IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i14p3361-d1431456.html
   My bibliography  Save this article

Modelling and Forecasting Crude Oil Prices Using Trend Analysis in a Binary-Temporal Representation

Author

Listed:
  • Michał Dominik Stasiak

    (Department of Investment and Real Estate, Poznan University of Economics and Business, al. Niepodleglosci 10, 61-875 Poznan, Poland)

  • Żaneta Staszak

    (The Faculty of Civil and Transport Engineering, Poznan University of Technology, 5 M. Skłodowska-Curie Square, 60-965 Poznan, Poland)

Abstract

The oil market is one of the most important markets for the global economy. Often, oil prices influence the financial results of whole countries and sectors. Therefore, the modeling and prediction of crude oil prices are of high importance. Most up-to-date publications have used daily closing rates in crude oil price modeling, not considering the variability in prices during the day. The application of this kind of price representation leads to a loss of information about the range of price changes during the day, which influences the accuracy of the models and makes them useless in short-term course predictions. In this paper, we introduce the concept of a new state model in a binary-temporal representation, which uses trend analysis, which is one of the main methods used in the prediction of the direction of future changes in the course trajectory. The model described in this paper stands as the first tool that allows for predicting course changes in a given range. The presented work also summarizes the research results of modeling crude oil prices from the last six years, which prove the effectiveness of the mentioned modeling method.

