estimating portfolio risk for tail risk protection strategies," European Financial Management, European Financial Management Association, vol. 26(4), pages 1107-1146, September.
    393. Florian Peters & Simas Kucinskas, 2018. "Measuring Biases in Expectation Formation," Tinbergen Institute Discussion Papers 18-058/IV, Tinbergen Institute.
    394. Karsten R. Gerdrup & Anne Sofie Jore & Christie Smith & Leif Anders Thorsrud, 2009. "Evaluating ensemble density combination - forecasting GDP and inflation," Working Paper 2009/19, Norges Bank.
    395. Jon Ellingsen & Vegard H. Larsen & Leif Anders Thorsrud, 2022. "News media versus FRED‐MD for macroeconomic forecasting," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(1), pages 63-81, January.
    396. Yoonseok Lee & Donggyu Sul, 2021. "Depth-Weighted Forecast Combination: Application to COVID-19 Cases," Center for Policy Research Working Papers 238, Center for Policy Research, Maxwell School, Syracuse University.
    397. Galvão, Ana Beatriz & Garratt, Anthony & Mitchell, James, 2021. "Does judgment improve macroeconomic density forecasts?," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1247-1260.
    398. Grant, Andrew & Johnstone, David, 2010. "Finding profitable forecast combinations using probability scoring rules," International Journal of Forecasting, Elsevier, vol. 26(3), pages 498-510, July.
    399. Anthony Garratt & James Mitchell & Shaun P. Vahey & Elizabeth C. Wakerly, 2010. "Real-time Inflation Forecast Densities from Ensemble Phillips Curves," CAMA Working Papers 2010-34, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    400. Dean Croushore, 2010. "Philadelphia Fed forecasting surveys: their value for research," Business Review, Federal Reserve Bank of Philadelphia, issue Q3, pages 1-11.
    401. Simionescu, Mihaela, 2014. "Bayesian Forecasts Combination To Improve The Romanian Inflation Predictions Based On Econometric Models," UTMS Journal of Economics, University of Tourism and Management, Skopje, Macedonia, vol. 5(2), pages 131-140.
    402. Lyócsa, Štefan & Todorova, Neda & Výrost, Tomáš, 2021. "Predicting risk in energy markets: Low-frequency data still matter," Applied Energy, Elsevier, vol. 282(PA).
    403. Soybilgen, Barış & Yazgan, Ege, 2018. "Evaluating nowcasts of bridge equations with advanced combination schemes for the Turkish unemployment rate," Economic Modelling, Elsevier, vol. 72(C), pages 99-108.
    404. M. Chudý & S. Karmakar & W. B. Wu, 2020. "Long-term prediction intervals of economic time series," Empirical Economics, Springer, vol. 58(1), pages 191-222, January.
    405. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01442618, HAL.
    406. Elena Andreou & Eric Ghysels & Constantinos Kourouyiannis, 2012. "Robust volatility forecasts in the presence of structural breaks," University of Cyprus Working Papers in Economics 08-2012, University of Cyprus Department of Economics.
    407. Irwin, Scott H. & Good, Darrel L., 2010. "Alternative 2010 Corn Production Scenarios and Policy Implications," Marketing and Outlook Briefs 183524, University of Illinois at Urbana-Champaign, Department of Agricultural and Consumer Economics.
    408. Issler, João Victor & Rodrigues, Claudia & Burjack, Rafael, 2014. "Using common features to understand the behavior of metal-commodity prices and forecast them at different horizons," Journal of International Money and Finance, Elsevier, vol. 42(C), pages 310-335.
    409. Laurynas Narusevicius & Tomas Ramanauskas & Laura Gudauskaitė & Tomas Reichenbachas, 2019. "Lithuanian house price index: modelling and forecasting," Bank of Lithuania Occasional Paper Series 28, Bank of Lithuania.
    410. Elliott, Graham & Gargano, Antonio & Timmermann, Allan, 2015. "Complete subset regressions with large-dimensional sets of predictors," Journal of Economic Dynamics and Control, Elsevier, vol. 54(C), pages 86-110.
    411. Terasvirta, Timo, 2006. "Forecasting economic variables with nonlinear models," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 8, pages 413-457, Elsevier.
    412. Lin, Hai & Tao, Xinyuan & Wu, Chunchi, 2022. "Forecasting earnings with combination of analyst forecasts," Journal of Empirical Finance, Elsevier, vol. 68(C), pages 133-159.
    413. Clements, Michael P. & Kim, Jae H., 2007. "Bootstrap prediction intervals for autoregressive time series," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3580-3594, April.
    414. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    415. Dbouk, Wassim & Jamali, Ibrahim, 2018. "Predicting daily oil prices: Linear and non-linear models," Research in International Business and Finance, Elsevier, vol. 46(C), pages 149-165.
    416. Dahlquist, Magnus & Hasseltoft, Henrik, 2020. "Economic momentum and currency returns," Journal of Financial Economics, Elsevier, vol. 136(1), pages 152-167.
    417. Zhentao Shi & Liangjun Su & Tian Xie, 2020. "L2-Relaxation: With Applications to Forecast Combination and Portfolio Analysis," Papers 2010.09477, arXiv.org, revised Aug 2022.
    418. Eriksen, Jonas N., 2017. "Expected Business Conditions and Bond Risk Premia," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 52(4), pages 1667-1703, August.
    419. Jakub Nowotarski & Rafał Weron, 2015. "Computing electricity spot price prediction intervals using quantile regression and forecast averaging," Computational Statistics, Springer, vol. 30(3), pages 791-803, September.
    420. Philippe Goulet Coulombe, 2020. "To Bag is to Prune," Papers 2008.07063, arXiv.org, revised Sep 2024.
    421. Till Weigt & Bernd Wilfling, 2018. "An approach to increasing forecast-combination accuracy through VAR error modeling," CQE Working Papers 6818, Center for Quantitative Economics (CQE), University of Muenster.
    422. Tomáš Jeřábek & Radka Šperková, 2015. "A Predictive Likelihood Approach to Bayesian Averaging," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 63(4), pages 1269-1276.
    423. Joseph P & Romano & Azeem M. Shaikh & Michael Wolf, 2005. "Formalized Data Snooping Based on Generalized Error Rates," IEW - Working Papers 259, Institute for Empirical Research in Economics - University of Zurich.
    424. Gaglianone, Wagner Piazza & Issler, João Victor, 2019. "Microfounded forecasting," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 813, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    425. Brown, Sarah & Harris, Mark N. & Spencer, Christopher & Taylor, Karl, 2020. "Financial Expectations and Household Consumption: Does Middle Inflation Matter?," IZA Discussion Papers 13023, Institute of Labor Economics (IZA).
    426. Magnus, Jan R. & Vasnev, Andrey L., 2015. "Interpretation and use of sensitivity in econometrics, illustrated with forecast combinations," International Journal of Forecasting, Elsevier, vol. 31(3), pages 769-781.
    427. Barrow, Devon K., 2016. "Forecasting intraday call arrivals using the seasonal moving average method," Journal of Business Research, Elsevier, vol. 69(12), pages 6088-6096.
    428. Timmermann, Allan, 2008. "Elusive return predictability," International Journal of Forecasting, Elsevier, vol. 24(1), pages 1-18.
    429. Angelo Mont’Alverne Duarte & Wagner Piazza Gaglianone & Osmani Teixeira de Carvalho Guillén & João Victor Issler, 2020. "Commodity Prices and Global Economic Activity: a derived-demand approach," Working Papers Series 539, Central Bank of Brazil, Research Department.
    430. Mihaela Bratu (Simionescu), 2012. "Improving the accuracy of consensus forecasts for the EURO area," Review of Applied Socio-Economic Research, Pro Global Science Association, vol. 4(2), pages 11-15, Decembre.
    431. Prasad S Bhattacharya & Dimitrios D Thomakos, 2011. "Improving forecasting performance by window and model averaging," CAMA Working Papers 2011-05, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    432. Honghai Yu & Xianfeng Hao & Liangyu Wu & Yuqi Zhao & Yudong Wang, 2023. "Eye in outer space: satellite imageries of container ports can predict world stock returns," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-16, December.
