IDEAS home Printed from https://ideas.repec.org/p/anc/wpaper/483.html
   My bibliography  Save this paper

Idiosyncratic and systematic spillovers through the renewable energy financial systems

Author

Listed:
  • Marco Tedeschi

    (Department of Economics and Social Sciences, Universita' Politecnica delle Marche)

Abstract

This study examines the relationship between fossil fuels energy prices and renewable energy ETFs through a two-step approach: cointegration analysis and volatility spillover examination at both aggregate and frequency levels. Using daily closing prices from May 5, 2014, to October 31, 2023, we find evidence of cointegration among prices and a substitutedness (complementarity) relationship between fossil fuels and eolic (solar) energy. Exploring the system's common trend and correction mechanism underscores the influential role of growing Environmental, Social, and Governance (ESG) sentiment in the market. External events, such as the Russia-Ukraine war and the Covid-19 pandemic, have discernible impacts on financial prices. The study provides valuable implications for investors and hedgers, offering guidance for portfolio optimization and emphasizing the consideration of sustainable financial products.

Suggested Citation

  • Marco Tedeschi, 2023. "Idiosyncratic and systematic spillovers through the renewable energy financial systems," Working Papers 483, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
  • Handle: RePEc:anc:wpaper:483
    as

    Download full text from publisher

    File URL: http://docs.dises.univpm.it/web/quaderni/pdf/483.pdf
    File Function: First version, 2023
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiaohui Zhao, 2020. "Do the stock returns of clean energy corporations respond to oil price shocks and policy uncertainty?," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 9(1), pages 1-16, December.
    2. Francis X. Diebold & Kamil Yilmaz, 2009. "Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets," Economic Journal, Royal Economic Society, vol. 119(534), pages 158-171, January.
    3. Ferrer, Román & Shahzad, Syed Jawad Hussain & López, Raquel & Jareño, Francisco, 2018. "Time and frequency dynamics of connectedness between renewable energy stocks and crude oil prices," Energy Economics, Elsevier, vol. 76(C), pages 1-20.
    4. Robert G. Eccles & Mirtha D. Kastrapeli & Stephanie J. Potter, 2017. "How to Integrate ESG into Investment Decision†Making: Results of a Global Survey of Institutional Investors," Journal of Applied Corporate Finance, Morgan Stanley, vol. 29(4), pages 125-133, December.
    5. Pesaran, M Hashem & Timmermann, Allan, 1992. "A Simple Nonparametric Test of Predictive Performance," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 561-565, October.
    6. Hanif, Waqas & Mensi, Walid & Gubareva, Mariya & Teplova, Tamara, 2023. "Impacts of COVID-19 on dynamic return and volatility spillovers between rare earth metals and renewable energy stock markets," Resources Policy, Elsevier, vol. 80(C).
    7. Dominioni, Goran & Romano, Alessandro & Sotis, Chiari, 2019. "A quantitative study of the interactions between oil price and renewable energy sources stock prices," LSE Research Online Documents on Economics 100548, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abiodun Moses Adetokunbo & Afe Success Mevhare, 2024. "The interconnectivity between green stocks, oil prices, and uncertainty surrounding economic policy: indications from the United States," SN Business & Economics, Springer, vol. 4(2), pages 1-26, February.
    2. Basher, Syed Abul & Sadorsky, Perry, 2024. "Do climate change risks affect the systemic risk between the stocks of clean energy, electric vehicles, and critical minerals? Analysis under changing market conditions," Energy Economics, Elsevier, vol. 138(C).
    3. Han, Lin & Kordzakhia, Nino & Trück, Stefan, 2020. "Volatility spillovers in Australian electricity markets," Energy Economics, Elsevier, vol. 90(C).
