IDEAS home Printed from https://ideas.repec.org/a/spr/jlabrs/v54y2020i1d10.1186_s12651-020-00274-w.html
   My bibliography  Save this article

A new indicator for nowcasting employment subject to social security contributions in Germany

Author

Listed:
  • Christian Hutter

    (Institute for Employment Research (IAB))

Abstract

Contrary to the number of unemployed or vacancies, the number of employees subject to social security contributions (SSC) for Germany is published after a time lag of 2 months. Furthermore, there is a waiting period of 6 months until the values are not revised any more. This paper uses monthly data on the number of people subject to compulsory health insurance (CHI) as auxiliary variable to better nowcast SSC. Statistical evaluation tests using real-time data show that CHI significantly improves nowcast accuracy compared to purely autoregressive benchmark models. The mean squared prediction error for nowcasts of SSC can be reduced by approximately 20%. In addition, CHI outperforms alternative candidate variables such as unemployment, vacancies and industrial production.

Suggested Citation

  • Christian Hutter, 2020. "A new indicator for nowcasting employment subject to social security contributions in Germany," Journal for Labour Market Research, Springer;Institute for Employment Research/ Institut für Arbeitsmarkt- und Berufsforschung (IAB), vol. 54(1), pages 1-10, December.
  • Handle: RePEc:spr:jlabrs:v:54:y:2020:i:1:d:10.1186_s12651-020-00274-w
    DOI: 10.1186/s12651-020-00274-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s12651-020-00274-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1186/s12651-020-00274-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Christian Hutter & Enzo Weber, 2015. "Constructing a new leading indicator for unemployment from a survey among German employment agencies," Applied Economics, Taylor & Francis Journals, vol. 47(33), pages 3540-3558, July.
    2. Robert Lehmann & Antje Weyh, 2016. "Forecasting Employment in Europe: Are Survey Results Helpful?," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 12(1), pages 81-117, September.
    3. Peter Reinhard Hansen & Allan Timmermann, 2012. "Choice of Sample Split in Out-of-Sample Forecast Evaluation," CREATES Research Papers 2012-43, Department of Economics and Business Economics, Aarhus University.
    4. Launov, Andrey & Wälde, Klaus, 2016. "The employment effect of reforming a public employment agency," European Economic Review, Elsevier, vol. 84(C), pages 140-164.
    5. Clark, Todd E. & McCracken, Michael W., 2009. "Tests of Equal Predictive Ability With Real-Time Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 441-454.
    6. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    7. Clark, Todd E. & McCracken, Michael W., 2015. "Nested forecast model comparisons: A new approach to testing equal accuracy," Journal of Econometrics, Elsevier, vol. 186(1), pages 160-177.
    8. Clark, Todd & McCracken, Michael, 2013. "Advances in Forecast Evaluation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1107-1201, Elsevier.
    9. R. Lehmann & K. Wohlrabe, 2017. "Experts, firms, consumers or even hard data? Forecasting employment in Germany," Applied Economics Letters, Taylor & Francis Journals, vol. 24(4), pages 279-283, February.
    10. Klinger, Sabine & Weber, Enzo, 2020. "GDP-employment decoupling in Germany," Structural Change and Economic Dynamics, Elsevier, vol. 52(C), pages 82-98.
    11. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    12. Bossler, Mario & Gartner, Hermann & Kubis, Alexander & Küfner, Benjamin & Rothe, Thomas, 2019. "The IAB Job Vacancy Survey: Establishment survey on labour demand and recruitment processes, Waves 2000 to 2016 and subsequent quarters 2006 to 2017," FDZ Datenreport. Documentation on Labour Market Data 201903_en, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
    13. Christian Dustmann & Bernd Fitzenberger & Uta Sch?nberg & Alexandra Spitz-Oener, 2014. "From Sick Man of Europe to Economic Superstar: Germany's Resurgent Economy," Journal of Economic Perspectives, American Economic Association, vol. 28(1), pages 167-188, Winter.
    14. G. Elliott & C. Granger & A. Timmermann (ed.), 2013. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 2, number 2.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian Hutter & Enzo Weber, 2015. "Constructing a new leading indicator for unemployment from a survey among German employment agencies," Applied Economics, Taylor & Francis Journals, vol. 47(33), pages 3540-3558, July.