    433. Hamid Baghestani & Cassia Marchon, 2015. "On the accuracy of private forecasts of inflation and growth in Brazil," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 39(2), pages 370-381, April.
    434. Michael P. Clements & Ana Beatriz Galvão, 2007. "Macroeconomic Forecasting with Mixed Frequency Data: Forecasting US Output Growth," Working Papers 616, Queen Mary University of London, School of Economics and Finance.
    435. Manganelli, Simone, 2021. "Statistical decision functions with judgment," Working Paper Series 2512, European Central Bank.
    436. David Hendry & Michael P. Clements, 2010. "Forecasting from Mis-specified Models in the Presence of Unanticipated Location Shifts," Economics Series Working Papers 484, University of Oxford, Department of Economics.
    437. Chiarella, Carl & He, Xue-Zhong & Zwinkels, Remco C.J., 2014. "Heterogeneous expectations in asset pricing: Empirical evidence from the S&P500," Journal of Economic Behavior & Organization, Elsevier, vol. 105(C), pages 1-16.
    438. Clements, Michael P. & Harvey, David I., 2011. "Combining probability forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 208-223, April.
    439. Shaun P Vahey & Elizabeth C Wakerly, 2013. "Moving towards probability forecasting," BIS Papers chapters, in: Bank for International Settlements (ed.), Globalisation and inflation dynamics in Asia and the Pacific, volume 70, pages 3-8, Bank for International Settlements.
    440. William A. Brock & Steven N. Durlauf, 2015. "On Sturdy Policy Evaluation," The Journal of Legal Studies, University of Chicago Press, vol. 44(S2), pages 447-473.
    441. Kang, Yanfei & Spiliotis, Evangelos & Petropoulos, Fotios & Athiniotis, Nikolaos & Li, Feng & Assimakopoulos, Vassilios, 2021. "Déjà vu: A data-centric forecasting approach through time series cross-similarity," Journal of Business Research, Elsevier, vol. 132(C), pages 719-731.
    442. Andrea Fronzetti Colladon & Stefano Grassi & Francesco Ravazzolo & Francesco Violante, 2021. "Forecasting financial markets with semantic network analysis in the COVID—19 crisis," Working Papers 2021-06, Center for Research in Economics and Statistics.
    443. Bluhm, Benjamin & Cutura, Jannic, 2020. "Econometrics at scale: Spark up big data in economics," SAFE Working Paper Series 266, Leibniz Institute for Financial Research SAFE.
    444. Drechsel, Katja & Scheufele, Rolf, 2010. "Should We Trust in Leading Indicators? Evidence from the Recent Recession," IWH Discussion Papers 10/2010, Halle Institute for Economic Research (IWH).
    445. Magnus, J.R. & Wang, W. & Zhang, Xinyu, 2012. "WALS Prediction," Discussion Paper 2012-043, Tilburg University, Center for Economic Research.
    446. Heijmans, Roweno J.R.K. & Gerlagh, Reyer, 2019. "Regulating Global Externalities," Discussion Paper 2019-001, Tilburg University, Center for Economic Research.
    447. Christopher Gibbs, 2015. "Forecast Combination, Non-linear Dynamics, and the Macroeconomy," Discussion Papers 2015-05, School of Economics, The University of New South Wales.
    448. Paulo Rodrigues & Nazarii Salish, 2015. "Modeling and forecasting interval time series with threshold models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(1), pages 41-57, March.
    449. Haskamp, Ulrich, 2017. "Improving the forecasts of European regional banks' profitability with machine learning algorithms," Ruhr Economic Papers 705, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    450. Zhao, Albert Bo & Cheng, Tingting, 2022. "Stock return prediction: Stacking a variety of models," Journal of Empirical Finance, Elsevier, vol. 67(C), pages 288-317.
    451. Edward C. Malthouse & Wei-Lin Wang & Bobby J. Calder & Tom Collinger, 2019. "Process control for monitoring customer engagement," Journal of Marketing Analytics, Palgrave Macmillan, vol. 7(2), pages 54-63, June.
    452. Andrea Monticini & Francesco Ravazzolo, 2014. "Forecasting the intraday market price of money," DISCE - Working Papers del Dipartimento di Economia e Finanza def010, Università Cattolica del Sacro Cuore, Dipartimenti e Istituti di Scienze Economiche (DISCE).
    453. Aye, Goodness C. & Balcilar, Mehmet & Gupta, Rangan & Majumdar, Anandamayee, 2015. "Forecasting aggregate retail sales: The case of South Africa," International Journal of Production Economics, Elsevier, vol. 160(C), pages 66-79.
    454. Till Weigt & Bernd Wilfling, 2016. "A new combination approach to reducing forecast errors with an application to volatility forecasting," CQE Working Papers 4616, Center for Quantitative Economics (CQE), University of Muenster.
    455. Jakub Nowotarski & Rafal Weron, 2014. "Merging quantile regression with forecast averaging to obtain more accurate interval forecasts of Nord Pool spot prices," HSC Research Reports HSC/14/03, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    456. Schumacher, Christian & Marcellino, Massimiliano & Kuzin, Vladimir, 2009. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the Euro Area," CEPR Discussion Papers 7445, C.E.P.R. Discussion Papers.
    457. Keith Sill, 2014. "Forecast disagreement in the Survey of Professional Forecasters," Business Review, Federal Reserve Bank of Philadelphia, issue Q2, pages 15-24.
    458. Anne Opschoor & Dick van Dijk & Michel van der Wel, 2014. "Improving Density Forecasts and Value-at-Risk Estimates by Combining Densities," Tinbergen Institute Discussion Papers 14-090/III, Tinbergen Institute.
    459. Constantin Burgi, 2016. "What Do We Lose When We Average Expectations?," Working Papers 2016-013, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    460. Marcus P. A. Cobb, 2020. "Aggregate density forecasting from disaggregate components using Bayesian VARs," Empirical Economics, Springer, vol. 58(1), pages 287-312, January.
    461. Christopher G. Gibbs & Mariano Kulish, 2015. "Disinflations in a model of imperfectly anchored expectations," CAMA Working Papers 2015-36, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    462. Jiang, George J. & Tian, Yisong S., 2010. "Forecasting Volatility Using Long Memory and Comovements: An Application to Option Valuation under SFAS 123R," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 45(2), pages 503-533, April.
    463. Carlos Trucíos & James W. Taylor, 2023. "A comparison of methods for forecasting value at risk and expected shortfall of cryptocurrencies," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 989-1007, July.
    464. Pirschel, Inske & Wolters, Maik, 2014. "Forecasting German key macroeconomic variables using large dataset methods," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100587, Verein für Socialpolitik / German Economic Association.
    465. Jiang, Yu & Guo, Yongji & Zhang, Yihao, 2017. "Forecasting China's GDP growth using dynamic factors and mixed-frequency data," Economic Modelling, Elsevier, vol. 66(C), pages 132-138.
    466. Park, Jin Suk & Newaz, Mohammad Khaleq, 2021. "Liquidity and short-run predictability: Evidence from international stock markets," Global Finance Journal, Elsevier, vol. 50(C).
    467. Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2014. "On the Rise of Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 14-085/III, Tinbergen Institute, revised 04 Sep 2014.
    468. Qing Zhou & Robert Faff, 2017. "The complementary role of cross-sectional and time-series information in forecasting stock returns," Australian Journal of Management, Australian School of Business, vol. 42(1), pages 113-139, February.
    469. Nicoletta Pashourtidou & Christos Papamichael & Charalampos Karagiannakis, 2018. "Forecasting economic activity in sectors of the Cypriot economy," Cyprus Economic Policy Review, University of Cyprus, Economics Research Centre, vol. 12(2), pages 24-66, December.
    470. Esteban Fernández-Vázquez & Blanca Moreno, 2017. "Entropy Econometrics for combining regional economic forecasts: A Data-Weighted Prior Estimator," Journal of Geographical Systems, Springer, vol. 19(4), pages 349-370, October.
