IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v7y2014i1p1-12d33440.html
   My bibliography  Save this article

Revisiting the Performance of MACD and RSI Oscillators

Author

Listed:
  • Terence Tai-Leung Chong

    (Hong Kong Institute of Asia-Pacific Studies, Department of Economics, The Chinese University of Hong Kong, Shatin, Hong Kong, China
    Department of International Economics and Trade, Nanjing University, Nanjing, Jiangsu 210093, China)

  • Wing-Kam Ng

    (Department of Economics, The Chinese University of Hong Kong, Hong Kong, China)

  • Venus Khim-Sen Liew

    (Faculty of Economics and Business, Universiti Malaysia Sarawak, Sarawak, Malaysia)

Abstract

Chong and Ng (2008) find that the Moving Average Convergence–Divergence ( MACD ) and Relative Strength Index ( RSI ) rules can generate excess return in the London Stock Exchange. This paper revisits the performance of the two trading rules in the stock markets of five other OECD countries. It is found that the MACD (12,26,0) and RSI (21,50) rules consistently generate significant abnormal returns in the Milan Comit General and the S&P/TSX Composite Index. In addition, the RSI (14,30/70) rule is also profitable in the Dow Jones Industrials Index. The results shed some light on investors’ belief in these two technical indicators in different developed markets.