Suggested Citation

  • Michał Dominik Stasiak & Żaneta Staszak, 2024. "Modelling and Forecasting Crude Oil Prices Using Trend Analysis in a Binary-Temporal Representation," Energies, MDPI, vol. 17(14), pages 1-13, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3361-:d:1431456
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/14/3361/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/14/3361/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pesaran, M Hashem & Timmermann, Allan, 1992. "A Simple Nonparametric Test of Predictive Performance," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 561-565, October.
    2. Peter Nystrup & Stephen Boyd & Erik Lindström & Henrik Madsen, 2019. "Multi-period portfolio selection with drawdown control," Annals of Operations Research, Springer, vol. 282(1), pages 245-271, November.
    3. Michał Dominik Stasiak, 2018. "A study on the influence of the discretisation unit on the effectiveness of modelling currency exchange rates using the binary-temporal representation," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 28(2), pages 57-70.
    4. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    5. Anatolyev, Stanislav & Gerko, Alexander, 2005. "A Trading Approach to Testing for Predictability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 455-461, October.
    6. Wen, Zhuzhu & Gong, Xu & Ma, Diandian & Xu, Yahua, 2021. "Intraday momentum and return predictability: Evidence from the crude oil market," Economic Modelling, Elsevier, vol. 95(C), pages 374-384.
    7. Qiang Ji & Dayong Zhang & Yuqian Zhao, 2022. "Intra-day co-movements of crude oil futures: China and the international benchmarks," Annals of Operations Research, Springer, vol. 313(1), pages 77-103, June.
    8. Dbouk, Wassim & Jamali, Ibrahim, 2018. "Predicting daily oil prices: Linear and non-linear models," Research in International Business and Finance, Elsevier, vol. 46(C), pages 149-165.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan Reboredo & José Matías & Raquel Garcia-Rubio, 2012. "Nonlinearity in Forecasting of High-Frequency Stock Returns," Computational Economics, Springer;Society for Computational Economics, vol. 40(3), pages 245-264, October.
    2. Dudda, Tom L. & Klein, Tony & Nguyen, Duc Khuong & Walther, Thomas, 2022. "Common Drivers of Commodity Futures?," QBS Working Paper Series 2022/05, Queen's University Belfast, Queen's Business School.
    3. Amin Aminimehr & Ali Raoofi & Akbar Aminimehr & Amirhossein Aminimehr, 2022. "A Comprehensive Study of Market Prediction from Efficient Market Hypothesis up to Late Intelligent Market Prediction Approaches," Computational Economics, Springer;Society for Computational Economics, vol. 60(2), pages 781-815, August.
    4. Stanislav Anatolyev, 2006. "Testing for predictability (in Russian)," Quantile, Quantile, issue 1, pages 39-42, September.
    5. Blaskowitz, Oliver & Herwartz, Helmut, 2011. "On economic evaluation of directional forecasts," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1058-1065, October.
    6. Kozhan, Roman & Salmon, Mark, 2009. "Uncertainty aversion in a heterogeneous agent model of foreign exchange rate formation," Journal of Economic Dynamics and Control, Elsevier, vol. 33(5), pages 1106-1122, May.
    7. Manahov, Viktor & Hudson, Robert & Gebka, Bartosz, 2014. "Does high frequency trading affect technical analysis and market efficiency? And if so, how?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 28(C), pages 131-157.
    8. Francis X. Diebold & Jose A. Lopez, 1995. "Forecast evaluation and combination," Research Paper 9525, Federal Reserve Bank of New York.
    9. repec:hum:wpaper:sfb649dp2008-073 is not listed on IDEAS
    10. Peter F. Christoffersen & Francis X. Diebold, 2006. "Financial Asset Returns, Direction-of-Change Forecasting, and Volatility Dynamics," Management Science, INFORMS, vol. 52(8), pages 1273-1287, August.
    11. Oscar Bajo-Rubio & Simón Sosvilla-Rivero & Fernando Fernández-Rodríguez, "undated". "Non-Linear Forecasting Methods: Some Applications to the Analysis of Financial Series," Working Papers 2002-01, FEDEA.
    12. Kizilaslan, Recep & Freund, Steven & Iseri, Ali, 2016. "A data analytic approach to forecasting daily stock returns in an emerging marketAuthor-Name: Oztekin, Asil," European Journal of Operational Research, Elsevier, vol. 253(3), pages 697-710.
    13. Firat Melih Yilmaz & Engin Yildiztepe, 2024. "Statistical Evaluation of Deep Learning Models for Stock Return Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 63(1), pages 221-244, January.
    14. Sudarshan Kumar & Sobhesh Kumar Agarwalla & Jayanth R. Varma & Vineet Virmani, 2023. "Harvesting the volatility smile in a large emerging market: A Dynamic Nelson–Siegel approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(11), pages 1615-1644, November.
    15. Cooray, Arusha. & Wickremasinghe, Guneratne., 2007. "The efficiency of emerging stock markets: empirical evidence from the south asian region," Journal of Developing Areas, Tennessee State University, College of Business, vol. 41(1), pages 171-183, September.
    16. Massimo Guidolin & Erwin Hansen & Gabriel Cabrera, 2023. "Time-Varying Risk Aversion and International Stock Returns," BAFFI CAREFIN Working Papers 23203, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    17. Li, Zhao-Chen & Xie, Chi & Zeng, Zhi-Jian & Wang, Gang-Jin & Zhang, Ting, 2023. "Forecasting global stock market volatilities in an uncertain world," International Review of Financial Analysis, Elsevier, vol. 85(C).
    18. Bohumil Stádník & Algita Miečinskienė, 2015. "Complex Model of Market Price Development and its Simulation," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 16(4), pages 786-807, August.
    19. Ana-Maria Fuertes & Elena Kalotychou & Natasa Todorovic, 2015. "Daily volume, intraday and overnight returns for volatility prediction: profitability or accuracy?," Review of Quantitative Finance and Accounting, Springer, vol. 45(2), pages 251-278, August.
    20. Anatolyev, Stanislav, 2009. "Nonparametric Retrospection and Monitoring of Predictability of Financial Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(2), pages 149-160.
    21. Liu, Li & Bu, Ruijun & Pan, Zhiyuan & Xu, Yuhua, 2019. "Are financial returns really predictable out-of-sample?: Evidence from a new bootstrap test," Economic Modelling, Elsevier, vol. 81(C), pages 124-135.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3361-:d:1431456. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.