IDEAS home Printed from https://ideas.repec.org/a/spr/inecre/v59y2024i1d10.1007_s41775-023-00197-6.html
   My bibliography  Save this article

The second-order bias and mean squared error of quantile regression estimators

Author

Listed:
  • Tae-Hwy Lee

    (University of California)

  • Aman Ullah

    (University of California)

  • He Wang

    (University of International Business and Economics)

Abstract

The finite sample theory using higher order asymptotics provides better approximations of the bias and mean squared error (MSE) for a class of estimators. Rilston, Srivastava and Ullah (1996) provided the second-order bias results of conditional mean regression. This paper develops new analytical results on the second-order bias up to order $$O\left( N^{-1}\right)$$ O N - 1 and MSE up to order $$O\left( N^{-2}\right)$$ O N - 2 of the conditional quantile regression estimators. First, we provide the general results on the second-order bias and MSE of conditional quantile estimators. The second-order bias result enables an improved bias correction and thus to obtain improved quantile estimation. In particular, we show that the second-order bias are much larger towards the tails of the conditional density than near the median, and therefore the benefit of the second order bias correction is greater when we are interested in the deeper tail quantiles, e.g., for the study of financial risk management. The higher order MSE result for the quantile estimation also enables us to better understand the sources of estimation uncertainty. Next, we consider three special cases of the general results, for the unconditional quantile estimation, for the conditional quantile regression with a binary covariate, and for the instrumental variable quantile regression (IVQR). For each of these special cases, we provide the second-order bias and MSE to illustrate their behavior which depends on certain parameters and distributional characteristics. The Monte Carlo simulation indicates that the bias is larger at the extreme low and high tail quantiles, and the second-order bias corrected estimator has better behavior than the uncorrected ones in both conditional and unconditional quantile estimation. The second-order bias corrected estimators are numerically much closer to the true parameters of the data generating processes. As the higher order bias and MSE decrease as the sample size increases or as the regression error variance decreases, the benefits of the finite sample theory are more apparent when there are larger sampling errors in estimation. The empirical application of the theory to the predictive quantile regression model in finance highlights the benefit of the proposed second-order bias reduction.

Suggested Citation

  • Tae-Hwy Lee & Aman Ullah & He Wang, 2024. "The second-order bias and mean squared error of quantile regression estimators," Indian Economic Review, Springer, vol. 59(1), pages 11-68, October.
  • Handle: RePEc:spr:inecre:v:59:y:2024:i:1:d:10.1007_s41775-023-00197-6
    DOI: 10.1007/s41775-023-00197-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s41775-023-00197-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s41775-023-00197-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Check-loss; Dirac delta function; Quantile regression; Second-order bias; MSE;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:inecre:v:59:y:2024:i:1:d:10.1007_s41775-023-00197-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.