IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v27y2011i4p1178-1195.html
   My bibliography  Save this article

Forecasting monthly and quarterly time series using STL decomposition

Author

Listed:
  • Theodosiou, Marina

Abstract

This paper is a re-examination of the benefits and limitations of decomposition and combination techniques in the area of forecasting, and also a contribution to the field, offering a new forecasting method. The new method is based on the disaggregation of time series components through the STL decomposition procedure, the extrapolation of linear combinations of the disaggregated sub-series, and the reaggregation of the extrapolations to obtain estimates for the global series. Applying the forecasting method to data from the NN3 and M1 Competition series, the results suggest that it can perform well relative to four other standard statistical techniques from the literature, namely the ARIMA, Theta, Holt-Winters' and Holt's Damped Trend methods. The relative advantages of the new method are then investigated further relative to a simple combination of the four statistical methods and a Classical Decomposition forecasting method. The strength of the method lies in its ability to predict long lead times with relatively high levels of accuracy, and to perform consistently well for a wide range of time series, irrespective of the characteristics, underlying structure and level of noise of the data.

Suggested Citation

  • Theodosiou, Marina, 2011. "Forecasting monthly and quarterly time series using STL decomposition," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1178-1195, October.
  • Handle: RePEc:eee:intfor:v:27:y:2011:i:4:p:1178-1195
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207011000070
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Makridakis, Spyros & Hibon, Michele, 2000. "The M3-Competition: results, conclusions and implications," International Journal of Forecasting, Elsevier, vol. 16(4), pages 451-476.
    2. Peter R. Winters, 1960. "Forecasting Sales by Exponentially Weighted Moving Averages," Management Science, INFORMS, vol. 6(3), pages 324-342, April.
    3. Zou, Hui & Yang, Yuhong, 2004. "Combining time series models for forecasting," International Journal of Forecasting, Elsevier, vol. 20(1), pages 69-84.
    4. Satchell, Steve & Timmermann, Allan, 1995. "On the optimality of adaptive expectations: Muth revisited," International Journal of Forecasting, Elsevier, vol. 11(3), pages 407-416, September.
    5. Lobo, Gerald J., 1992. "Journal of business research : "Analysis and comparison of financial analysts', time series, and combined forecast of annual earnings", 24 (1992) 269-280," International Journal of Forecasting, Elsevier, vol. 8(4), pages 649-649, December.
    6. Fildes, Robert & Hibon, Michele & Makridakis, Spyros & Meade, Nigel, 1998. "Generalising about univariate forecasting methods: further empirical evidence," International Journal of Forecasting, Elsevier, vol. 14(3), pages 339-358, September.
    7. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    8. Armstrong, J. Scott, 1989. "Combining forecasts: The end of the beginning or the beginning of the end?," International Journal of Forecasting, Elsevier, vol. 5(4), pages 585-588.
    9. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
    10. Hyndman, Rob J. & Billah, Baki, 2003. "Unmasking the Theta method," International Journal of Forecasting, Elsevier, vol. 19(2), pages 287-290.
    11. Bell, William R & Hillmer, Steven C, 1984. "Issues Involved with the Seasonal Adjustment of Economic Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(4), pages 291-320, October.
    12. Holt, Charles C., 2004. "Author's retrospective on 'Forecasting seasonals and trends by exponentially weighted moving averages'," International Journal of Forecasting, Elsevier, vol. 20(1), pages 11-13.
    13. Book Review, 2000. "Book review," International Journal of Forecasting, Elsevier, vol. 16(1), pages 138-140.
    14. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    15. Spyros Makridakis & Robert L. Winkler, 1983. "Averages of Forecasts: Some Empirical Results," Management Science, INFORMS, vol. 29(9), pages 987-996, September.
    16. Arnold Zellner, 1978. "Seasonal Analysis of Economic Time Series," NBER Books, National Bureau of Economic Research, Inc, number zell78-1.
    17. Hyndman, Rob J. & Koehler, Anne B. & Snyder, Ralph D. & Grose, Simone, 2002. "A state space framework for automatic forecasting using exponential smoothing methods," International Journal of Forecasting, Elsevier, vol. 18(3), pages 439-454.