Suggested Citation

  • Terence Tai-Leung Chong & Wing-Kam Ng & Venus Khim-Sen Liew, 2014. "Revisiting the Performance of MACD and RSI Oscillators," JRFM, MDPI, vol. 7(1), pages 1-12, February.
  • Handle: RePEc:gam:jjrfmx:v:7:y:2014:i:1:p:1-12:d:33440
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/7/1/1/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/7/1/1/
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Chong, Terence Tai-Leung & Ip, Hugo Tak-Sang, 2009. "Do momentum-based strategies work in emerging currency markets?," Pacific-Basin Finance Journal, Elsevier, vol. 17(4), pages 479-493, September.
    2. Ryan Sullivan & Allan Timmermann & Halbert White, 1999. "Data‐Snooping, Technical Trading Rule Performance, and the Bootstrap," Journal of Finance, American Finance Association, vol. 54(5), pages 1647-1691, October.
    3. Ülkü, Numan & Prodan, Eugeniu, 2013. "Drivers of technical trend-following rules' profitability in world stock markets," International Review of Financial Analysis, Elsevier, vol. 30(C), pages 214-229.
    4. Kim man Lui & Terence T. L. Chong, 2013. "Do Technical Analysts Outperform Novice Traders: Experimental Evidence," Economics Bulletin, AccessEcon, vol. 33(4), pages 3080-3087.
    5. Treynor, Jack L & Ferguson, Robert, 1985. "In Defense of Technical Analysis," Journal of Finance, American Finance Association, vol. 40(3), pages 757-773, July.
    6. Gunasekarage, Abeyratna & Power, David M., 2001. "The profitability of moving average trading rules in South Asian stock markets," Emerging Markets Review, Elsevier, vol. 2(1), pages 17-33, March.
    7. Haiqiang Chen & Terence Tai-Leung Chong & Xin Duan, 2010. "A principal-component approach to measuring investor sentiment," Quantitative Finance, Taylor & Francis Journals, vol. 10(4), pages 339-347.
    8. Timmermann, Allan & Granger, Clive W. J., 2004. "Efficient market hypothesis and forecasting," International Journal of Forecasting, Elsevier, vol. 20(1), pages 15-27.
    9. Tanaka-Yamawaki, Mieko & Tokuoka, Seiji, 2007. "Adaptive use of technical indicators for the prediction of intra-day stock prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(1), pages 125-133.
    10. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    11. Terence Tai-Leung Chong & Wing-Kam Ng, 2008. "Technical analysis and the London stock exchange: testing the MACD and RSI rules using the FT30," Applied Economics Letters, Taylor & Francis Journals, vol. 15(14), pages 1111-1114.
    12. repec:bla:jfinan:v:53:y:1998:i:1:p:267-284 is not listed on IDEAS
    13. Ki-Yeol Kwon & Richard Kish, 2002. "Technical trading strategies and return predictability: NYSE," Applied Financial Economics, Taylor & Francis Journals, vol. 12(9), pages 639-653.
    14. Allen, Franklin & Karjalainen, Risto, 1999. "Using genetic algorithms to find technical trading rules," Journal of Financial Economics, Elsevier, vol. 51(2), pages 245-271, February.
    15. Brock, William & Lakonishok, Josef & LeBaron, Blake, 1992. "Simple Technical Trading Rules and the Stochastic Properties of Stock Returns," Journal of Finance, American Finance Association, vol. 47(5), pages 1731-1764, December.
    16. Hudson, Robert & Dempsey, Michael & Keasey, Kevin, 1996. "A note on the weak form efficiency of capital markets: The application of simple technical trading rules to UK stock prices - 1935 to 1994," Journal of Banking & Finance, Elsevier, vol. 20(6), pages 1121-1132, July.
    17. Mills, Terence C, 1997. "Technical Analysis and the London Stock Exchange: Testing Trading Rules Using the FT30," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 2(4), pages 319-331, October.
    18. R. Rosillo & D. de la Fuente & J. A. L. Brugos, 2013. "Technical analysis and the Spanish stock exchange: testing the RSI, MACD, momentum and stochastic rules using Spanish market companies," Applied Economics, Taylor & Francis Journals, vol. 45(12), pages 1541-1550, April.
    19. Jensen, Michael C & Bennington, George A, 1970. "Random Walks and Technical Theories: Some Additional Evidence," Journal of Finance, American Finance Association, vol. 25(2), pages 469-482, May.
    20. Bessembinder, Hendrik & Chan, Kalok, 1995. "The profitability of technical trading rules in the Asian stock markets," Pacific-Basin Finance Journal, Elsevier, vol. 3(2-3), pages 257-284, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Piekunko-Mantiuk Iwona, 2019. "Parameterized Trade on the Futures Market on the WIG20," Folia Oeconomica Stetinensia, Sciendo, vol. 19(1), pages 114-125, June.
    2. Mohammed Bouasabah & Oshamah Ibrahim Khalaf, 2023. "A Technical Indicator for a Short-term Trading Decision in the NASDAQ Market," Advances in Decision Sciences, Asia University, Taiwan, vol. 27(3), pages 1-13, September.
    3. Charl Maree & Christian W. Omlin, 2022. "Balancing Profit, Risk, and Sustainability for Portfolio Management," Papers 2207.02134, arXiv.org.
    4. Jun-Cheng Chen & Cong-Xiao Chen & Li-Juan Duan & Zhi Cai, 2022. "DDPG based on multi-scale strokes for financial time series trading strategy," Papers 2207.10071, arXiv.org.
    5. Bao, Te & Corgnet, Brice & Hanaki, Nobuyuki & Riyanto, Yohanes E. & Zhu, Jiahua, 2023. "Predicting the unpredictable: New experimental evidence on forecasting random walks," Journal of Economic Dynamics and Control, Elsevier, vol. 146(C).
    6. Rachid Guennouni Hassani & Alexis Gilles & Emmanuel Lassalle & Arthur D'enouveaux, 2020. "Predicting Stock Returns with Batched AROW," Papers 2003.03076, arXiv.org, revised Mar 2020.
    7. Jie Zou & Jiashu Lou & Baohua Wang & Sixue Liu, 2022. "A Novel Deep Reinforcement Learning Based Automated Stock Trading System Using Cascaded LSTM Networks," Papers 2212.02721, arXiv.org, revised Jul 2023.
    8. Bivas Dinda, 2024. "Gated recurrent neural network with TPE Bayesian optimization for enhancing stock index prediction accuracy," Papers 2406.02604, arXiv.org.
