IDEAS home Printed from https://ideas.repec.org/a/eee/jeborg/v223y2024icp168-184.html
   My bibliography  Save this article

Measuring the impact of climate risk on renewable energy stock volatility: A case study of G20 economies

Author

Listed:
  • Zhang, Li
  • Liang, Chao
  • Huynh, Luu Duc Toan
  • Wang, Lu
  • Damette, Olivier

Abstract

The contemporary world faces significant challenges in energy crises and climate change. To analyze the relationship between energy and climate, we explore the influence of the climate-related attention of G20 countries on renewable energy stock volatility forecasting under the framework of the extended GARCH-MIDAS model. In the context of COP26, we further adopt natural language processing technology and shrinkage approach to obtain Google search volume for 107 climate-related keywords and then construct new climate risk attention indicators. The in-sample parameter estimation results show that the climate attention of G20 countries has a remarkable positive effect on the renewable energy stock market volatility. The out-of-sample results demonstrate that the climate attention of different countries exerts varying influences on the volatility of the renewable energy stock market. Climate risk and energy issues are among the serious challenges facing the 21st century, and reducing greenhouse gas emissions and finding cleaner energy is an urgent task. As the response to climate change necessitates diverse strategies in various countries, our research can offer valuable guidance and serve as a reference for national energy transitions and the selection of alternative energy solutions.