    471. Martin Scheicher, 2010. "“Return-free risk”? Market pricing in credit risk markets," Research Bulletin, European Central Bank, vol. 11, pages 7-8.
    472. David G. McMillan & Mark E. Wohar, 2010. "Stock return predictability and dividend-price ratio: a nonlinear approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 15(4), pages 351-365.
    473. Carlos Medel, 2015. "Inflation Dynamics and the Hybrid Neo Keynesian Phillips Curve: The Case of Chile," Working Papers Central Bank of Chile 769, Central Bank of Chile.
    474. Rafal Weron, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," HSC Research Reports HSC/14/07, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    475. Andrew Ang & Geert Bekaert & Min Wei, 2005. "Do Macro Variables, Asset Markets or Surveys Forecast Inflation Better?," NBER Working Papers 11538, National Bureau of Economic Research, Inc.
    476. Dennis Kant & Andreas Pick & Jasper de Winter, 2022. "Nowcasting GDP using machine learning methods," Working Papers 754, DNB.
    477. Naresh Bansal & Jack Strauss & Alireza Nasseh, 2015. "Can we consistently forecast a firm’s earnings? Using combination forecast methods to predict the EPS of Dow firms," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 39(1), pages 1-22, January.
    478. Likun Lei & Yaojie Zhang & Yu Wei & Yi Zhang, 2021. "Forecasting the volatility of Chinese stock market: An international volatility index," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 1336-1350, January.
    479. Ilias Tsiakas & Jiahan Li & Haibin Zhang, 2020. "Equity Premium Prediction and the State of the Economy," Working Paper series 20-16, Rimini Centre for Economic Analysis.
    480. Nikolay Robinzonov & Klaus Wohlrabe, 2010. "Freedom of Choice in Macroeconomic Forecasting ," CESifo Economic Studies, CESifo Group, vol. 56(2), pages 192-220, June.
    481. Hasumi, Ryo & Iiboshi, Hirokuni & Matsumae, Tatsuyoshi & Nakamura, Daisuke, 2019. "Does a financial accelerator improve forecasts during financial crises? Evidence from Japan with prediction-pooling methods," Journal of Asian Economics, Elsevier, vol. 60(C), pages 45-68.
    482. Elena Ganón & Ina Tiscordio, 2007. "Un análisis de variables fiscales del Gobierno Central del Uruguay para el período 1989-2006," Documentos de trabajo 2007005, Banco Central del Uruguay.
    483. Vincenzo Candila & Oguzhan Cepni & Giampiero M. Gallo & Rangan Gupta, 2024. "Influence of Local and Global Economic Policy Uncertainty on the Volatility of US State-Level Equity Returns: Evidence from a GARCH-MIDAS Approach with Shrinkage and Cluster Analysis," Working Papers 202437, University of Pretoria, Department of Economics.
    484. Medel, Carlos A., 2015. "Forecasting Inflation with the Hybrid New Keynesian Phillips Curve: A Compact-Scale Global VAR Approach," MPRA Paper 67081, University Library of Munich, Germany.
    485. Chan, Felix & Pauwels, Laurent, 2019. "Equivalence of optimal forecast combinations under affine constraints," Working Papers BAWP-2019-02, University of Sydney Business School, Discipline of Business Analytics.
    486. Götz, Thomas B. & Hecq, Alain & Urbain, Jean-Pierre, 2016. "Combining forecasts from successive data vintages: An application to U.S. growth," International Journal of Forecasting, Elsevier, vol. 32(1), pages 61-74.
    487. Jeronymo Marcondes Pinto & Jennifer L. Castle, 2022. "Machine Learning Dynamic Switching Approach to Forecasting in the Presence of Structural Breaks," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 18(2), pages 129-157, July.
    488. Tony Chernis & Taylor Webley, 2022. "Nowcasting Canadian GDP with Density Combinations," Discussion Papers 2022-12, Bank of Canada.
    489. G. Kenny, 2014. "Comment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(4), pages 500-504, October.
    490. Pilar Poncela & Eva Senra, 2017. "Measuring uncertainty and assessing its predictive power in the euro area," Empirical Economics, Springer, vol. 53(1), pages 165-182, August.
    491. Kouwenberg, Roy & Markiewicz, Agnieszka & Verhoeks, Ralph & Zwinkels, Remco C. J., 2017. "Model Uncertainty and Exchange Rate Forecasting," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 52(1), pages 341-363, February.
    492. Boragan Aruoba & Francis X. Diebold & Jeremy Nalewaik & Frank Schorfheide & Dongho Song, 2011. "Improving GDP Measurement: A Forecast Combination Perspective," PIER Working Paper Archive 11-028, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    493. Marijn A. Bolhuis & Brett Rayner, 2020. "Deus ex Machina? A Framework for Macro Forecasting with Machine Learning," IMF Working Papers 2020/045, International Monetary Fund.
    494. Theodosiou, Marina, 2011. "Forecasting monthly and quarterly time series using STL decomposition," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1178-1195, October.
    495. David E. Rapach & Jack K. Strauss, 2007. "Forecasting real housing price growth in the Eighth District states," Regional Economic Development, Federal Reserve Bank of St. Louis, issue Nov, pages 33-42.
    496. Rapach, David E. & Strauss, Jack K., 2009. "Differences in housing price forecastability across US states," International Journal of Forecasting, Elsevier, vol. 25(2), pages 351-372.
    497. Roccazzella, Francesco & Candelon, Bertrand, 2022. "Should we care about ECB inflation expectations?," LIDAM Discussion Papers LFIN 2022004, Université catholique de Louvain, Louvain Finance (LFIN).
    498. Vitor Azevedo & Georg Sebastian Kaiser & Sebastian Mueller, 2023. "Stock market anomalies and machine learning across the globe," Journal of Asset Management, Palgrave Macmillan, vol. 24(5), pages 419-441, September.
    499. Ina Nurmalia Kurniati, 2015. "Forecasting Growth Of Third Party Funds," Working Papers WP/10/2015, Bank Indonesia.
    500. Norman R. Swanson & Weiqi Xiong & Xiye Yang, 2020. "Predicting interest rates using shrinkage methods, real‐time diffusion indexes, and model combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(5), pages 587-613, August.
    501. Konstantin Kuck & Karsten Schweikert, 2021. "Forecasting Baden‐Württemberg's GDP growth: MIDAS regressions versus dynamic mixed‐frequency factor models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 861-882, August.
    502. Wagner Piazza Gaglianone & João Victor Issler & Silvia Maria Matos, 2017. "Applying a microfounded-forecasting approach to predict Brazilian inflation," Empirical Economics, Springer, vol. 53(1), pages 137-163, August.
    503. Martin Feldkircher & Nico Hauzenberger, 2019. "How useful are time-varying parameter models for forecasting economic growth in CESEE?," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), issue Q1/19, pages 29-48.
    504. Baltagi, Badi H., 2013. "Panel Data Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 995-1024, Elsevier.
    505. Hai Lin & Chunchi Wu & Guofu Zhou, 2018. "Forecasting Corporate Bond Returns with a Large Set of Predictors: An Iterated Combination Approach," Management Science, INFORMS, vol. 64(9), pages 4218-4238, September.
    506. Heinisch, Katja, 2016. "A real-time analysis on the importance of hard and soft data for nowcasting German GDP," VfS Annual Conference 2016 (Augsburg): Demographic Change 145864, Verein für Socialpolitik / German Economic Association.
    507. Tara M. Sinclair, 2012. "Forecasting Data Vintages," Working Papers 2012-001, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    508. Dr. James Mitchell, 2009. "Measuring Output Gap Uncertainty," National Institute of Economic and Social Research (NIESR) Discussion Papers 342, National Institute of Economic and Social Research.
    509. Monica Billio & Roberto Casarin & Francesco Ravazzolo & Herman K. van Dijk, 2011. "Combining Predictive Densities using Nonlinear Filtering with Applications to US Economics Data," Tinbergen Institute Discussion Papers 11-172/4, Tinbergen Institute.
