IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/9zn7v.html
   My bibliography  Save this paper

Reliability Test of SutteARIMA to Forecast Artificial Data

Author

Listed:
  • Ahmar, Ansari Saleh

    (Universitas Negeri Makassar)

Abstract

SutteARIMA to Forecast Artificial Data

Suggested Citation

  • Ahmar, Ansari Saleh, 2019. "Reliability Test of SutteARIMA to Forecast Artificial Data," OSF Preprints 9zn7v, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:9zn7v
    DOI: 10.31219/osf.io/9zn7v
    as

    Download full text from publisher

    File URL: https://osf.io/download/5e9640904301660458a06642/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/9zn7v?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pauwels, Laurent & Vasnev, Andrey, 2014. "Forecast combination for U.S. recessions with real-time data," The North American Journal of Economics and Finance, Elsevier, vol. 28(C), pages 138-148.
    2. Jaganathan, Srihari & Prakash, P.K.S., 2020. "A combination-based forecasting method for the M4-competition," International Journal of Forecasting, Elsevier, vol. 36(1), pages 98-104.
    3. Aiolfi, Marco & Timmermann, Allan, 2006. "Persistence in forecasting performance and conditional combination strategies," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 31-53.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hayashi, Masayoshi, 2014. "Forecasting welfare caseloads: The case of the Japanese public assistance program," Socio-Economic Planning Sciences, Elsevier, vol. 48(2), pages 105-114.
    2. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    3. Todd E. Clark & Michael W. McCracken, 2010. "Averaging forecasts from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 5-29, January.
    4. Nonejad, Nima, 2022. "Predicting equity premium out-of-sample by conditioning on newspaper-based uncertainty measures: A comparative study," International Review of Financial Analysis, Elsevier, vol. 83(C).
    5. Pablo Pincheira-Brown & Andrea Bentancor & Nicolás Hardy, 2023. "An Inconvenient Truth about Forecast Combinations," Mathematics, MDPI, vol. 11(18), pages 1-24, September.
    6. Goodness C. Aye & Christina Christou & Luis A. Gil‐Alana & Rangan Gupta, 2019. "Forecasting the Probability of Recessions in South Africa: the Role of Decomposed Term Spread and Economic Policy Uncertainty," Journal of International Development, John Wiley & Sons, Ltd., vol. 31(1), pages 101-116, January.
    7. Eo, Yunjong & Kang, Kyu Ho, 2020. "The effects of conventional and unconventional monetary policy on forecasting the yield curve," Journal of Economic Dynamics and Control, Elsevier, vol. 111(C).
    8. Lahiri, Kajal & Peng, Huaming & Zhao, Yongchen, 2015. "Testing the value of probability forecasts for calibrated combining," International Journal of Forecasting, Elsevier, vol. 31(1), pages 113-129.
    9. Samuels, Jon D. & Sekkel, Rodrigo M., 2017. "Model Confidence Sets and forecast combination," International Journal of Forecasting, Elsevier, vol. 33(1), pages 48-60.
    10. Chen, Bin & Maung, Kenwin, 2023. "Time-varying forecast combination for high-dimensional data," Journal of Econometrics, Elsevier, vol. 237(2).
    11. Elena Andreou & Eric Ghysels & Andros Kourtellos, 2013. "Should Macroeconomic Forecasters Use Daily Financial Data and How?," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 240-251, April.
    12. João F. Caldeira & Rangan Gupta & Hudson S. Torrent, 2020. "Forecasting U.S. Aggregate Stock Market Excess Return: Do Functional Data Analysis Add Economic Value?," Mathematics, MDPI, vol. 8(11), pages 1-16, November.
    13. Elena Andreou & Constantinos Kourouyiannis & Andros Kourtellos, 2012. "Volatility Forecast Combinations using Asymmetric Loss Functions," University of Cyprus Working Papers in Economics 07-2012, University of Cyprus Department of Economics.
    14. Pablo Guerróon‐Quintana & Molin Zhong, 2023. "Macroeconomic forecasting in times of crises," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(3), pages 295-320, April.
    15. Diebold, Francis X. & Shin, Minchul, 2019. "Machine learning for regularized survey forecast combination: Partially-egalitarian LASSO and its derivatives," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1679-1691.
    16. Gupta, Rangan & Majumdar, Anandamayee & Pierdzioch, Christian & Wohar, Mark E., 2017. "Do terror attacks predict gold returns? Evidence from a quantile-predictive-regression approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 65(C), pages 276-284.
    17. Yongchen Zhao, 2021. "The robustness of forecast combination in unstable environments: a Monte Carlo study of advanced algorithms," Empirical Economics, Springer, vol. 61(1), pages 173-199, July.
    18. Matsypura, Dmytro & Thompson, Ryan & Vasnev, Andrey L., 2018. "Optimal selection of expert forecasts with integer programming," Omega, Elsevier, vol. 78(C), pages 165-175.
    19. Rangan Gupta & Mampho P. Modise & Josine Uwilingiye, 2016. "Out-of-Sample Equity Premium Predictability in South Africa: Evidence from a Large Number of Predictors," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 52(8), pages 1935-1955, August.
    20. Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:9zn7v. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.