IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v32y2023i1d10.1007_s10260-022-00638-1.html
   My bibliography  Save this article

Linear approximation of the Threshold AutoRegressive model: an application to order estimation

Author

Listed:
  • Francesco Giordano

    (Università degli Studi di Salerno)

  • Marcella Niglio

    (Università degli Studi di Salerno)

  • Cosimo Damiano Vitale

    (Università degli Studi di Salerno)

Abstract

This paper proposes a linear approximation of the nonlinear Threshold AutoRegressive model. It is shown that there is a relation between the autoregressive order of the threshold model and the order of its autoregressive moving average approximation. The main advantage of this approximation can be found in the extension of some theoretical results developed in the linear setting to the nonlinear domain. Among them is proposed a new order estimation procedure for threshold models whose performance is compared, through a Monte Carlo study, to other criteria largely employed in the nonlinear threshold context.

Suggested Citation

  • Francesco Giordano & Marcella Niglio & Cosimo Damiano Vitale, 2023. "Linear approximation of the Threshold AutoRegressive model: an application to order estimation," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(1), pages 27-56, March.
  • Handle: RePEc:spr:stmapp:v:32:y:2023:i:1:d:10.1007_s10260-022-00638-1
    DOI: 10.1007/s10260-022-00638-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10260-022-00638-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10260-022-00638-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C. S. Wong & W. K. Li, 1998. "A note on the corrected Akaike information criterion for threshold autoregressive models," Journal of Time Series Analysis, Wiley Blackwell, vol. 19(1), pages 113-124, January.
    2. Stelzer, Robert, 2009. "On Markov-Switching Arma Processes—Stationarity, Existence Of Moments, And Geometric Ergodicity," Econometric Theory, Cambridge University Press, vol. 25(1), pages 43-62, February.
    3. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    4. Anne B. Koehler & Emily S. Murphree, 1988. "A Comparison of the Akaike and Schwarz Criteria for Selecting Model Order," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 37(2), pages 187-195, June.
    5. Rinke Saskia & Sibbertsen Philipp, 2016. "Information criteria for nonlinear time series models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(3), pages 325-341, June.
    6. Timmermann, Allan, 2000. "Moments of Markov switching models," Journal of Econometrics, Elsevier, vol. 96(1), pages 75-111, May.
    7. George Kapetanios, 2001. "Model Selection in Threshold Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 22(6), pages 733-754, November.
    8. Pham, Dinh Tuan, 1985. "Bilinear markovian representation and bilinear models," Stochastic Processes and their Applications, Elsevier, vol. 20(2), pages 295-306, September.
    9. Zacharias Psaradakis & Martin Sola & Fabio Spagnolo & Nicola Spagnolo, 2009. "Selecting nonlinear time series models using information criteria," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(4), pages 369-394, July.
    10. Emiliano, Paulo C. & Vivanco, Mário J.F. & de Menezes, Fortunato S., 2014. "Information criteria: How do they behave in different models?," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 141-153.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rinke Saskia & Sibbertsen Philipp, 2016. "Information criteria for nonlinear time series models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(3), pages 325-341, June.
    2. Gomes, Pedro & Kurter, Zeynep O. & Morita, Rubens, 2022. "European Sovereign Bond and Stock Market Granger Causality Dynamics," The Warwick Economics Research Paper Series (TWERPS) 1405, University of Warwick, Department of Economics.
    3. Ferrara, Laurent & Marcellino, Massimiliano & Mogliani, Matteo, 2015. "Macroeconomic forecasting during the Great Recession: The return of non-linearity?," International Journal of Forecasting, Elsevier, vol. 31(3), pages 664-679.
    4. Rinke, Saskia, 2016. "The Influence of Additive Outliers on the Performance of Information Criteria to Detect Nonlinearity," Hannover Economic Papers (HEP) dp-575, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    5. Cavicchioli, Maddalena, 2023. "Statistical analysis of Markov switching vector autoregression models with endogenous explanatory variables," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
    6. Michael Frömmel, 2010. "Volatility Regimes in Central and Eastern European Countries’ Exchange Rates," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 60(1), pages 2-21, February.
    7. Taamouti, Abderrahim, 2012. "Moments of multivariate regime switching with application to risk-return trade-off," Journal of Empirical Finance, Elsevier, vol. 19(2), pages 292-308.
    8. Candelon, Bertrand & Lieb, Lenard, 2013. "Fiscal policy in good and bad times," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2679-2694.
    9. Cavicchioli, Maddalena, 2024. "A matrix unified framework for deriving various impulse responses in Markov switching VAR: Evidence from oil and gas markets," The Journal of Economic Asymmetries, Elsevier, vol. 29(C).
    10. Chris Stivers & Licheng Sun, 2013. "Market Cycles and the Performance of Relative Strength Strategies," Financial Management, Financial Management Association International, vol. 42(2), pages 263-290, June.
    11. Lahiani, A. & Scaillet, O., 2009. "Testing for threshold effect in ARFIMA models: Application to US unemployment rate data," International Journal of Forecasting, Elsevier, vol. 25(2), pages 418-428.
    12. Nan Li & Simon S. Kwok, 2021. "Jointly determining the state dimension and lag order for Markov‐switching vector autoregressive models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 471-491, July.
    13. Erik Kole & Dick Dijk, 2017. "How to Identify and Forecast Bull and Bear Markets?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(1), pages 120-139, January.
    14. Rianne Legerstee & Philip Hans Franses, 2015. "Does Disagreement Amongst Forecasters Have Predictive Value?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(4), pages 290-302, July.
    15. Fiorentini, Gabriele & Planas, Christophe & Rossi, Alessandro, 2016. "Skewness and kurtosis of multivariate Markov-switching processes," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 153-159.
    16. Liu, Lu, 2014. "Extreme downside risk spillover from the United States and Japan to Asia-Pacific stock markets," International Review of Financial Analysis, Elsevier, vol. 33(C), pages 39-48.
    17. Kole, Erik & van Dijk, Dick, 2023. "Moments, shocks and spillovers in Markov-switching VAR models," Journal of Econometrics, Elsevier, vol. 236(2).
    18. Eugene Canjels & Gauri Prakash-Canjels & Alan M. Taylor, 2004. "Measuring Market Integration: Foreign Exchange Arbitrage and the Gold Standard, 1879-1913," The Review of Economics and Statistics, MIT Press, vol. 86(4), pages 868-882, November.
    19. Guidolin, Massimo & Timmermann, Allan, 2007. "Asset allocation under multivariate regime switching," Journal of Economic Dynamics and Control, Elsevier, vol. 31(11), pages 3503-3544, November.
    20. Lhuissier, Stéphane, 2022. "Financial conditions and macroeconomic downside risks in the euro area," European Economic Review, Elsevier, vol. 143(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:32:y:2023:i:1:d:10.1007_s10260-022-00638-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.