Suggested Citation

  • Zhang, Li & Liang, Chao & Huynh, Luu Duc Toan & Wang, Lu & Damette, Olivier, 2024. "Measuring the impact of climate risk on renewable energy stock volatility: A case study of G20 economies," Journal of Economic Behavior & Organization, Elsevier, vol. 223(C), pages 168-184.
  • Handle: RePEc:eee:jeborg:v:223:y:2024:i:c:p:168-184
    DOI: 10.1016/j.jebo.2024.05.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167268124001793
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jebo.2024.05.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marco Bardoscia & Stefano Battiston & Fabio Caccioli & Guido Caldarelli, 2016. "Pathways towards instability in financial networks," Papers 1602.05883, arXiv.org, revised Feb 2017.
    2. Gao, Zhenyu & Ren, Haohan & Zhang, Bohui, 2020. "Googling Investor Sentiment around the World," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(2), pages 549-580, March.
    3. Pesaran, M Hashem & Timmermann, Allan, 1992. "A Simple Nonparametric Test of Predictive Performance," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 561-565, October.
    4. Degiannakis, Stavros & Filis, George, 2017. "Forecasting oil price realized volatility using information channels from other asset classes," Journal of International Money and Finance, Elsevier, vol. 76(C), pages 28-49.
    5. Peter R. Hansen & Asger Lunde & James M. Nason, 2011. "The Model Confidence Set," Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
    6. David E. H. J. Gernaat & Harmen Sytze Boer & Vassilis Daioglou & Seleshi G. Yalew & Christoph Müller & Detlef P. Vuuren, 2021. "Climate change impacts on renewable energy supply," Nature Climate Change, Nature, vol. 11(2), pages 119-125, February.
    7. Bessler, Wolfgang & Wolff, Dominik, 2015. "Do commodities add value in multi-asset portfolios? An out-of-sample analysis for different investment strategies," Journal of Banking & Finance, Elsevier, vol. 60(C), pages 1-20.
    8. Bekaert, Geert & Hoerova, Marie, 2014. "The VIX, the variance premium and stock market volatility," Journal of Econometrics, Elsevier, vol. 183(2), pages 181-192.
    9. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    10. Bauer, Michael & Huber, Daniel & Rudebusch, Glenn & Wilms, Ole, 2022. "Where is the carbon premium? Global performance of green and brown stocks," Other publications TiSEM 6b117156-316d-440a-9fa5-b, Tilburg University, School of Economics and Management.
    11. Yan‐ran Ma & Qiang Ji & Jiaofeng Pan, 2019. "Oil financialization and volatility forecast: Evidence from multidimensional predictors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(6), pages 564-581, September.
    12. Robert F. Engle & Eric Ghysels & Bumjean Sohn, 2013. "Stock Market Volatility and Macroeconomic Fundamentals," The Review of Economics and Statistics, MIT Press, vol. 95(3), pages 776-797, July.
    13. James D. Hamilton, 2009. "Causes and Consequences of the Oil Shock of 2007-08," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 40(1 (Spring), pages 215-283.
    14. Christian Conrad & Anessa Custovic & Eric Ghysels, 2018. "Long- and Short-Term Cryptocurrency Volatility Components: A GARCH-MIDAS Analysis," JRFM, MDPI, vol. 11(2), pages 1-12, May.
    15. Kannan, Nadarajah & Vakeesan, Divagar, 2016. "Solar energy for future world: - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1092-1105.
    16. Stefano Battiston & Antoine Mandel & Irene Monasterolo & Franziska Schütze & Gabriele Visentin, 2017. "A climate stress-test of the financial system," Nature Climate Change, Nature, vol. 7(4), pages 283-288, April.
    17. Diaz-Rainey, Ivan & Gehricke, Sebastian A. & Roberts, Helen & Zhang, Renzhu, 2021. "Trump vs. Paris: The impact of climate policy on U.S. listed oil and gas firm returns and volatility," International Review of Financial Analysis, Elsevier, vol. 76(C).
    18. Dutta, Anupam & Dutta, Probal, 2022. "Geopolitical risk and renewable energy asset prices: Implications for sustainable development," Renewable Energy, Elsevier, vol. 196(C), pages 518-525.
    19. Ströbel, Johannes & Wurgler, Jeffrey, 2021. "What do you think about climate finance?," CEPR Discussion Papers 16622, C.E.P.R. Discussion Papers.
    20. Barbara Rossi & Atsushi Inoue, 2012. "Out-of-Sample Forecast Tests Robust to the Choice of Window Size," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 432-453, April.
