IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v54y2003i1d10.1057_palgrave.jors.2601472.html
   My bibliography  Save this article

Optimality and robustness of combinations of moving averages

Author

Listed:
  • J E Boylan

    (Buckinghamshire Chilterns University College)

  • F R Johnston

    (University of Warwick)

Abstract

A combination of moving averages has been shown previously to be more accurate than simple moving averages, under certain conditions, and to be more robust to non-optimal parameter specification. However, the use of the method depends on specification of three parameters: length of greater moving average, length of shorter moving average, and the weighting given to the former. In this paper, expressions are derived for the optimal values of the three parameters, under the conditions of a steady state model. These expressions reduce a three-parameter search to a single-parameter search. An expression is given for the variance of the sampling error of the optimal combination of moving averages and this is shown to be marginally greater than that for exponentially weighted moving averages (EWMA). Similar expressions for optimal parameters and the resultant variance are derived for equally weighted combinations. The sampling variance of the mean of such combinations is shown to be almost identical to the optimal general combination, thus simplifying the use of combinations further. It is demonstrated that equal weight combinations are more robust than EWMA to noise to signal ratios lower than expected, but less robust to noise to signal ratios higher than expected.

Suggested Citation

  • J E Boylan & F R Johnston, 2003. "Optimality and robustness of combinations of moving averages," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(1), pages 109-115, January.
  • Handle: RePEc:pal:jorsoc:v:54:y:2003:i:1:d:10.1057_palgrave.jors.2601472
    DOI: 10.1057/palgrave.jors.2601472
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/palgrave.jors.2601472
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/palgrave.jors.2601472?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. F R Johnston & J E Boylan & E Shale & M Meadows, 1999. "A robust forecasting system, based on the combination of two simple moving averages," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(12), pages 1199-1204, December.
    2. F R Johnston & J E Boyland & M Meadows & E Shale, 1999. "Some properties of a simple moving average when applied to forecasting a time series," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(12), pages 1267-1271, December.
    3. Satchell, Steve & Timmermann, Allan, 1995. "On the optimality of adaptive expectations: Muth revisited," International Journal of Forecasting, Elsevier, vol. 11(3), pages 407-416, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tliche, Youssef & Taghipour, Atour & Canel-Depitre, Béatrice, 2020. "An improved forecasting approach to reduce inventory levels in decentralized supply chains," European Journal of Operational Research, Elsevier, vol. 287(2), pages 511-527.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Strijbosch, Leo W.G. & Syntetos, Aris A. & Boylan, John E. & Janssen, Elleke, 2011. "On the interaction between forecasting and stock control: The case of non-stationary demand," International Journal of Production Economics, Elsevier, vol. 133(1), pages 470-480, September.
    2. Dimitrios Kontogiannis & Dimitrios Bargiotas & Aspassia Daskalopulu & Lefteri H. Tsoukalas, 2021. "A Meta-Modeling Power Consumption Forecasting Approach Combining Client Similarity and Causality," Energies, MDPI, vol. 14(19), pages 1-19, September.
    3. S. M. Masrur Ahmed, 2023. "Sizing Strategies for Algorithmic Trading in Volatile Markets: A Study of Backtesting and Risk Mitigation Analysis," Papers 2309.09094, arXiv.org, revised Sep 2023.
    4. Theodosiou, Marina, 2011. "Forecasting monthly and quarterly time series using STL decomposition," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1178-1195, October.
    5. Syntetos, Aris A. & Boylan, John E., 2005. "The accuracy of intermittent demand estimates," International Journal of Forecasting, Elsevier, vol. 21(2), pages 303-314.
    6. Costello, Greg & Fraser, Patricia & Groenewold, Nicolaas, 2011. "House prices, non-fundamental components and interstate spillovers: The Australian experience," Journal of Banking & Finance, Elsevier, vol. 35(3), pages 653-669, March.
    7. Tliche, Youssef & Taghipour, Atour & Canel-Depitre, Béatrice, 2020. "An improved forecasting approach to reduce inventory levels in decentralized supply chains," European Journal of Operational Research, Elsevier, vol. 287(2), pages 511-527.
    8. F Caniato & M Kalchschmidt & S Ronchi, 2011. "Integrating quantitative and qualitative forecasting approaches: organizational learning in an action research case," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(3), pages 413-424, March.
    9. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    10. Jan G. De Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Monash Econometrics and Business Statistics Working Papers 12/05, Monash University, Department of Econometrics and Business Statistics.
    11. Sommervoll, Dag Einar & Borgersen, Trond-Arne & Wennemo, Tom, 2010. "Endogenous housing market cycles," Journal of Banking & Finance, Elsevier, vol. 34(3), pages 557-567, March.
    12. Che-Yu Hung & Chien-Chih Wang & Shi-Woei Lin & Bernard C. Jiang, 2022. "An Empirical Comparison of the Sales Forecasting Performance for Plastic Tray Manufacturing Using Missing Data," Sustainability, MDPI, vol. 14(4), pages 1-21, February.
    13. E A Shale & J E Boylan & F R Johnston, 2006. "Forecasting for intermittent demand: the estimation of an unbiased average," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(5), pages 588-592, May.
    14. Gardner, Everette Jr., 2006. "Exponential smoothing: The state of the art--Part II," International Journal of Forecasting, Elsevier, vol. 22(4), pages 637-666.
    15. Dag Einar Sommervoll, 2007. "Counterintuitive response to tax incentives? Mortgage interest deductions and the demand for debt," Discussion Papers 492, Statistics Norway, Research Department.
    16. Fernandes, Betina & Street, Alexandre & Valladão, Davi & Fernandes, Cristiano, 2016. "An adaptive robust portfolio optimization model with loss constraints based on data-driven polyhedral uncertainty sets," European Journal of Operational Research, Elsevier, vol. 255(3), pages 961-970.
    17. Katharina Hampel & Marcus Kunz & Norbert Schanne & Ruediger Wapler & Antje Weyh, 2006. "Regional Unemployment Forecasting Using Structural Component Models With Spatial Autocorrelation," ERSA conference papers ersa06p196, European Regional Science Association.
    18. Dmitrii Tverdyi & Evgeny Makarov & Roman Parovik, 2023. "Hereditary Mathematical Model of the Dynamics of Radon Accumulation in the Accumulation Chamber," Mathematics, MDPI, vol. 11(4), pages 1-20, February.
    19. Trond Borgersen & Dag Einar Sommervoll & Tom Wennemo, 2006. "Endogenous Housing Market Cycles," Discussion Papers 458, Statistics Norway, Research Department.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:54:y:2003:i:1:d:10.1057_palgrave.jors.2601472. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.