    18. Engle, Robert F. & White (the late), Halbert (ed.), 1999. "Cointegration, Causality, and Forecasting: Festschrift in Honour of Clive W. J. Granger," OUP Catalogue, Oxford University Press, number 9780198296836.
    19. Francis X. Diebold & Jose A. Lopez, 1995. "Forecast evaluation and combination," Research Paper 9525, Federal Reserve Bank of New York.
    20. Makridakis, Spyros, 1989. "Why combining works?," International Journal of Forecasting, Elsevier, vol. 5(4), pages 601-603.
    21. Tashman, Leonard J., 2000. "Out-of-sample tests of forecasting accuracy: an analysis and review," International Journal of Forecasting, Elsevier, vol. 16(4), pages 437-450.
    22. Assimakopoulos, V. & Nikolopoulos, K., 2000. "The theta model: a decomposition approach to forecasting," International Journal of Forecasting, Elsevier, vol. 16(4), pages 521-530.
    23. de Menezes, Lilian M. & W. Bunn, Derek & Taylor, James W., 2000. "Review of guidelines for the use of combined forecasts," European Journal of Operational Research, Elsevier, vol. 120(1), pages 190-204, January.
    24. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    25. Frederick R. Macaulay, 1938. "Some Theoretical Problems Suggested by the Movements of Interest Rates, Bond Yields and Stock Prices in the United States since 1856," NBER Books, National Bureau of Economic Research, Inc, number maca38-1.
    26. Holt, Charles C., 2004. "Forecasting seasonals and trends by exponentially weighted moving averages," International Journal of Forecasting, Elsevier, vol. 20(1), pages 5-10.
    27. Anne B. Koehler & Rob J. Hyndman & Ralph D. Snyder & J. Keith Ord, 2005. "Prediction intervals for exponential smoothing using two new classes of state space models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(1), pages 17-37.
    28. Rob J. Hyndman, 2006. "Another Look at Forecast Accuracy Metrics for Intermittent Demand," Foresight: The International Journal of Applied Forecasting, International Institute of Forecasters, issue 4, pages 43-46, June.
    29. Timmermann, Allan, 2006. "Forecast Combinations," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 4, pages 135-196, Elsevier.
    30. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    31. Lobo, Gerald J., 1992. "Analysis and comparison of financial analysts', time series, and combined forecasts of annual earnings," Journal of Business Research, Elsevier, vol. 24(3), pages 269-280, May.
    32. Pesaran, M. Hashem & Timmermann, Allan, 2007. "Selection of estimation window in the presence of breaks," Journal of Econometrics, Elsevier, vol. 137(1), pages 134-161, March.
    33. Armstrong, J. Scott & Collopy, Fred, 1992. "Error measures for generalizing about forecasting methods: Empirical comparisons," International Journal of Forecasting, Elsevier, vol. 8(1), pages 69-80, June.
    34. Massimiliano Marcellino, "undated". "Forecast pooling for short time series of macroeconomic variables," Working Papers 212, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    35. Thompson, Patrick A., 1992. "A statistician in search of a population," International Journal of Forecasting, Elsevier, vol. 8(1), pages 103-104, June.
    36. Thompson, Patrick A., 1990. "An MSE statistic for comparing forecast accuracy across series," International Journal of Forecasting, Elsevier, vol. 6(2), pages 219-227, July.
    37. G. Elliott & C. Granger & A. Timmermann (ed.), 2006. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 1, number 1.
    38. Bell, William R & Hillmer, Steven C, 1984. "Issues Involved with the Seasonal Adjustment of Time Series: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(4), pages 343-349, October.
    39. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
    40. Goodwin, Paul & Lawton, Richard, 1999. "On the asymmetry of the symmetric MAPE," International Journal of Forecasting, Elsevier, vol. 15(4), pages 405-408, October.
    41. Book Review, 2000. "Book review," International Journal of Forecasting, Elsevier, vol. 16(1), pages 132-133.
    42. Victor Gómez & Agustín Maravall, 1996. "Programs TRAMO and SEATS, Instruction for User (Beta Version: september 1996)," Working Papers 9628, Banco de España.
    43. Chen, Chunhang, 1997. "Robustness properties of some forecasting methods for seasonal time series: A Monte Carlo study," International Journal of Forecasting, Elsevier, vol. 13(2), pages 269-280, June.