    21. David E. H. J. Gernaat & Harmen Sytze Boer & Vassilis Daioglou & Seleshi G. Yalew & Christoph Müller & Detlef P. Vuuren, 2021. "Author Correction: Climate change impacts on renewable energy supply," Nature Climate Change, Nature, vol. 11(4), pages 362-362, April.
    22. Melody Y. Huang & Randall R. Rojas & Patrick D. Convery, 2020. "Forecasting stock market movements using Google Trend searches," Empirical Economics, Springer, vol. 59(6), pages 2821-2839, December.
    23. Lin, Chia-Yang & Chau, Ka Yin & Tran, Trung Kien & Sadiq, Muhammad & Van, Le & Hien Phan, Thi Thu, 2022. "Development of renewable energy resources by green finance, volatility and risk: Empirical evidence from China," Renewable Energy, Elsevier, vol. 201(P1), pages 821-831.
    24. Paramati, Sudharshan Reddy & Mo, Di & Gupta, Rakesh, 2017. "The effects of stock market growth and renewable energy use on CO2 emissions: Evidence from G20 countries," Energy Economics, Elsevier, vol. 66(C), pages 360-371.
    25. Anastasiou, Dimitris & Ballis, Antonis & Drakos, Konstantinos, 2022. "Constructing a positive sentiment index for COVID-19: Evidence from G20 stock markets," International Review of Financial Analysis, Elsevier, vol. 81(C).
    26. David E. Rapach & Jack K. Strauss & Guofu Zhou, 2010. "Out-of-Sample Equity Premium Prediction: Combination Forecasts and Links to the Real Economy," The Review of Financial Studies, Society for Financial Studies, vol. 23(2), pages 821-862, February.
    27. Wang, Lu & Wu, Jiangbin & Cao, Yang & Hong, Yanran, 2022. "Forecasting renewable energy stock volatility using short and long-term Markov switching GARCH-MIDAS models: Either, neither or both?," Energy Economics, Elsevier, vol. 111(C).
    28. Ferrer, Román & Shahzad, Syed Jawad Hussain & López, Raquel & Jareño, Francisco, 2018. "Time and frequency dynamics of connectedness between renewable energy stocks and crude oil prices," Energy Economics, Elsevier, vol. 76(C), pages 1-20.
    29. Wei, Yu & Yu, Qianwen & Liu, Jing & Cao, Yang, 2018. "Hot money and China’s stock market volatility: Further evidence using the GARCH–MIDAS model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 923-930.
    30. Chundakkadan, Radeef & Nedumparambil, Elizabeth, 2022. "In search of COVID-19 and stock market behavior," Global Finance Journal, Elsevier, vol. 54(C).
    31. Hemrit, Wael & Benlagha, Noureddine, 2021. "Does renewable energy index respond to the pandemic uncertainty?," Renewable Energy, Elsevier, vol. 177(C), pages 336-347.
    32. Liang, Chao & Umar, Muhammad & Ma, Feng & Huynh, Toan L.D., 2022. "Climate policy uncertainty and world renewable energy index volatility forecasting," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    33. Fu, Junhui & Wu, Xiang & Liu, Yufang & Chen, Rongda, 2021. "Firm-specific investor sentiment and stock price crash risk," Finance Research Letters, Elsevier, vol. 38(C).
    34. Li, Rong & Li, Sufang & Yuan, Di & Zhu, Huiming, 2021. "Investor attention and cryptocurrency: Evidence from wavelet-based quantile Granger causality analysis," Research in International Business and Finance, Elsevier, vol. 56(C).
    35. Dogan, Eyup & Madaleno, Mara & Taskin, Dilvin & Tzeremes, Panayiotis, 2022. "Investigating the spillovers and connectedness between green finance and renewable energy sources," Renewable Energy, Elsevier, vol. 197(C), pages 709-722.
    36. Grubb, Michael, 2001. "Who's afraid of atmospheric stabilisation? Making the link between energy resources and climate change," Energy Policy, Elsevier, vol. 29(11), pages 837-845, September.
    37. Wu, Binrong & Wang, Lin & Wang, Sirui & Zeng, Yu-Rong, 2021. "Forecasting the U.S. oil markets based on social media information during the COVID-19 pandemic," Energy, Elsevier, vol. 226(C).
    38. Fang, Kai & Zhou, Yunheng & Wang, Shuang & Ye, Ruike & Guo, Sujian, 2018. "Assessing national renewable energy competitiveness of the G20: A revised Porter's Diamond Model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 719-731.
    39. Swamy, Vighneswara & Dharani, M. & Takeda, Fumiko, 2019. "Investor attention and Google Search Volume Index: Evidence from an emerging market using quantile regression analysis," Research in International Business and Finance, Elsevier, vol. 50(C), pages 1-17.