    510. Gunter, Ulrich & Önder, Irem, 2016. "Forecasting city arrivals with Google Analytics," Annals of Tourism Research, Elsevier, vol. 61(C), pages 199-212.
    511. Klaus Wohlrabe, 2009. "Makroökonomische Prognosen mit gemischten Frequenzen," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 62(21), pages 22-33, November.
    512. Zongwu Cai & Gunawan, 2023. "A Combination Forecast for Nonparametric Models with Structural Breaks," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202310, University of Kansas, Department of Economics, revised Sep 2023.
    513. Michael P Clements & Ana Beatriz Galvao, 2017. "Data Revisions and Real-time Probabilistic Forecasting of Macroeconomic Variables," ICMA Centre Discussion Papers in Finance icma-dp2017-01, Henley Business School, University of Reading.
    514. Chiang, I-Hsuan Ethan & Liao, Yin & Zhou, Qing, 2021. "Modeling the cross-section of stock returns using sensible models in a model pool," Journal of Empirical Finance, Elsevier, vol. 60(C), pages 56-73.
    515. Filippo Massari, 2021. "Price probabilities: a class of Bayesian and non-Bayesian prediction rules," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 72(1), pages 133-166, July.
    516. Simon Lineu Umbach, 2020. "Forecasting with supervised factor models," Empirical Economics, Springer, vol. 58(1), pages 169-190, January.
    517. Ryan Cumings-Menon & Minchul Shin, 2020. "Probability Forecast Combination via Entropy Regularized Wasserstein Distance," Working Papers 20-31/R, Federal Reserve Bank of Philadelphia.
    518. Mayr, Johannes, 2010. "Forecasting Macroeconomic Aggregates," Munich Dissertations in Economics 11140, University of Munich, Department of Economics.
    519. Niko Hauzenberger & Florian Huber & Karin Klieber, 2020. "Real-time Inflation Forecasting Using Non-linear Dimension Reduction Techniques," Papers 2012.08155, arXiv.org, revised Dec 2021.
    520. Yang, Dazhi & van der Meer, Dennis, 2021. "Post-processing in solar forecasting: Ten overarching thinking tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    521. Hasumi, Ryo & Iiboshi, Hirokuni & Matsumae, Tatsuyoshi & Nakamura, Daisuke, 2018. "Does a financial accelerator improve forecasts during financial crises?: Evidence from Japan with Prediction Pool Methods," MPRA Paper 85523, University Library of Munich, Germany.
    522. Liebermann, Joelle, 2012. "Real-time forecasting in a data-rich environment," Research Technical Papers 07/RT/12, Central Bank of Ireland.
    523. Kevin J. Lansing, 2019. "Endogenous Forecast Switching Near the Zero Lower Bound," Working Paper Series 2017-24, Federal Reserve Bank of San Francisco.
    524. Clements, Michael P., 2006. "Internal consistency of survey respondentsíforecasts: Evidence based on the Survey of Professional Forecasters," Economic Research Papers 269742, University of Warwick - Department of Economics.
    525. Philip Hans Franses & Michael McAleer & Rianne Legerstee, 2014. "Evaluating Macroeconomic Forecasts: A Concise Review Of Some Recent Developments," Journal of Economic Surveys, Wiley Blackwell, vol. 28(2), pages 195-208, April.
    526. Rapach, David E. & Strauss, Jack K., 2012. "Forecasting US state-level employment growth: An amalgamation approach," International Journal of Forecasting, Elsevier, vol. 28(2), pages 315-327.
    527. Amendola, Alessandra & Christian, Francq, 2009. "Concepts and tools for nonlinear time series modelling," MPRA Paper 15140, University Library of Munich, Germany.
    528. Sean P. Grover & Kevin L. Kliesen & Michael W. McCracken, 2016. "A Macroeconomic News Index for Constructing Nowcasts of U.S. Real Gross Domestic Product Growth," Review, Federal Reserve Bank of St. Louis, vol. 98(4), pages 277-296.
    529. Iason Kynigakis & Ekaterini Panopoulou, 2022. "Does model complexity add value to asset allocation? Evidence from machine learning forecasting models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 603-639, April.
    530. Katsuya Ito & Kentaro Minami & Kentaro Imajo & Kei Nakagawa, 2020. "Trader-Company Method: A Metaheuristic for Interpretable Stock Price Prediction," Papers 2012.10215, arXiv.org.
    531. Andrea Fronzetti Colladon & Stefano Grassi & Francesco Ravazzolo & Francesco Violante, 2023. "Forecasting financial markets with semantic network analysis in the COVID‐19 crisis," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(5), pages 1187-1204, August.
    532. Huiyu Huang & Tae-Hwy Lee, 2010. "To Combine Forecasts or to Combine Information?," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 534-570.
    533. Ghysels, Eric & Plazzi, Alberto & Valkanov, Rossen & Torous, Walter, 2013. "Forecasting Real Estate Prices," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 509-580, Elsevier.
    534. Hsiao, Cheng & Wan, Shui Ki, 2011. "Comparison of forecasting methods with an application to predicting excess equity premium," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(7), pages 1235-1246.
    535. Manzan, Sebastiano & Zerom, Dawit, 2009. "Are Macroeconomic Variables Useful for Forecasting the Distribution of U.S. Inflation?," MPRA Paper 14387, University Library of Munich, Germany.
    536. Chrystalleni Aristidou & Kevin Lee & Kalvinder Shields, 2015. "Real-Time Data should be used in Forecasting Output Growth and Recessionary Events in the US," Discussion Papers 2015/13, University of Nottingham, Centre for Finance, Credit and Macroeconomics (CFCM).
    537. Chiang, Wen-Chyuan & Russell, Robert A. & Urban, Timothy L., 2011. "Forecasting ridership for a metropolitan transit authority," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(7), pages 696-705, August.
    538. Fabian Krüger & Ingmar Nolte, 2011. "Disagreement, Uncertainty and the True Predictive Density," Working Paper Series of the Department of Economics, University of Konstanz 2011-43, Department of Economics, University of Konstanz.
    539. Pirschel, Inske, 2016. "Forecasting euro area recessions in real-time," Kiel Working Papers 2020, Kiel Institute for the World Economy (IfW Kiel).
    540. Branimir Jovanovic & Magdalena Petrovska, 2010. "Forecasting Macedonian GDP: Evaluation of different models for short-term forecasting," Working Papers 2010-02, National Bank of the Republic of North Macedonia, revised Aug 2010.
    541. Reichlin, Lucrezia & Andreini, Paolo & Hasenzagl, Thomas & Senftleben-König, Charlotte & Strohsal, Till, 2020. "Nowcasting German GDP," CEPR Discussion Papers 14323, C.E.P.R. Discussion Papers.
    542. Kjetil Martinsen & Francesco Ravazzolo & Fredrik Wulfsberg, 2011. "Forecasting macroeconomic variables using disaggregate survey data," Working Paper 2011/04, Norges Bank.
    543. Szafranek, Karol, 2019. "Bagged neural networks for forecasting Polish (low) inflation," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1042-1059.
    544. Timmermann, Allan & Guidolin, Massimo, 2007. "Forecasts of US Short-term Interest Rates: A Flexible Forecast Combination Approach," CEPR Discussion Papers 6188, C.E.P.R. Discussion Papers.
    545. Lu, Xun & White, Halbert, 2014. "Testing for separability in structural equations," Journal of Econometrics, Elsevier, vol. 182(1), pages 14-26.
    546. Christian Fieberg & Daniel Metko & Thorsten Poddig & Thomas Loy, 2023. "Machine learning techniques for cross-sectional equity returns’ prediction," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 289-323, March.
    547. Garratt, Anthony & Mise, Emi, 2014. "Forecasting exchange rates using panel model and model averaging," Economic Modelling, Elsevier, vol. 37(C), pages 32-40.
