IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v40y2024i3p1085-1100.html
   My bibliography  Save this article

Improving models and forecasts after equilibrium-mean shifts

Author

Listed:
  • Castle, Jennifer L.
  • Doornik, Jurgen A.
  • Hendry, David F.

Abstract

Equilibrium-mean shifts can result from changes in intercepts with constant dynamics, or be induced by shifts in dynamics with non-zero data means, or both. Induced shifts distort parameter estimates and create a discrepancy between the forecast origin and the equilibrium mean, leading to forecast failure and requiring modifications to previous forecast-error taxonomies. Step-indicator saturation can detect induced shifts, but that does not correct forecast failure. To discriminate direct from induced equilibrium-mean shifts, we augment the model by multiplicative indicators where all selected step indicators interact with the lagged regressand. Forecasts can be markedly improved after induced shifts by including these interactive indicators.

Suggested Citation

  • Castle, Jennifer L. & Doornik, Jurgen A. & Hendry, David F., 2024. "Improving models and forecasts after equilibrium-mean shifts," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1085-1100.
  • Handle: RePEc:eee:intfor:v:40:y:2024:i:3:p:1085-1100
    DOI: 10.1016/j.ijforecast.2023.09.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207023000985
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2023.09.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Inoue, Atsushi & Jin, Lu & Rossi, Barbara, 2017. "Rolling window selection for out-of-sample forecasting with time-varying parameters," Journal of Econometrics, Elsevier, vol. 196(1), pages 55-67.
    2. Castle, Jennifer L. & Clements, Michael P. & Hendry, David F., 2015. "Robust approaches to forecasting," International Journal of Forecasting, Elsevier, vol. 31(1), pages 99-112.
    3. Alogoskoufis, George S & Smith, Ron, 1991. "The Phillips Curve, the Persistence of Inflation, and the Lucas Critique: Evidence from Exchange-Rate Regimes," American Economic Review, American Economic Association, vol. 81(5), pages 1254-1275, December.
    4. Raffaella Giacomini & Barbara Rossi, 2009. "Detecting and Predicting Forecast Breakdowns," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 76(2), pages 669-705.
    5. Jennifer L. Castle & David F. Hendry & Andrew B. Martinez, 2022. "The historical role of energy in UK inflation and productivity and implications for price inflation in 2022," Economics Series Working Papers 983, University of Oxford, Department of Economics.
    6. Jennifer L. Castle & Jurgen A. Doornik & David F. Hendry, 2021. "Forecasting Principles from Experience with Forecasting Competitions," Forecasting, MDPI, vol. 3(1), pages 1-28, February.
    7. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    8. Andrew B. Martinez & Jennifer L. Castle & David F. Hendry, 2022. "Smooth Robust Multi-Horizon Forecasts," Advances in Econometrics, in: Essays in Honor of M. Hashem Pesaran: Prediction and Macro Modeling, volume 43, pages 143-165, Emerald Group Publishing Limited.
    9. Carlos Santos & David Hendry & Soren Johansen, 2008. "Automatic selection of indicators in a fully saturated regression," Computational Statistics, Springer, vol. 23(2), pages 317-335, April.
    10. Hendry, David F., 2006. "Robustifying forecasts from equilibrium-correction systems," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 399-426.
    11. Clements,Michael & Hendry,David, 1998. "Forecasting Economic Time Series," Cambridge Books, Cambridge University Press, number 9780521634809, January.
    12. Jurgen A. Doornik & Henrik Hansen, 2008. "An Omnibus Test for Univariate and Multivariate Normality," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 70(s1), pages 927-939, December.
    13. Pesaran, M. Hashem & Timmermann, Allan, 2007. "Selection of estimation window in the presence of breaks," Journal of Econometrics, Elsevier, vol. 137(1), pages 134-161, March.
    14. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    15. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    16. Jennifer L. Castle & Jurgen A. Doornik & David F. Hendry & Felix Pretis, 2015. "Detecting Location Shifts during Model Selection by Step-Indicator Saturation," Econometrics, MDPI, vol. 3(2), pages 1-25, April.
    17. Pesaran, M. Hashem & Pick, Andreas & Pranovich, Mikhail, 2013. "Optimal forecasts in the presence of structural breaks," Journal of Econometrics, Elsevier, vol. 177(2), pages 134-152.