    44. Armstrong, J. Scott, 2006. "Findings from evidence-based forecasting: Methods for reducing forecast error," International Journal of Forecasting, Elsevier, vol. 22(3), pages 583-598.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Zhou & Wei Wang & Xuedong Hua & Yi Zhang, 2020. "Real-Time Traffic Flow Forecasting via a Novel Method Combining Periodic-Trend Decomposition," Sustainability, MDPI, vol. 12(15), pages 1-23, July.
    2. Dhanya Jothimani & Ravi Shankar & Surendra S. Yadav, 2016. "Discrete Wavelet Transform-Based Prediction of Stock Index: A Study on National Stock Exchange Fifty Index," Papers 1605.07278, arXiv.org.
    3. Linh Nguyen & Vilém Novák & Soheyla Mirshahi, 2020. "Trend‐cycle Estimation Using Fuzzy Transform and Its Application for Identifying Bull and Bear Phases in Markets," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 27(3), pages 111-124, July.
    4. Ribeiro, Matheus Henrique Dal Molin & da Silva, Ramon Gomes & Ribeiro, Gabriel Trierweiler & Mariani, Viviana Cocco & Coelho, Leandro dos Santos, 2023. "Cooperative ensemble learning model improves electric short-term load forecasting," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    5. José Francisco Martoreli Júnior & Antônio Carlos Vieira Ramos & Josilene Dalia Alves & Juliane de Almeida Crispim & Luana Seles Alves & Thaís Zamboni Berra & Tatiana Pestana Barbosa & Fernanda Bruzade, 2021. "Inequality of gender, age and disabilities due to leprosy and trends in a hyperendemic metropolis: Evidence from an eleven-year time series study in Central-West Brazil," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 15(11), pages 1-16, November.
    6. Yu, Jize & Zhang, Li & Peng, Lijuan & Wu, Rui, 2023. "Which component of air quality index drives stock price volatility in China: a decomposition-based forecasting method," Finance Research Letters, Elsevier, vol. 51(C).
    7. Barrow, Devon K., 2016. "Forecasting intraday call arrivals using the seasonal moving average method," Journal of Business Research, Elsevier, vol. 69(12), pages 6088-6096.
    8. de Oliveira, Erick Meira & Cyrino Oliveira, Fernando Luiz, 2018. "Forecasting mid-long term electric energy consumption through bagging ARIMA and exponential smoothing methods," Energy, Elsevier, vol. 144(C), pages 776-788.
    9. Chao Huang & Michael Edesess & Alain Bensoussan & Kwok L. Tsui, 2016. "Performance Analysis of a Grid-Connected Upgraded Metallurgical Grade Silicon Photovoltaic System," Energies, MDPI, vol. 9(5), pages 1-15, May.
    10. Theresa Maria Rausch & Tobias Albrecht & Daniel Baier, 2022. "Beyond the beaten paths of forecasting call center arrivals: on the use of dynamic harmonic regression with predictor variables," Journal of Business Economics, Springer, vol. 92(4), pages 675-706, May.
    11. Xu, Li & Ou, Yanxia & Cai, Jingjing & Wang, Jin & Fu, Yang & Bian, Xiaoyan, 2023. "Offshore wind speed assessment with statistical and attention-based neural network methods based on STL decomposition," Renewable Energy, Elsevier, vol. 216(C).
    12. Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2022. "Forecasting natural gas consumption using Bagging and modified regularization techniques," Energy Economics, Elsevier, vol. 106(C).
    13. Hong, Yanran & Yu, Jize & Su, Yuquan & Wang, Lu, 2023. "Southern oscillation: Great value of its trends for forecasting crude oil spot price volatility," International Review of Economics & Finance, Elsevier, vol. 84(C), pages 358-368.
    14. Su, Yuandong & Liang, Chao & Zhang, Li & Zeng, Qing, 2022. "Uncover the response of the U.S grain commodity market on El Niño–Southern Oscillation," International Review of Economics & Finance, Elsevier, vol. 81(C), pages 98-112.
    15. Lin, Yong & Wang, Renyu & Gong, Xingyue & Jia, Guozhu, 2022. "Cross-correlation and forecast impact of public attention on USD/CNY exchange rate: Evidence from Baidu Index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    16. Hao Yang & Weide Li, 2023. "Data Decomposition, Seasonal Adjustment Method and Machine Learning Combined for Runoff Prediction: A Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(1), pages 557-581, January.
    17. Zhang, Li & Wang, Lu & Wang, Xunxiao & Zhang, Yaojie & Pan, Zhigang, 2022. "How macro-variables drive crude oil volatility? Perspective from the STL-based iterated combination method," Resources Policy, Elsevier, vol. 77(C).