    40. Li, Xin & Ma, Jian & Wang, Shouyang & Zhang, Xun, 2015. "How does Google search affect trader positions and crude oil prices?," Economic Modelling, Elsevier, vol. 49(C), pages 162-171.
    41. Damette Olivier & Gaye Del Lo, 2022. "Renewable energy drivers in France: a spatial econometric perspective," Regional Studies, Taylor & Francis Journals, vol. 56(10), pages 1633-1654, October.
    42. Afkhami, Mohamad & Cormack, Lindsey & Ghoddusi, Hamed, 2017. "Google search keywords that best predict energy price volatility," Energy Economics, Elsevier, vol. 67(C), pages 17-27.
    43. Arthur A. Benthem & Edmund Crooks & Stefano Giglio & Eugenie Schwob & Johannes Stroebel, 2022. "The effect of climate risks on the interactions between financial markets and energy companies," Nature Energy, Nature, vol. 7(8), pages 690-697, August.
    44. Liang, Chao & Xia, Zhenglan & Lai, Xiaodong & Wang, Lu, 2022. "Natural gas volatility prediction: Fresh evidence from extreme weather and extended GARCH-MIDAS-ES model," Energy Economics, Elsevier, vol. 116(C).
    45. Julien Boulange & Naota Hanasaki & Dai Yamazaki & Yadu Pokhrel, 2021. "Role of dams in reducing global flood exposure under climate change," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    46. Marco Bardoscia & Stefano Battiston & Fabio Caccioli & Guido Caldarelli, 2017. "Pathways towards instability in financial networks," Nature Communications, Nature, vol. 8(1), pages 1-7, April.
    47. Leonardo Nascimento & Takeshi Kuramochi & Gabriela Iacobuta & Michel den Elzen & Hanna Fekete & Marie Weishaupt & Heleen Laura van Soest & Mark Roelfsema & Gustavo De Vivero-Serrano & Swithin Lui & Fr, 2022. "Twenty years of climate policy: G20 coverage and gaps," Climate Policy, Taylor & Francis Journals, vol. 22(2), pages 158-174, February.
    48. Hayashi, Masatsugu & Hughes, Larry, 2013. "The Fukushima nuclear accident and its effect on global energy security," Energy Policy, Elsevier, vol. 59(C), pages 102-111.
    49. Feng Ma & Chao Liang & Qing Zeng & Haibo Li, 2021. "Jumps and oil futures volatility forecasting: a new insight," Quantitative Finance, Taylor & Francis Journals, vol. 21(5), pages 853-863, May.
    50. Steven Slaughter, 2017. "The G20 and Climate Change: The Transnational Contribution of Global Summitry," Global Policy, London School of Economics and Political Science, vol. 8(3), pages 285-293, September.
    51. Venturini, Alessio, 2022. "Climate change, risk factors and stock returns: A review of the literature," International Review of Financial Analysis, Elsevier, vol. 79(C).
    52. Bangwayo-Skeete, Prosper F. & Skeete, Ryan W., 2015. "Can Google data improve the forecasting performance of tourist arrivals? Mixed-data sampling approach," Tourism Management, Elsevier, vol. 46(C), pages 454-464.
    53. Liang, Chao & Li, Yan & Ma, Feng & Wei, Yu, 2021. "Global equity market volatilities forecasting: A comparison of leverage effects, jumps, and overnight information," International Review of Financial Analysis, Elsevier, vol. 75(C).
    54. Zhang, Yaojie & Ma, Feng & Shi, Benshan & Huang, Dengshi, 2018. "Forecasting the prices of crude oil: An iterated combination approach," Energy Economics, Elsevier, vol. 70(C), pages 472-483.
    55. Herrera, Gabriel Paes & Constantino, Michel & Su, Jen-Je & Naranpanawa, Athula, 2022. "Renewable energy stocks forecast using Twitter investor sentiment and deep learning," Energy Economics, Elsevier, vol. 114(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Guangqiang & Xu, Weiju & Nguyen, Quang Minh, 2024. "Can the energy transition drive economic development? Empirical analysis of China's provincial panel data," Technological Forecasting and Social Change, Elsevier, vol. 206(C).
    2. Nicholas Apergis & Iraklis Apergis, 2024. "Transition climate risks and corporate risky asset holdings: evidence from US firms," Economics and Business Letters, Oviedo University Press, vol. 13(4), pages 172-182.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Li & Wang, Lu & Peng, Lijuan & Luo, Keyu, 2023. "Measuring the response of clean energy stock price volatility to extreme shocks," Renewable Energy, Elsevier, vol. 206(C), pages 1289-1300.