    548. Pincheira-Brown, Pablo & Bentancor, Andrea & Hardy, Nicolás & Jarsun, Nabil, 2022. "Forecasting fuel prices with the Chilean exchange rate: Going beyond the commodity currency hypothesis," Energy Economics, Elsevier, vol. 106(C).
    549. Haskamp, Ulrich, 2017. "Forecasting exchange rates: The time-varying relationship between exchange rates and Taylor rule fundamentals," Ruhr Economic Papers 704, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    550. Drechsel, Katja & Scheufele, Rolf, 2011. "The Financial Crisis from a Forecaster’s Perspective," IWH Discussion Papers 5/2011, Halle Institute for Economic Research (IWH).
    551. Maxime Leboeuf & Louis Morel, 2014. "Forecasting Short-Term Real GDP Growth in the Euro Area and Japan Using Unrestricted MIDAS Regressions," Discussion Papers 14-3, Bank of Canada.
    552. Eraslan, Sercan & Nöller, Marvin, 2020. "Recession probabilities falling from the STARs," Discussion Papers 08/2020, Deutsche Bundesbank.
    553. Fady Barsoum & Sandra Stankiewicz, 2013. "Forecasting GDP Growth Using Mixed-Frequency Models With Switching Regimes," Working Paper Series of the Department of Economics, University of Konstanz 2013-10, Department of Economics, University of Konstanz.
    554. Ji Wu & Xian Cheng & Stephen Shaoyi Liao, 2020. "Tourism forecast combination using the stochastic frontier analysis technique," Tourism Economics, , vol. 26(7), pages 1086-1107, November.
    555. Maciejowska, Katarzyna & Nowotarski, Jakub & Weron, Rafał, 2016. "Probabilistic forecasting of electricity spot prices using Factor Quantile Regression Averaging," International Journal of Forecasting, Elsevier, vol. 32(3), pages 957-965.
    556. Chao, Shih-Wei, 2016. "Do economic variables improve bond return volatility forecasts?," International Review of Economics & Finance, Elsevier, vol. 46(C), pages 10-26.
    557. Marijn A. Bolhuis & Brett Rayner, 2020. "The More the Merrier? A Machine Learning Algorithm for Optimal Pooling of Panel Data," IMF Working Papers 2020/044, International Monetary Fund.
    558. Robert Lehmann & Klaus Wohlrabe, 2012. "Die Prognose des Bruttoinlandsprodukts auf regionaler Ebene," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 65(21), pages 17-23, November.
    559. Colino, Evelyn V. & Irwin, Scott H. & Garcia, Philip & Etienne, Xiaoli, 2012. "Composite and Outlook Forecast Accuracy," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 37(2), pages 1-19, August.
    560. Michiel D. de Pooter & Francesco Ravazzolo & Dick van Dijk, 2007. "Predicting the Term Structure of Interest Rates: Incorporating Parameter Uncertainty, Model Uncertainty and Macroeconomic Information," Tinbergen Institute Discussion Papers 07-028/4, Tinbergen Institute.
    561. Robert Lehmann & Klaus Wohlrabe, 2013. "Sektorale Prognosen und deren Machbarkeit auf regionaler Ebene – Das Beispiel Sachsen," ifo Dresden berichtet, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 20(04), pages 22-29, August.
    562. Peter McAdam & Anders Warne, 2024. "Density forecast combinations: The real‐time dimension," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1153-1172, August.
    563. Clements Michael P., 2012. "Forecasting U.S. Output Growth with Non-Linear Models in the Presence of Data Uncertainty," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(1), pages 1-27, January.
    564. Pauwels, Laurent L. & Vasnev, Andrey L., 2016. "A note on the estimation of optimal weights for density forecast combinations," International Journal of Forecasting, Elsevier, vol. 32(2), pages 391-397.
    565. Petar Sorić & Ivana Lolić, 2015. "A note on forecasting euro area inflation: leave- $$h$$ h -out cross validation combination as an alternative to model selection," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 23(1), pages 205-214, March.
    566. De Rezende, Rafael B., 2016. "The interest rate effects of government bond purchases away from the lower bound," Working Paper Series 324, Sveriges Riksbank (Central Bank of Sweden).
    567. Chu‐An Liu & Biing‐Shen Kuo, 2016. "Model averaging in predictive regressions," Econometrics Journal, Royal Economic Society, vol. 19(2), pages 203-231, June.
    568. Oscar Claveria & Enric Monte & Salvador Torra, 2017. "A new approach for the quantification of qualitative measures of economic expectations," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(6), pages 2685-2706, November.
    569. Knut Are Aastveit & James Mitchell & Francesco Ravazzolo & Herman van Dijk, 2018. "The Evolution of Forecast Density Combinations in Economics," Tinbergen Institute Discussion Papers 18-069/III, Tinbergen Institute.
    570. Raval, Devesh & Rosenbaum, Ted & Wilson, Nathan E., 2021. "How do machine learning algorithms perform in predicting hospital choices? evidence from changing environments," Journal of Health Economics, Elsevier, vol. 78(C).
    571. Ren, Yu & Liang, Xuanxuan & Wang, Qin, 2021. "Short-term exchange rate forecasting: A panel combination approach," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 73(C).
    572. Kajal Lahiri & Liu Yang, 2023. "Predicting binary outcomes based on the pair-copula construction," Empirical Economics, Springer, vol. 64(6), pages 3089-3119, June.
    573. Kitlinski, Tobias, 2015. "With or without you: Do financial data help to forecast industrial production?," Ruhr Economic Papers 558, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    574. Liew, Freddy, 2012. "Forecasting inflation in Asian economies," MPRA Paper 36781, University Library of Munich, Germany.
    575. Gebka, Bartosz & Wohar, Mark E., 2019. "Stock return distribution and predictability: Evidence from over a century of daily data on the DJIA index," International Review of Economics & Finance, Elsevier, vol. 60(C), pages 1-25.
    576. Dorji, Karma Minjur Phuntsho, 2024. "Exploring Nowcasting Techniques for Real-Time GDP Estimation in Bhutan," MPRA Paper 121380, University Library of Munich, Germany, revised 30 Jun 2024.
    577. Heather Anderson & Howard Chan & Robert Faff & Yew Kee Ho, 2012. "Reported earnings and analyst forecasts as competing sources of information: A new approach," Australian Journal of Management, Australian School of Business, vol. 37(3), pages 333-359, December.
    578. Kitlinski, Tobias & an de Meulen, Philipp, 2015. "The role of targeted predictors for nowcasting GDP with bridge models: Application to the Euro area," Ruhr Economic Papers 559, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    579. Ghysels, Eric & Ball, Ryan, 2017. "Automated Earnings Forecasts:- Beat Analysts or Combine and Conquer?," CEPR Discussion Papers 12179, C.E.P.R. Discussion Papers.
    580. Lyócsa, Štefan & Molnár, Peter & Výrost, Tomáš, 2021. "Stock market volatility forecasting: Do we need high-frequency data?," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1092-1110.
    581. Lof, Matthijs & Nyberg, Henri, 2017. "Noncausality and the commodity currency hypothesis," Energy Economics, Elsevier, vol. 65(C), pages 424-433.
    582. Byron Botha & Geordie Reid & Tim Olds & Daan Steenkamp & Rossouw van Jaarsveld, 2021. "Nowcasting South African GDP using a suite of statistical models," Working Papers 11001, South African Reserve Bank.
    583. Konstantin A. Kholodilin & Boriss Siliverstovs, 2017. "Think national, forecast local: a case study of 71 German urban housing markets," Applied Economics, Taylor & Francis Journals, vol. 49(42), pages 4271-4297, September.
    584. Cheng Hsiao & Qiankun Zhou, 2018. "Panel Parametric, Semi-parametric and Nonparametric Construction of Counterfactuals - California Tobacco Control Revisited," Departmental Working Papers 2018-02, Department of Economics, Louisiana State University.
    585. Jose Torres-Pruñonosa & Pablo García-Estévez & Josep Maria Raya & Camilo Prado-Román, 2022. "How on Earth Did Spanish Banking Sell the Housing Stock?," SAGE Open, , vol. 12(1), pages 21582440221, March.