    9. Rachid Guennouni Hassani & Alexis Gilles & Emmanuel Lassalle & Arthur Dénouveaux, 2020. "Predicting Stock Returns with Batched AROW," Working Papers hal-02496048, HAL.
    10. Byung-Kook Kang, 2021. "Improving MACD Technical Analysis by Optimizing Parameters and Modifying Trading Rules: Evidence from the Japanese Nikkei 225 Futures Market," JRFM, MDPI, vol. 14(1), pages 1-21, January.
    11. Taylan Kabbani & Ekrem Duman, 2022. "Deep Reinforcement Learning Approach for Trading Automation in The Stock Market," Papers 2208.07165, arXiv.org.
    12. D. Th. Vezeris & C. J. Schinas & G. Papaschinopoulos, 2018. "Profitability Edge by Dynamic Back Testing Optimal Period Selection for Technical Parameters Optimization, in Trading Systems with Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 51(4), pages 761-807, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chong, Terence Tai-Leung & Lam, Tau-Hing & Yan, Isabel Kit-Ming, 2012. "Is the Chinese stock market really inefficient?," China Economic Review, Elsevier, vol. 23(1), pages 122-137.
    2. Cheol‐Ho Park & Scott H. Irwin, 2007. "What Do We Know About The Profitability Of Technical Analysis?," Journal of Economic Surveys, Wiley Blackwell, vol. 21(4), pages 786-826, September.
    3. Strobel, Marcus & Auer, Benjamin R., 2018. "Does the predictive power of variable moving average rules vanish over time and can we explain such tendencies?," International Review of Economics & Finance, Elsevier, vol. 53(C), pages 168-184.
    4. Chen, Cheng-Wei & Huang, Chin-Sheng & Lai, Hung-Wei, 2009. "The impact of data snooping on the testing of technical analysis: An empirical study of Asian stock markets," Journal of Asian Economics, Elsevier, vol. 20(5), pages 580-591, September.
    5. Konstandinos Chourmouziadis & Dimitra K. Chourmouziadou & Prodromos D. Chatzoglou, 2021. "Embedding Four Medium-Term Technical Indicators to an Intelligent Stock Trading Fuzzy System for Predicting: A Portfolio Management Approach," Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1183-1216, April.
    6. Salma Khand & Vivake Anand & Mohammad Nadeem Qureshi, 2020. "The Predictability and Profitability of Simple Moving Averages and Trading Range Breakout Rules in the Pakistan Stock Market," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 23(01), pages 1-38, March.
    7. Farias Nazário, Rodolfo Toríbio & e Silva, Jéssica Lima & Sobreiro, Vinicius Amorim & Kimura, Herbert, 2017. "A literature review of technical analysis on stock markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 66(C), pages 115-126.
    8. Ülkü, Numan & Prodan, Eugeniu, 2013. "Drivers of technical trend-following rules' profitability in world stock markets," International Review of Financial Analysis, Elsevier, vol. 30(C), pages 214-229.
    9. Urquhart, Andrew & Gebka, Bartosz & Hudson, Robert, 2015. "How exactly do markets adapt? Evidence from the moving average rule in three developed markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 38(C), pages 127-147.
    10. R. Rosillo & D. de la Fuente & J. A. L. Brugos, 2013. "Technical analysis and the Spanish stock exchange: testing the RSI, MACD, momentum and stochastic rules using Spanish market companies," Applied Economics, Taylor & Francis Journals, vol. 45(12), pages 1541-1550, April.
    11. Alexandros E. Milionis & Evangelia Papanagiotou, 2008. "A Note on the Use of Moving Average Trading Rules to Test For Weak from Efficiency in Capital Markets," Working Papers 91, Bank of Greece.
    12. Michael McAleer & John Suen & Wing Keung Wong, 2016. "Profiteering from the Dot-Com Bubble, Subprime Crisis and Asian Financial Crisis," The Japanese Economic Review, Japanese Economic Association, vol. 67(3), pages 257-279, September.
    13. Michael D. McKenzie, 2007. "Technical Trading Rules in Emerging Markets and the 1997 Asian Currency Crises," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 43(4), pages 46-73, August.
    14. Marshall, Ben R. & Cahan, Rochester H., 2005. "Is technical analysis profitable on a stock market which has characteristics that suggest it may be inefficient?," Research in International Business and Finance, Elsevier, vol. 19(3), pages 384-398, September.
    15. Alexandros Milionis & Evangelia Papanagiotou, 2009. "A study of the predictive performance of the moving average trading rule as applied to NYSE, the Athens Stock Exchange and the Vienna Stock Exchange: sensitivity analysis and implications for weak-for," Applied Financial Economics, Taylor & Francis Journals, vol. 19(14), pages 1171-1186.
    16. Metghalchi, Massoud & Chen, Chien-Ping & Hayes, Linda A., 2015. "History of share prices and market efficiency of the Madrid general stock index," International Review of Financial Analysis, Elsevier, vol. 40(C), pages 178-184.
    17. Martín García, Rodrigo & Ventura Pérez, Enrique & Arguedas Sanz, Raquel, 2020. "Temporal optimisation of signals emitted automatically by securities exchange indicators," Cuadernos de Gestión, Universidad del País Vasco - Instituto de Economía Aplicada a la Empresa (IEAE).
    18. Metghalchi, Massoud & Chang, Yung-Ho & Marcucci, Juri, 2008. "Is the Swedish stock market efficient? Evidence from some simple trading rules," International Review of Financial Analysis, Elsevier, vol. 17(3), pages 475-490, June.
    19. Day, Min-Yuh & Ni, Yensen & Huang, Paoyu, 2019. "Trading as sharp movements in oil prices and technical trading signals emitted with big data concerns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 349-372.
    20. Tan, Siow-Hooi & Lai, Ming-Ming & Tey, Eng-Xin & Chong, Lee-Lee, 2020. "Testing the performance of technical analysis and sentiment-TAR trading rules in the Malaysian stock market," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).

    More about this item

    Keywords

    relative strength index; trading rules; moving average convergence–divergence;
    All these keywords.

    JEL classification:

    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:7:y:2014:i:1:p:1-12:d:33440. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.