    2. Nima Nonejad, 2022. "New Findings Regarding the Out-of-Sample Predictive Impact of the Price of Crude Oil on the United States Industrial Production," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 18(1), pages 1-35, March.
    3. Ahmed, Shamim & Liu, Xiaoquan & Valente, Giorgio, 2016. "Can currency-based risk factors help forecast exchange rates?," International Journal of Forecasting, Elsevier, vol. 32(1), pages 75-97.
    4. Clark, Todd & McCracken, Michael, 2013. "Advances in Forecast Evaluation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1107-1201, Elsevier.
    5. Christiane Baumeister & Lutz Kilian & Xiaoqing Zhou, 2013. "Are Product Spreads Useful for Forecasting? An Empirical Evaluation of the Verleger Hypothesis," Staff Working Papers 13-25, Bank of Canada.
    6. Pablo Pincheira Brown & Nicolás Hardy, 2024. "Correlation‐based tests of predictability," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 1835-1858, September.
    7. Francesco Ravazzolo & Philip Rothman, 2013. "Oil and U.S. GDP: A Real-Time Out-of-Sample Examination," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 45(2-3), pages 449-463, March.
    8. Goodness C. Aye & Frederick W. Deale & Rangan Gupta, 2016. "Does Debt Ceiling and Government Shutdown Help in Forecasting the US Equity Risk Premium?," Panoeconomicus, Savez ekonomista Vojvodine, Novi Sad, Serbia, vol. 63(3), pages 273-291.
    9. Firmin Doko Tchatoka & Qazi Haque, 2023. "On bootstrapping tests of equal forecast accuracy for nested models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1844-1864, November.
    10. Håvard Hungnes, 2020. "Equal predictability test for multi-step-ahead system forecasts invariant to linear transformations," Discussion Papers 931, Statistics Norway, Research Department.
    11. Christiane Baumeister & Lutz Kilian & Thomas K. Lee, 2017. "Inside the Crystal Ball: New Approaches to Predicting the Gasoline Price at the Pump," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(2), pages 275-295, March.
    12. Claveria, Oscar, 2019. "Forecasting the unemployment rate using the degree of agreement in consumer unemployment expectations," Journal for Labour Market Research, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany], vol. 53(1), pages 1-3.
    13. Galvão, Ana Beatriz, 2013. "Changes in predictive ability with mixed frequency data," International Journal of Forecasting, Elsevier, vol. 29(3), pages 395-410.
    14. Arai, Natsuki, 2014. "Using forecast evaluation to improve the accuracy of the Greenbook forecast," International Journal of Forecasting, Elsevier, vol. 30(1), pages 12-19.
    15. Faust, Jon & Wright, Jonathan H., 2013. "Forecasting Inflation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 2-56, Elsevier.
    16. Christian Hutter & Enzo Weber, 2017. "Mismatch and the Forecasting Performance of Matching Functions," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 79(1), pages 101-123, February.
    17. Tunaru, Diana, 2017. "Gaussian estimation and forecasting of the U.K. yield curve with multi-factor continuous-time models," International Review of Financial Analysis, Elsevier, vol. 52(C), pages 119-129.
    18. Nicolas S. Magner & Nicolás Hardy & Tiago Ferreira & Jaime F. Lavin, 2023. "“Agree to Disagree”: Forecasting Stock Market Implied Volatility Using Financial Report Tone Disagreement Analysis," Mathematics, MDPI, vol. 11(7), pages 1-16, March.
    19. Jamali, Ibrahim & Yamani, Ehab, 2019. "Out-of-sample exchange rate predictability in emerging markets: Fundamentals versus technical analysis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 61(C), pages 241-263.
    20. Barbara Rossi, 2013. "Exchange Rate Predictability," Journal of Economic Literature, American Economic Association, vol. 51(4), pages 1063-1119, December.

    More about this item

    Keywords

    Nowcasting; Real-time data; Employees; Social security contributions; Compulsory health insurance;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E24 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Employment; Unemployment; Wages; Intergenerational Income Distribution; Aggregate Human Capital; Aggregate Labor Productivity
    • E27 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Forecasting and Simulation: Models and Applications
    • J21 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Labor Force and Employment, Size, and Structure

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jlabrs:v:54:y:2020:i:1:d:10.1186_s12651-020-00274-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.