    586. Gonzalo Calvo & Miguel Ricaurte, 2012. "Indicadores Sintéticos para la Proyección de Imacec en Chile," Working Papers Central Bank of Chile 656, Central Bank of Chile.
    587. Qin Zhang & He Ni & Hao Xu, 2023. "Forecasting models for the Chinese macroeconomy in a data‐rich environment: Evidence from large dimensional approximate factor models with mixed‐frequency data," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 63(1), pages 719-767, March.
    588. Jiahan Li & Ilias Tsiakas & Wei Wang, 2015. "Predicting Exchange Rates Out of Sample: Can Economic Fundamentals Beat the Random Walk?," Journal of Financial Econometrics, Oxford University Press, vol. 13(2), pages 293-341.
    589. Öztunç Kaymak, Öznur & Kaymak, Yiğit, 2022. "Prediction of crude oil prices in COVID-19 outbreak using real data," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    590. Szymon Lis & Marcin Chlebus, 2021. "Comparison of the accuracy in VaR forecasting for commodities using different methods of combining forecasts," Working Papers 2021-11, Faculty of Economic Sciences, University of Warsaw.
    591. Ulrich Gunter & Irem Önder & Stefan Gindl, 2019. "Exploring the predictive ability of LIKES of posts on the Facebook pages of four major city DMOs in Austria," Tourism Economics, , vol. 25(3), pages 375-401, May.
    592. Guerrero, Víctor & Islas C., Alejandro & Poncela, Pilar & Rodríguez, Julio & Sánchez-Mangas, Rocío, 2014. "Mexico: Combining monthly inflation predictions from surveys," Revista CEPAL, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL), August.
    593. Mathijs Cosemans & Rik Frehen & Peter C. Schotman & Rob Bauer, 2016. "Estimating Security Betas Using Prior Information Based on Firm Fundamentals," The Review of Financial Studies, Society for Financial Studies, vol. 29(4), pages 1072-1112.
    594. Proaño, Christian R. & Theobald, Thomas, 2014. "Predicting recessions with a composite real-time dynamic probit model," International Journal of Forecasting, Elsevier, vol. 30(4), pages 898-917.
    595. Silvia Figini & Roberto Savona & Marika Vezzoli, 2016. "Corporate Default Prediction Model Averaging: A Normative Linear Pooling Approach," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 23(1-2), pages 6-20, January.
    596. Antonis Michis, 2012. "Monitoring Forecasting Combinations with Semiparametric Regression Models," Working Papers 2012-2, Central Bank of Cyprus.
    597. Kawakami, Kei, 2013. "Conditional forecast selection from many forecasts: An application to the Yen/Dollar exchange rate," Journal of the Japanese and International Economies, Elsevier, vol. 28(C), pages 1-18.
    598. Alessandra Amendola & Vincenzo Candila & Antonio Naimoli & Giuseppe Storti, 2024. "Adaptive combinations of tail-risk forecasts," Papers 2406.06235, arXiv.org.
    599. Fabio Busetti, 2017. "Quantile Aggregation of Density Forecasts," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 79(4), pages 495-512, August.
    600. Philippe Goulet Coulombe, 2021. "To Bag is to Prune," Working Papers 21-03, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Jun 2021.
    601. Christian Kascha & Francesco Ravazzolo, 2008. "Combining inflation density forecasts," Working Paper 2008/22, Norges Bank.
    602. Christopher G. Gibbs, 2015. "Overcoming the Forecast Combination Puzzle: Lessons from the Time-Varying Effciency of Phillips Curve Forecasts of U.S. Inflation," Discussion Papers 2015-09, School of Economics, The University of New South Wales.
    603. Jiun-Hua Su, 2021. "No-Regret Forecasting with Egalitarian Committees," Papers 2109.13801, arXiv.org.
    604. Uwe Hassler & Marc-Oliver Pohle, 2019. "Forecasting under Long Memory and Nonstationarity," Papers 1910.08202, arXiv.org.
    605. Xiaojie Xu, 2020. "Corn Cash Price Forecasting," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(4), pages 1297-1320, August.
    606. Ravazzolo, F. & van Dijk, H.K. & Verbeek, M.J.C.M., 2007. "Predictive gains from forecast combinations using time-varying model weights," Econometric Institute Research Papers EI 2007-26, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    607. Hande Karabiyik & Joakim Westerlund, 2021. "Forecasting using cross-section average–augmented time series regressions," The Econometrics Journal, Royal Economic Society, vol. 24(2), pages 315-333.
    608. Björn Fastrich & Peter Winker, 2014. "Combining Forecasts with Missing Data: Making Use of Portfolio Theory," Computational Economics, Springer;Society for Computational Economics, vol. 44(2), pages 127-152, August.
    609. Genre, Véronique & Kenny, Geoff & Meyler, Aidan & Timmermann, Allan, 2013. "Combining expert forecasts: Can anything beat the simple average?," International Journal of Forecasting, Elsevier, vol. 29(1), pages 108-121.
    610. Kajal Lahiri & Liu Yang, 2015. "A Non-linear Forecast Combination Procedure for Binary Outcomes," CESifo Working Paper Series 5175, CESifo.
    611. Stavroula P. Fameliti & Vasiliki D. Skintzi, 2020. "Predictive ability and economic gains from volatility forecast combinations," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 200-219, March.
    612. Timo Dimitriadis & Xiaochun Liu & Julie Schnaitmann, 2020. "Encompassing Tests for Value at Risk and Expected Shortfall Multi-Step Forecasts based on Inference on the Boundary," Papers 2009.07341, arXiv.org.
    613. Costa, Alexandre Bonnet R. & Ferreira, Pedro Cavalcanti G. & Gaglianone, Wagner P. & Guillén, Osmani Teixeira C. & Issler, João Victor & Lin, Yihao, 2021. "Machine learning and oil price point and density forecasting," Energy Economics, Elsevier, vol. 102(C).
    614. Ahumada, Hildegart A. & Garegnani, Maria Lorena, 2012. "Forecasting a monetary aggregate under instability: Argentina after 2001," International Journal of Forecasting, Elsevier, vol. 28(2), pages 412-427.
    615. Phillip M. Yelland & Shinji Kim & Renée Stratulate, 2010. "A Bayesian Model for Sales Forecasting at Sun Microsystems," Interfaces, INFORMS, vol. 40(2), pages 118-129, April.
    616. Xiaojie Xu & Yun Zhang, 2022. "Commodity price forecasting via neural networks for coffee, corn, cotton, oats, soybeans, soybean oil, sugar, and wheat," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 29(3), pages 169-181, July.
    617. Amendola, Alessandra & Storti, Giuseppe, 2008. "A GMM procedure for combining volatility forecasts," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3047-3060, February.
    618. Elliott, Graham & Timmermann, Allan G, 2016. "Forecasting in Economics and Finance," University of California at San Diego, Economics Working Paper Series qt6z55v472, Department of Economics, UC San Diego.
    619. Firat Melih Yilmaz & Ozer Arabaci, 2021. "Should Deep Learning Models be in High Demand, or Should They Simply be a Very Hot Topic? A Comprehensive Study for Exchange Rate Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 217-245, January.
    620. Andrawis, Robert R. & Atiya, Amir F. & El-Shishiny, Hisham, 2011. "Combination of long term and short term forecasts, with application to tourism demand forecasting," International Journal of Forecasting, Elsevier, vol. 27(3), pages 870-886, July.
    621. Davor Kunovac & Borna Špalat, 2014. "Nowcasting GDP Using Available Monthly Indicators," Working Papers 39, The Croatian National Bank, Croatia.
    622. Schlösser, Alexander, 2020. "Forecasting industrial production in Germany: The predictive power of leading indicators," Ruhr Economic Papers 838, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    623. Francis X. Diebold & Minchul Shin, 2017. "Beating the Simple Average: Egalitarian LASSO for Combining Economic Forecasts," PIER Working Paper Archive 17-017, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 20 Aug 2017.