    18. Godfrey, Leslie G, 1978. "Testing for Higher Order Serial Correlation in Regression Equations When the Regressors Include Lagged Dependent Variables," Econometrica, Econometric Society, vol. 46(6), pages 1303-1310, November.
    19. Sims, Christopher A & Stock, James H & Watson, Mark W, 1990. "Inference in Linear Time Series Models with Some Unit Roots," Econometrica, Econometric Society, vol. 58(1), pages 113-144, January.
    20. Doornik, Jurgen A. & Castle, Jennifer L. & Hendry, David F., 2020. "Card forecasts for M4," International Journal of Forecasting, Elsevier, vol. 36(1), pages 129-134.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    2. Jennifer L. Castle & Jurgen A. Doornik & David F. Hendry, 2024. "Forecasting the UK top 1% income share in a shifting world," Economica, London School of Economics and Political Science, vol. 91(363), pages 1047-1074, July.
    3. Hendry David F & Mizon Grayham E, 2011. "Econometric Modelling of Time Series with Outlying Observations," Journal of Time Series Econometrics, De Gruyter, vol. 3(1), pages 1-26, February.
    4. Ericsson, Neil R., 2016. "Eliciting GDP forecasts from the FOMC’s minutes around the financial crisis," International Journal of Forecasting, Elsevier, vol. 32(2), pages 571-583.
    5. Chevillon, Guillaume, 2016. "Multistep forecasting in the presence of location shifts," International Journal of Forecasting, Elsevier, vol. 32(1), pages 121-137.
    6. Castle, Jennifer L. & Doornik, Jurgen A. & Hendry, David F., 2021. "Modelling non-stationary ‘Big Data’," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1556-1575.
    7. Jennifer L. Castle & Jurgen A. Doornik & David F. Hendry, 2021. "Selecting a Model for Forecasting," Econometrics, MDPI, vol. 9(3), pages 1-35, June.
    8. Tae‐Hwy Lee & Shahnaz Parsaeian & Aman Ullah, 2022. "Optimal forecast under structural breaks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 965-987, August.
    9. Jennifer L. Castle & Jurgen A. Doornik & David F. Hendry & Ragnar Nymoen, 2014. "Misspecification Testing: Non-Invariance of Expectations Models of Inflation," Econometric Reviews, Taylor & Francis Journals, vol. 33(5-6), pages 553-574, August.
    10. Neil R. Ericsson, 2021. "Dynamic Econometrics in Action: A Biography of David F. Hendry," International Finance Discussion Papers 1311, Board of Governors of the Federal Reserve System (U.S.).
    11. David F. Hendry & Grayham E. Mizon, 2016. "Improving the teaching of econometrics," Cogent Economics & Finance, Taylor & Francis Journals, vol. 4(1), pages 1170096-117, December.
    12. Stillwagon, Josh R., 2016. "Non-linear exchange rate relationships: An automated model selection approach with indicator saturation," The North American Journal of Economics and Finance, Elsevier, vol. 37(C), pages 84-109.
    13. Andrew B. Martinez & Jennifer L. Castle & David F. Hendry, 2022. "Smooth Robust Multi-Horizon Forecasts," Advances in Econometrics, in: Essays in Honor of M. Hashem Pesaran: Prediction and Macro Modeling, volume 43, pages 143-165, Emerald Group Publishing Limited.
    14. Jennifer Castle & Takamitsu Kurita, 2019. "Modelling and forecasting the dollar-pound exchange rate in the presence of structural breaks," Economics Series Working Papers 866, University of Oxford, Department of Economics.
    15. Wang, Yudong & Hao, Xianfeng, 2023. "Forecasting the real prices of crude oil: What is the role of parameter instability?," Energy Economics, Elsevier, vol. 117(C).
    16. Ericsson Neil R., 2016. "Testing for and estimating structural breaks and other nonlinearities in a dynamic monetary sector," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(4), pages 377-398, September.
    17. Castle, Jennifer L. & Hendry, David F. & Martinez, Andrew B., 2023. "The historical role of energy in UK inflation and productivity with implications for price inflation," Energy Economics, Elsevier, vol. 126(C).
    18. Roman Frydman & Joshua R. Stillwagon, 2016. "Stock-Market Expectations: Econometric Evidence that both REH and Behavioral Insights Matter," Working Papers Series 44, Institute for New Economic Thinking.
    19. Hännikäinen Jari, 2017. "Selection of an Estimation Window in the Presence of Data Revisions and Recent Structural Breaks," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-22, January.
    20. Hendry, David F. & Mizon, Grayham E., 2014. "Unpredictability in economic analysis, econometric modeling and forecasting," Journal of Econometrics, Elsevier, vol. 182(1), pages 186-195.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:40:y:2024:i:3:p:1085-1100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.