    18. Seyma Gozuyilmaz & O. Erhun Kundakcioglu, 2021. "Mathematical optimization for time series decomposition," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(3), pages 733-758, September.
    19. Jaganathan, Srihari & Prakash, P.K.S., 2020. "A combination-based forecasting method for the M4-competition," International Journal of Forecasting, Elsevier, vol. 36(1), pages 98-104.
    20. Lifeng Wu & Xiaohui Gao & Yanli Xiao & Sifeng Liu & Yingjie Yang, 2017. "Using grey Holt–Winters model to predict the air quality index for cities in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 1003-1012, September.
    21. Wang, Lu & Wu, Rui & Ma, WeiChun & Xu, Weiju, 2023. "Examining the volatility of soybean market in the MIDAS framework: The importance of bagging-based weather information," International Review of Financial Analysis, Elsevier, vol. 89(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jan G. De Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Monash Econometrics and Business Statistics Working Papers 12/05, Monash University, Department of Econometrics and Business Statistics.
    2. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    3. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    4. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    5. Gardner, Everette Jr., 2006. "Exponential smoothing: The state of the art--Part II," International Journal of Forecasting, Elsevier, vol. 22(4), pages 637-666.
    6. Timmermann, Allan, 2006. "Forecast Combinations," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 4, pages 135-196, Elsevier.
    7. Kang, Yanfei & Spiliotis, Evangelos & Petropoulos, Fotios & Athiniotis, Nikolaos & Li, Feng & Assimakopoulos, Vassilios, 2021. "Déjà vu: A data-centric forecasting approach through time series cross-similarity," Journal of Business Research, Elsevier, vol. 132(C), pages 719-731.
    8. Andrawis, Robert R. & Atiya, Amir F. & El-Shishiny, Hisham, 2011. "Combination of long term and short term forecasts, with application to tourism demand forecasting," International Journal of Forecasting, Elsevier, vol. 27(3), pages 870-886, July.
    9. Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
    10. Makridakis, Spyros & Hyndman, Rob J. & Petropoulos, Fotios, 2020. "Forecasting in social settings: The state of the art," International Journal of Forecasting, Elsevier, vol. 36(1), pages 15-28.
    11. Andrawis, Robert R. & Atiya, Amir F. & El-Shishiny, Hisham, 2011. "Forecast combinations of computational intelligence and linear models for the NN5 time series forecasting competition," International Journal of Forecasting, Elsevier, vol. 27(3), pages 672-688, July.
    12. Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2022. "Forecasting natural gas consumption using Bagging and modified regularization techniques," Energy Economics, Elsevier, vol. 106(C).
    13. Hill, Arthur V. & Zhang, Weiyong & Burch, Gerald F., 2015. "Forecasting the forecastability quotient for inventory management," International Journal of Forecasting, Elsevier, vol. 31(3), pages 651-663.
    14. Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2020. "The M4 Competition: 100,000 time series and 61 forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(1), pages 54-74.
    15. Petropoulos, Fotios & Makridakis, Spyros & Assimakopoulos, Vassilios & Nikolopoulos, Konstantinos, 2014. "‘Horses for Courses’ in demand forecasting," European Journal of Operational Research, Elsevier, vol. 237(1), pages 152-163.
    16. Fiorucci, Jose A. & Pellegrini, Tiago R. & Louzada, Francisco & Petropoulos, Fotios & Koehler, Anne B., 2016. "Models for optimising the theta method and their relationship to state space models," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1151-1161.
    17. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    18. Athanasopoulos, George & Hyndman, Rob J. & Song, Haiyan & Wu, Doris C., 2011. "The tourism forecasting competition," International Journal of Forecasting, Elsevier, vol. 27(3), pages 822-844.
    19. Kim, Sungil & Kim, Heeyoung, 2016. "A new metric of absolute percentage error for intermittent demand forecasts," International Journal of Forecasting, Elsevier, vol. 32(3), pages 669-679.
    20. Bordignon, Silvano & Bunn, Derek W. & Lisi, Francesco & Nan, Fany, 2013. "Combining day-ahead forecasts for British electricity prices," Energy Economics, Elsevier, vol. 35(C), pages 88-103.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:27:y:2011:i:4:p:1178-1195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.