    624. Jianhao Lin & Jiacheng Fan & Yifan Zhang & Liangyuan Chen, 2023. "Real‐time macroeconomic projection using narrative central bank communication," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(2), pages 202-221, March.
    625. Li, Gang & Wu, Doris Chenguang & Zhou, Menglin & Liu, Anyu, 2019. "The combination of interval forecasts in tourism," Annals of Tourism Research, Elsevier, vol. 75(C), pages 363-378.
    626. Sancetta, Alessio, 2009. "Nearest neighbor conditional estimation for Harris recurrent Markov chains," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2224-2236, November.
    627. Dominik Wolff & Ulrich Neugebauer, 2019. "Tree-based machine learning approaches for equity market predictions," Journal of Asset Management, Palgrave Macmillan, vol. 20(4), pages 273-288, July.
    628. Matthias Burgert & Stephane Dees, 2009. "Forecasting World Trade: Direct Versus “Bottom-Up” Approaches," Open Economies Review, Springer, vol. 20(3), pages 385-402, July.
    629. Mamdouh Abdelmoula M. ABDELSALAM, 2017. "Improving Phillips Curve’s Inflation Forecasts under Misspecification," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(3), pages 54-76, September.
    630. Thomas Theobald, 2012. "Real-time Markov Switching and Leading Indicators in Times of the Financial Crisis," IMK Working Paper 98-2012, IMK at the Hans Boeckler Foundation, Macroeconomic Policy Institute.
    631. Gary Cornwall & Jeff Chen & Beau Sauley, 2021. "Standing on the Shoulders of Machine Learning: Can We Improve Hypothesis Testing?," Papers 2103.01368, arXiv.org.
    632. Smith Aaron, 2012. "Markov Breaks in Regression Models," Journal of Time Series Econometrics, De Gruyter, vol. 4(1), pages 1-35, May.
    633. Mauro Bernardi & Leopoldo Catania & Lea Petrella, 2014. "Are news important to predict large losses?," Papers 1410.6898, arXiv.org, revised Oct 2014.
    634. Philip Hans Franses, 2011. "Averaging Model Forecasts and Expert Forecasts: Why Does It Work?," Interfaces, INFORMS, vol. 41(2), pages 177-181, April.
    635. Haberleitner, Helmut & Meyr, Herbert & Taudes, Alfred, 2010. "Implementation of a demand planning system using advance order information," International Journal of Production Economics, Elsevier, vol. 128(2), pages 518-526, December.
    636. Conrad, Christian & Lahiri, Kajal, 2024. "Heterogeneous Expectations among Professional Forecasters," Working Papers 0754, University of Heidelberg, Department of Economics.
    637. In-Koo Cho & Kenneth Kasa, 2017. "Model Averaging and Persistent Disagreement," Review, Federal Reserve Bank of St. Louis, vol. 99(3), pages 279-294.
    638. Thomas Theobald, 2012. "Combining Recession Probability Forecasts from a Dynamic Probit Indicator," IMK Working Paper 89-2012, IMK at the Hans Boeckler Foundation, Macroeconomic Policy Institute.
    639. Sirio Aramonte & Samuel Rosen & John W. Schindler, 2013. "Assessing and combining financial conditions indexes," Finance and Economics Discussion Series 2013-39, Board of Governors of the Federal Reserve System (U.S.).
    640. Jon D. Samuels & Rodrigo Sekkel, 2013. "Forecasting with Many Models: Model Confidence Sets and Forecast Combination," Staff Working Papers 13-11, Bank of Canada.
    641. Tóth, Máté, 2021. "A multivariate unobserved components model to estimate potential output in the euro area: a production function based approach," Working Paper Series 2523, European Central Bank.
    642. Afsaneh Bahrami & Abul Shamsuddin & Katherine Uylangco, 2018. "Out‐of‐sample stock return predictability in emerging markets," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 58(3), pages 727-750, September.
    643. Pedro Henrique Melo Albuquerque & Yaohao Peng & João Pedro Fontoura da Silva, 2022. "Making the whole greater than the sum of its parts: A literature review of ensemble methods for financial time series forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(8), pages 1701-1724, December.
    644. Constandina Koki & Loukia Meligkotsidou & Ioannis Vrontos, 2020. "Forecasting under model uncertainty: Non‐homogeneous hidden Markov models with Pòlya‐Gamma data augmentation," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(4), pages 580-598, July.
    645. Malte Knüppel & Fabian Krüger, 2022. "Forecast uncertainty, disagreement, and the linear pool," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(1), pages 23-41, January.
    646. Simone Arrigoni & Alina Bobasu & Fabrizio Venditti, 2022. "Measuring Financial Conditions using Equal Weights Combination," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 70(4), pages 668-697, December.
    647. Cobb, Marcus P A, 2017. "Forecasting Economic Aggregates Using Dynamic Component Grouping," MPRA Paper 81585, University Library of Munich, Germany.
    648. Godahewa, Rakshitha & Bergmeir, Christoph & Webb, Geoffrey I. & Montero-Manso, Pablo, 2023. "An accurate and fully-automated ensemble model for weekly time series forecasting," International Journal of Forecasting, Elsevier, vol. 39(2), pages 641-658.
    649. Antoni Espasa & Eva Senra, 2017. "Twenty-Two Years of Inflation Assessment and Forecasting Experience at the Bulletin of EU & US Inflation and Macroeconomic Analysis," Econometrics, MDPI, vol. 5(4), pages 1-28, October.
    650. Hubert Dichtl & Wolfgang Drobetz & Viktoria‐Sophie Wendt, 2021. "How to build a factor portfolio: Does the allocation strategy matter?," European Financial Management, European Financial Management Association, vol. 27(1), pages 20-58, January.
    651. Geoff Kenny, 2010. "Macroeconomic forecasting: can forecast combination help?," Research Bulletin, European Central Bank, vol. 11, pages 9-12.
    652. Yu, Xing & Li, Yanyan & Gong, Xue & Zhang, Nan, 2022. "Evaluating the performance of futures hedging using factors-driven realized volatility," International Review of Financial Analysis, Elsevier, vol. 84(C).
    653. Abdollahi, Hooman, 2020. "A novel hybrid model for forecasting crude oil price based on time series decomposition," Applied Energy, Elsevier, vol. 267(C).
    654. Hongwei Zhang & Qiang He & Ben Jacobsen & Fuwei Jiang, 2020. "Forecasting stock returns with model uncertainty and parameter instability," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(5), pages 629-644, August.
    655. Sebastian M. Blanc & Thomas Setzer, 2020. "Bias–Variance Trade-Off and Shrinkage of Weights in Forecast Combination," Management Science, INFORMS, vol. 66(12), pages 5720-5737, December.
    656. Štefan Lyócsa & Roman Horváth, 2018. "Stock Market Contagion: a New Approach," Open Economies Review, Springer, vol. 29(3), pages 547-577, July.
    657. Daniel Borup & Jonas N. Eriksen & Mads M. Kjær & Martin Thyrsgaard, 2024. "Predicting Bond Return Predictability," Management Science, INFORMS, vol. 70(2), pages 931-951, February.
    658. Todd E. Clark & Taisuke Nakata, 2006. "The trend growth rate of employment : past, present, and future," Economic Review, Federal Reserve Bank of Kansas City, vol. 91(Q I), pages 43-85.
    659. C. Marsilli, 2014. "Variable Selection in Predictive MIDAS Models," Working papers 520, Banque de France.
    660. Rendon-Sanchez, Juan F. & de Menezes, Lilian M., 2019. "Structural combination of seasonal exponential smoothing forecasts applied to load forecasting," European Journal of Operational Research, Elsevier, vol. 275(3), pages 916-924.
    661. Smith Paul, 2016. "Nowcasting UK GDP during the depression," Working Papers 1606, University of Strathclyde Business School, Department of Economics.
    662. Wei Qian & Craig A. Rolling & Gang Cheng & Yuhong Yang, 2019. "On the Forecast Combination Puzzle," Econometrics, MDPI, vol. 7(3), pages 1-26, September.