    4. Lovcha, Yuliya & Perez-Laborda, Alejandro, 2020. "Dynamic frequency connectedness between oil and natural gas volatilities," Economic Modelling, Elsevier, vol. 84(C), pages 181-189.
    5. Kinkyo, Takuji, 2021. "Region-wide connectedness of Asian equity and currency markets," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    6. Wang, Zi-Xin & Liu, Bing-Yue & Fan, Ying, 2023. "Network connectedness between China's crude oil futures and sector stock indices," Energy Economics, Elsevier, vol. 125(C).
    7. Ana Alzate-Ortega & Natalia Garzón & Jesús Molina-Muñoz, 2024. "Volatility Spillovers in Emerging Markets: Oil Shocks, Energy, Stocks, and Gold," Energies, MDPI, vol. 17(2), pages 1-19, January.
    8. Tiwari, Aviral Kumar & Trabelsi, Nader & Abakah, Emmanuel Joel Aikins & Nasreen, Samia & Lee, Chien-Chiang, 2023. "An empirical analysis of the dynamic relationship between clean and dirty energy markets," Energy Economics, Elsevier, vol. 124(C).
    9. Gong, Xiao-Li & Zhao, Min & Wu, Zhuo-Cheng & Jia, Kai-Wen & Xiong, Xiong, 2023. "Research on tail risk contagion in international energy markets—The quantile time-frequency volatility spillover perspective," Energy Economics, Elsevier, vol. 121(C).
    10. Guo, Junjie & Li, Youshu & Shao, Qinglong, 2022. "Cross-category spillover effects of economic policy uncertainty between China and the US: Time and frequency evidence," Journal of Asian Economics, Elsevier, vol. 80(C).
    11. Caporin, Massimiliano & Naeem, Muhammad Abubakr & Arif, Muhammad & Hasan, Mudassar & Vo, Xuan Vinh & Hussain Shahzad, Syed Jawad, 2021. "Asymmetric and time-frequency spillovers among commodities using high-frequency data," Resources Policy, Elsevier, vol. 70(C).
    12. Umar, Zaghum & Jareño, Francisco & Escribano, Ana, 2021. "Oil price shocks and the return and volatility spillover between industrial and precious metals," Energy Economics, Elsevier, vol. 99(C).
    13. Hemrit, Wael & Benlagha, Noureddine, 2021. "Does renewable energy index respond to the pandemic uncertainty?," Renewable Energy, Elsevier, vol. 177(C), pages 336-347.
    14. Jareño, Francisco & González, María de la O & Tolentino, Marta & Sierra, Karen, 2020. "Bitcoin and gold price returns: A quantile regression and NARDL analysis," Resources Policy, Elsevier, vol. 67(C).
    15. Liu, Min & Guo, Tongji & Ping, Weiying & Luo, Liangqing, 2023. "Sustainability and stability: Will ESG investment reduce the return and volatility spillover effects across the Chinese financial market?," Energy Economics, Elsevier, vol. 121(C).
    16. Cui Jinxin & Zou Huiwen, 2020. "Connectedness Among Economic Policy Uncertainties: Evidence from the Time and Frequency Domain Perspectives," Journal of Systems Science and Information, De Gruyter, vol. 8(5), pages 401-433, October.
    17. Sevillano, María Caridad & Jareño, Francisco & López, Raquel & Esparcia, Carlos, 2024. "Connectedness between oil price shocks and US sector returns: Evidence from TVP-VAR and wavelet decomposition," Energy Economics, Elsevier, vol. 131(C).
    18. Liu, Chen & Shao, Zhen & Jiao, Jianling & Yang, Shanlin, 2024. "How connected is withholding capacity to electricity, fossil fuel and carbon markets? Perspectives from a high renewable energy consumption economy," Energy Policy, Elsevier, vol. 185(C).
    19. Wei, Yu & Zhang, Yaojie & Wang, Yudong, 2022. "Information connectedness of international crude oil futures: Evidence from SC, WTI, and Brent," International Review of Financial Analysis, Elsevier, vol. 81(C).
    20. Su, Xianfang & Zhao, Yachao, 2023. "What has the strongest connectedness with clean energy? Technology, substitutes, or raw materials," Energy Economics, Elsevier, vol. 128(C).

    More about this item

    Keywords

    Cointegration; Spillovers: Renewable Energies; Fossil Fuels; ESG.;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:anc:wpaper:483. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Maurizio Mariotti (email available below). General contact details of provider: https://edirc.repec.org/data/deancit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.