    2. Wang, Ping & Han, Wei & Huang, Chengcheng & Duong, Duy, 2022. "Forecasting realised volatility from search volume and overnight sentiment: Evidence from China," Research in International Business and Finance, Elsevier, vol. 62(C).
    3. Liang, Chao & Umar, Muhammad & Ma, Feng & Huynh, Toan L.D., 2022. "Climate policy uncertainty and world renewable energy index volatility forecasting," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    4. Mei, Dexiang & Zhao, Chenchen & Luo, Qin & Li, Yan, 2022. "Forecasting the Chinese low-carbon index volatility," Resources Policy, Elsevier, vol. 77(C).
    5. Duan, Huayou & Zhao, Chenchen & Wang, Lu & Liu, Guangqiang, 2024. "The relationship between renewable energy attention and volatility: A HAR model with markov time-varying transition probability," Research in International Business and Finance, Elsevier, vol. 71(C).
    6. Liu, Guangqiang & Guo, Xiaozhu, 2022. "Forecasting stock market volatility using commodity futures volatility information," Resources Policy, Elsevier, vol. 75(C).
    7. Chen, Zhonglu & Zhang, Li & Weng, Chen, 2023. "Does climate policy uncertainty affect Chinese stock market volatility?," International Review of Economics & Finance, Elsevier, vol. 84(C), pages 369-381.
    8. Zhang, Yaojie & Lei, Likun & Wei, Yu, 2020. "Forecasting the Chinese stock market volatility with international market volatilities: The role of regime switching," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    9. Chao Liang & Feng Ma & Lu Wang & Qing Zeng, 2021. "The information content of uncertainty indices for natural gas futures volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1310-1324, November.
    10. Lu, Xinjie & Ma, Feng & Xu, Jin & Zhang, Zehui, 2022. "Oil futures volatility predictability: New evidence based on machine learning models11All the authors contribute to the paper equally," International Review of Financial Analysis, Elsevier, vol. 83(C).
    11. Chao Liang & Yaojie Zhang & Xiafei Li & Feng Ma, 2022. "Which predictor is more predictive for Bitcoin volatility? And why?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 1947-1961, April.
    12. Liang, Chao & Wang, Lu & Duong, Duy, 2024. "More attention and better volatility forecast accuracy: How does war attention affect stock volatility predictability?," Journal of Economic Behavior & Organization, Elsevier, vol. 218(C), pages 1-19.
    13. Guo, Yangli & Ma, Feng & Li, Haibo & Lai, Xiaodong, 2022. "Oil price volatility predictability based on global economic conditions," International Review of Financial Analysis, Elsevier, vol. 82(C).
    14. Liang, Chao & Luo, Qin & Li, Yan & Huynh, Luu Duc Toan, 2023. "Global financial stress index and long-term volatility forecast for international stock markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 88(C).
    15. Zhang, Yaojie & Ma, Feng & Wei, Yu, 2019. "Out-of-sample prediction of the oil futures market volatility: A comparison of new and traditional combination approaches," Energy Economics, Elsevier, vol. 81(C), pages 1109-1120.
    16. Zhang, Li & Wang, Lu & Wang, Xunxiao & Zhang, Yaojie & Pan, Zhigang, 2022. "How macro-variables drive crude oil volatility? Perspective from the STL-based iterated combination method," Resources Policy, Elsevier, vol. 77(C).
    17. Chen, Juan & Xiao, Zuoping & Bai, Jiancheng & Guo, Hongling, 2023. "Predicting volatility in natural gas under a cloud of uncertainties," Resources Policy, Elsevier, vol. 82(C).
    18. Zhang, Li & Li, Yan & Yu, Sixin & Wang, Lu, 2023. "Risk transmission of El Niño-induced climate change to regional Green Economy Index," Economic Analysis and Policy, Elsevier, vol. 79(C), pages 860-872.
    19. Lu, Fei & Ma, Feng & Li, Pan & Huang, Dengshi, 2022. "Natural gas volatility predictability in a data-rich world," International Review of Financial Analysis, Elsevier, vol. 83(C).
    20. Chao Liang & Yu Wei & Likun Lei & Feng Ma, 2022. "Global equity market volatility forecasting: New evidence," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 594-609, January.

    More about this item

    Keywords

    Climate crisis; G20 economies; Climate risk attention; Renewable energy stock; Volatility forecasting;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jeborg:v:223:y:2024:i:c:p:168-184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jebo .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.