    663. Anwen Yin, 2021. "Forecasting the Market Equity Premium: Does Nonlinearity Matter?," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 13(5), pages 1-9, May.
    664. Barhoumi, K. & Darné, O. & Ferrara, L., 2013. "Dynamic Factor Models: A review of the Literature ," Working papers 430, Banque de France.
    665. an de Meulen, Philipp & Micheli, Martin & Schmidt, Torsten, 2011. "Forecasting House Prices in Germany," Ruhr Economic Papers 294, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    666. Jing Zeng, 2016. "Combining country-specific forecasts when forecasting Euro area macroeconomic aggregates," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 43(2), pages 415-444, May.
    667. Máximo Camacho & Gonzalo Palmieri, 2021. "Evaluating the OECD’s main economic indicators at anticipating recessions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(1), pages 80-93, January.
    668. Mihaela BRATU, 2012. "Econometric Models For Determing The Exchange Rate," Romanian Statistical Review, Romanian Statistical Review, vol. 60(4), pages 49-64, May.
    669. Bonnier, Jean-Baptiste, 2022. "Forecasting crude oil volatility with exogenous predictors: As good as it GETS?," Energy Economics, Elsevier, vol. 111(C).
    670. Timmermann, Allan & Qu, Ritong & Zhu, Yinchu, 2019. "Do Any Economists Have Superior Forecasting Skills?," CEPR Discussion Papers 14112, C.E.P.R. Discussion Papers.
    671. Schumacher, Christian, 2016. "A comparison of MIDAS and bridge equations," International Journal of Forecasting, Elsevier, vol. 32(2), pages 257-270.
    672. Hansen, Bruce E., 2008. "Least-squares forecast averaging," Journal of Econometrics, Elsevier, vol. 146(2), pages 342-350, October.
    673. Barrow, Devon K. & Crone, Sven F., 2016. "Cross-validation aggregation for combining autoregressive neural network forecasts," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1120-1137.
    674. Linlan Xiao & Vigdis Boasson & Sergey Shishlenin & Victoria Makushina, 2018. "Volatility forecasting: combinations of realized volatility measures and forecasting models," Applied Economics, Taylor & Francis Journals, vol. 50(13), pages 1428-1441, March.
    675. Rossi, Barbara & Gürkaynak, Refet & Kısacıkoğlu, Burçin, 2013. "Do DSGE Models Forecast More Accurately Out-of-Sample than VAR Models?," CEPR Discussion Papers 9576, C.E.P.R. Discussion Papers.
    676. Maria Ludovica Drudi & Stefano Nobili, 2021. "A liquidity risk early warning indicator for Italian banks: a machine learning approach," Temi di discussione (Economic working papers) 1337, Bank of Italy, Economic Research and International Relations Area.
    677. Andrés Ramírez-Hassan, 2020. "Dynamic variable selection in dynamic logistic regression: an application to Internet subscription," Empirical Economics, Springer, vol. 59(2), pages 909-932, August.
    678. Carlos Henrique Dias Cordeiro de Castro & Fernando Antonio Lucena Aiube, 2023. "Forecasting inflation time series using score‐driven dynamic models and combination methods: The case of Brazil," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 369-401, March.
    679. Zongwu Cai & Chaoqun Ma & Xianhua Mi, 2020. "Realized Volatility Forecasting Based on Dynamic Quantile Model Averaging," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202016, University of Kansas, Department of Economics, revised Sep 2020.
    680. Harun Özkan & M. Yazgan, 2015. "Is forecasting inflation easier under inflation targeting?," Empirical Economics, Springer, vol. 48(2), pages 609-626, March.
    681. Adam Elbourne & Henk Kranendonk & Rob Luginbuhl & Bert Smid & Martin Vromans, 2008. "Evaluating CPB's published GDP growth forecasts; a comparison with individual and pooled VAR based forecasts," CPB Document 172, CPB Netherlands Bureau for Economic Policy Analysis.
    682. Aparicio, Diego & Bertolotto, Manuel I., 2020. "Forecasting inflation with online prices," International Journal of Forecasting, Elsevier, vol. 36(2), pages 232-247.
    683. Wichard, Jörg D., 2011. "Forecasting the NN5 time series with hybrid models," International Journal of Forecasting, Elsevier, vol. 27(3), pages 700-707, July.
    684. Sabaj, Ernil & Kahveci, Mustafa, 2018. "Forecasting tax revenues in an emerging economy: The case of Albania," MPRA Paper 84404, University Library of Munich, Germany.
    685. Ma, Yao & Yang, Baochen & Su, Yunpeng, 2020. "Technical trading index, return predictability and idiosyncratic volatility," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 879-900.
    686. Jamali, Ibrahim & Yamani, Ehab, 2019. "Out-of-sample exchange rate predictability in emerging markets: Fundamentals versus technical analysis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 61(C), pages 241-263.
    687. Kuzin, Vladimir N. & Marcellino, Massimiliano & Schumacher, Christian, 2009. "MIDAS versus mixed-frequency VAR: nowcasting GDP in the euro area," Discussion Paper Series 1: Economic Studies 2009,07, Deutsche Bundesbank.
    688. Kajal Lahiri & Yongchen Zhao, 2013. "Quantifying Heterogeneous Survey Expectations: The Carlson-Parkin Method Revisited," Discussion Papers 13-08, University at Albany, SUNY, Department of Economics.
    689. Andrew Y. Chen & Mihail Velikov, 2020. "Zeroing in on the Expected Returns of Anomalies," Finance and Economics Discussion Series 2020-039, Board of Governors of the Federal Reserve System (U.S.).
    690. In Choi & Sun Ho Hwang, 2016. "Optimal Autoregressive Predictions," Working Papers 1607, Nam Duck-Woo Economic Research Institute, Sogang University (Former Research Institute for Market Economy).
    691. Ard Reijer & Andreas Johansson, 2019. "Nowcasting Swedish GDP with a large and unbalanced data set," Empirical Economics, Springer, vol. 57(4), pages 1351-1373, October.
    692. Li Liu & Yudong Wang, 2021. "Forecasting aggregate market volatility: The role of good and bad uncertainties," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(1), pages 40-61, January.
    693. Sancetta, Alessio, 2007. "Online forecast combinations of distributions: Worst case bounds," Journal of Econometrics, Elsevier, vol. 141(2), pages 621-651, December.
    694. Fei, Tianlun & Liu, Xiaoquan & Wen, Conghua, 2019. "Cross-sectional return dispersion and volatility prediction," Pacific-Basin Finance Journal, Elsevier, vol. 58(C).
    695. Magnus, J.R. & Wang, W. & Zhang, Xinyu, 2012. "WALS Prediction," Other publications TiSEM 7715e942-b446-4985-8216-f, Tilburg University, School of Economics and Management.
    696. Byron Botha & Tim Olds & Geordie Reid & Daan Steenkamp & Rossouw van Jaarsveld, 2021. "Nowcasting South African gross domestic product using a suite of statistical models," South African Journal of Economics, Economic Society of South Africa, vol. 89(4), pages 526-554, December.
    697. Manner, Hans & Reznikova, Olga, 2010. "Forecasting international stock market correlations: does anything beat a CCC?," Discussion Papers in Econometrics and Statistics 7/10, University of Cologne, Institute of Econometrics and Statistics.
    698. Cosemans, Mathijs & Frehen, Rik & Schotman, Peter & Bauer, Rob, 2016. "Estimating security betas using prior information based on firm fundamentals," Other publications TiSEM f0f91c05-b59e-454c-a102-a, Tilburg University, School of Economics and Management.
    699. Huurman, Christian & Ravazzolo, Francesco & Zhou, Chen, 2012. "The power of weather," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3793-3807.
    700. Rafael Barreiros Porto & Nolah Schutte da Rocha Lima, 2015. "Nonlinear Impact of the Marketing Mix on Brand Sales Performance," Brazilian Business Review, Fucape Business School, vol. 12(5), pages 57-77, September.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.