IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v121y2013i1p19-22.html
   My bibliography  Save this article

Perpetual learning and stock return predictability

Author

Listed:
  • Zhu, Xiaoneng

Abstract

The stock market is evolving, and investors are learning. This paper investigates the role of perpetual learning in excess return forecasts. We find that perpetual learning usually delivers statistically and economically significant out-of-sample gains relative to the historical average.

Suggested Citation

  • Zhu, Xiaoneng, 2013. "Perpetual learning and stock return predictability," Economics Letters, Elsevier, vol. 121(1), pages 19-22.
  • Handle: RePEc:eee:ecolet:v:121:y:2013:i:1:p:19-22
    DOI: 10.1016/j.econlet.2013.06.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176513003170
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2013.06.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. William A. Branch & George W. Evans, 2010. "Asset Return Dynamics and Learning," The Review of Financial Studies, Society for Financial Studies, vol. 23(4), pages 1651-1680, April.
    2. Branch, William A. & Evans, George W., 2013. "Bubbles, crashes and risk," Economics Letters, Elsevier, vol. 120(2), pages 254-258.
    3. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    4. Merton, Robert C, 1973. "An Intertemporal Capital Asset Pricing Model," Econometrica, Econometric Society, vol. 41(5), pages 867-887, September.
    5. John Y. Campbell & Samuel B. Thompson, 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
    6. William A. Branch & George W. Evans, 2011. "Learning about Risk and Return: A Simple Model of Bubbles and Crashes," American Economic Journal: Macroeconomics, American Economic Association, vol. 3(3), pages 159-191, July.
    7. Branch, William A. & Evans, George W., 2013. "Bubbles, crashes and risk," Economics Letters, Elsevier, vol. 120(2), pages 254-258.
    8. Branch, William A. & Evans, George W., 2006. "A simple recursive forecasting model," Economics Letters, Elsevier, vol. 91(2), pages 158-166, May.
    9. Fama, Eugene F. & Schwert, G. William, 1977. "Asset returns and inflation," Journal of Financial Economics, Elsevier, vol. 5(2), pages 115-146, November.
    10. Campbell, John Y., 1987. "Stock returns and the term structure," Journal of Financial Economics, Elsevier, vol. 18(2), pages 373-399, June.
    11. Henkel, Sam James & Martin, J. Spencer & Nardari, Federico, 2011. "Time-varying short-horizon predictability," Journal of Financial Economics, Elsevier, vol. 99(3), pages 560-580, March.
    12. Pettenuzzo, Davide & Timmermann, Allan, 2011. "Predictability of stock returns and asset allocation under structural breaks," Journal of Econometrics, Elsevier, vol. 164(1), pages 60-78, September.
    13. Nicholas Barberis, 2000. "Investing for the Long Run when Returns Are Predictable," Journal of Finance, American Finance Association, vol. 55(1), pages 225-264, February.
    14. Allan Timmermann, 1996. "Excess Volatility and Predictability of Stock Prices in Autoregressive Dividend Models with Learning," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 63(4), pages 523-557.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boriss Siliverstovs, 2017. "International stock return predictability: on the role of the United States in bad and good times," Applied Economics Letters, Taylor & Francis Journals, vol. 24(11), pages 771-773, June.
    2. Zhu, Yanjian & Zhu, Xiaoneng, 2014. "European business cycles and stock return predictability," Finance Research Letters, Elsevier, vol. 11(4), pages 446-453.
    3. Zhang, Yaojie & Zeng, Qing & Ma, Feng & Shi, Benshan, 2019. "Forecasting stock returns: Do less powerful predictors help?," Economic Modelling, Elsevier, vol. 78(C), pages 32-39.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    2. Davide Pettenuzzo & Francesco Ravazzolo, 2016. "Optimal Portfolio Choice Under Decision‐Based Model Combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1312-1332, November.
    3. Smith, Simon C., 2021. "International stock return predictability," International Review of Financial Analysis, Elsevier, vol. 78(C).
    4. Daniel Giamouridis & Athanasios Sakkas & Nikolaos Tessaromatis, 2017. "Dynamic Asset Allocation with Liabilities," European Financial Management, European Financial Management Association, vol. 23(2), pages 254-291, March.
    5. Zhu, Xiaoneng & Zhu, Jie, 2013. "Predicting stock returns: A regime-switching combination approach and economic links," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4120-4133.
    6. Leland E. Farmer & Lawrence Schmidt & Allan Timmermann, 2023. "Pockets of Predictability," Journal of Finance, American Finance Association, vol. 78(3), pages 1279-1341, June.
    7. Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
    8. Demetrescu, Matei & Georgiev, Iliyan & Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2022. "Testing for episodic predictability in stock returns," Journal of Econometrics, Elsevier, vol. 227(1), pages 85-113.
    9. Guidolin, Massimo & Hyde, Stuart, 2012. "Can VAR models capture regime shifts in asset returns? A long-horizon strategic asset allocation perspective," Journal of Banking & Finance, Elsevier, vol. 36(3), pages 695-716.
    10. Maio, Paulo & Santa-Clara, Pedro, 2012. "Multifactor models and their consistency with the ICAPM," Journal of Financial Economics, Elsevier, vol. 106(3), pages 586-613.
    11. Lin, Qi, 2018. "Technical analysis and stock return predictability: An aligned approach," Journal of Financial Markets, Elsevier, vol. 38(C), pages 103-123.
    12. Li, Yan & Ng, David T. & Swaminathan, Bhaskaran, 2013. "Predicting market returns using aggregate implied cost of capital," Journal of Financial Economics, Elsevier, vol. 110(2), pages 419-436.
    13. Jessica A. Wachter, 2010. "Asset Allocation," Annual Review of Financial Economics, Annual Reviews, vol. 2(1), pages 175-206, December.
    14. Ľuboš Pástor & Robert F. Stambaugh, 2009. "Predictive Systems: Living with Imperfect Predictors," Journal of Finance, American Finance Association, vol. 64(4), pages 1583-1628, August.
    15. Jiang, Fuwei & Lee, Joshua & Martin, Xiumin & Zhou, Guofu, 2019. "Manager sentiment and stock returns," Journal of Financial Economics, Elsevier, vol. 132(1), pages 126-149.
    16. Ekaterini Panopoulou & Sotiria Plastira, 2014. "Fama French factors and US stock return predictability," Journal of Asset Management, Palgrave Macmillan, vol. 15(2), pages 110-128, April.
    17. Shanken, Jay & Tamayo, Ane, 2012. "Payout yield, risk, and mispricing: A Bayesian analysis," Journal of Financial Economics, Elsevier, vol. 105(1), pages 131-152.
    18. Dangl, Thomas & Halling, Michael, 2012. "Predictive regressions with time-varying coefficients," Journal of Financial Economics, Elsevier, vol. 106(1), pages 157-181.
    19. Pettenuzzo, Davide & Timmermann, Allan & Valkanov, Rossen, 2014. "Forecasting stock returns under economic constraints," Journal of Financial Economics, Elsevier, vol. 114(3), pages 517-553.
    20. Andrew Ang & Allan Timmermann, 2012. "Regime Changes and Financial Markets," Annual Review of Financial Economics, Annual Reviews, vol. 4(1), pages 313-337, October.

    More about this item

    Keywords

    Excess return; Learning; Forecasts; Stock returns;
    All these keywords.

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:121:y:2013:i:1:p:19-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.